• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries

    2022-09-24 08:01:04MeiqianWan萬美茜ZhongyongZhang張忠勇ShangquanZhao趙尚泉andNaigenZhou周耐根
    Chinese Physics B 2022年9期

    Meiqian Wan(萬美茜), Zhongyong Zhang(張忠勇), Shangquan Zhao(趙尚泉), and Naigen Zhou(周耐根)

    School of Physics and Materials Science,Nanchang University,Nanchang 330031,China

    Keywords: β-GeS,anode,alkali metal ion batteries,first-principles

    1. Introduction

    Lithium-ion batteries (LIBs) have achieved significant success among the alkali metal ion batteries(AMIBs), which are dominated the market of energy storage devices, such as portable electronic devices, electric vehicles, and grid-level energy storage.[1-3]However,the scarcity of lithium resources is difficult to meet the growing market demand,and the development of other alternative ion batteries has become an increasingly urgent need.[4-6]Sodium and potassium ion batteries (NIBs and KIBs) have entered the limelight as nextgeneration energy storage devices due to the abundant crustal resources of sodium and potassium elements and the similar working mechanism with LIBs.[7-10]Unexpectedly, the current LIBs commercial electrode graphite show poor storage capacity for NIBs and KIBs due to the energetic instability of the intercalated compounds with the larger radii Na and K.Hence, an important challenge for the successful commercial preparation of NIBs and KIBs is the lack of suitable anode materials with high capacity,rapid diffusion rate and good stability.

    Recently, group-IV monochalcogenides, such as GeS,GeSe, SnS and SnSe, have attracted extensive attention due to their phosphorene-like layered structures with weak interlayer forces,[11-15]and in particular, bulk GeS has good potential as a LIBs anode material with high Li-ion storage capacity. Compared to bulk materials, two-dimensional (2D)materials,with large surface area,fast ion mobility and structural flexibility,are considered promising candidates for nextgeneration electrode materials to meet the higher performance demand.[16-30]Two-dimensional GeS monolayer has many different configurations, among which the orthogonalα-GeS structure (symmetryPcmn) is the most widely studied. Theα-GeS nanosheets were successfully prepared by liquid phase exfoliation in a custom sealed tip ultrasonic system, and subsequent analysis of theα-GeS nanosheet as anodes for LIBs revealed superb electrochemical performance, including high cycle stability of over 1000 cycles and high rate capability of over 10 A·g-1.[31]However, theoretical studies showed that the capacity of 2Dα-GeS as NIBs anode material could only reach 512 mAh·g-1,which is slightly lower than that of C2N(599.72 mAh·g-1)and g-Mg3N2(797 mAh·g-1).[32-34]Note that previous studies show a suitable pore size and appropriate adsorption distance can effectively enhance the alkali metal(AM)adsorption capacity. Compared withα-GeS monolayer,theβ-GeS(symmetryPmn21)has bigger lattice constants and larger pore size,which may exhibit more excellent energy storage performance. Moreover, the binding energy ofβ-GeS andα-GeS are almost the same (the difference is less than 0.025 eV per atom),which suggests that theβ-GeS monolayer may also have the same good stability asα-GeS.[35]However,most of the current researches on GeS nanosheet are mainly focused on theα-GeS monolayer,while little researches have been done on theβ-GeS monolayer. The adsorption mechanism, diffusion energy barrier and theoretical capacity ofβ-GeS monolayer as the anode material of AMIBs are still unknown. At present,β-GeS has not been successfully prepared experimentally,butβ-GeSe,which has the same crystal structure, stacking form and electronic properties as it, has been successfully synthesized recently.[36]With the rapid development of computer technology,theoretical calculations,an important tool in materials science research, can greatly help bridge some of the current experimental and technical gaps and aid in understanding the adsorption mechanisms of AM atoms on novel battery materials. First-principles calculations dealing with the ground state of electrons in material systems can yield some electrochemical properties of electrode materials,such as adsorption energy,diffusion energy barrier,opencircuit voltage and theoretical capacity.[37]

    In the present study,the performance of theβ-GeS monolayer as the anode material for AMIBs have been systematically investigated by the first-principles calculations. The adsorption energy of AM atoms at different sites was calculated to identify the most stable adsorption site. The density of states analysis showed that the electrical conductivity of theβ-GeS can be enhanced after adsorbing AM atoms due to the semiconductor-to-metal transition. Moreover, theβ-GeS monolayer has a low diffusion energy barrier(0.258 eV),high theoretical capacity (1024 mAh·g-1) and low operating voltage (0.211 V) for Na, suggesting thatβ-GeS monolayer can be used as an excellent high-performance anode material for NIBs.

    2. Method

    The theoretical calculations were adopted via the Viennaab initiosimulation package (VASP) based on the density functional theory. Projector augmented wave(PAW)was used to describe the interaction between the ionic real and outermost valence electrons.[38,39]The calculated cut-off energy was set to 520 eV.During the iterative process,the energy convergence threshold was 10-5eV,and the force acting on each atom does not exceed 10-2eV·?A-1. The structure optimization and electron density of states calculations were performed by using the Monkhorst-Packk-point grid settings, which were set to 4×6×1 and 8×12×1, respectively. The semiempirical DFT-D3 method was employed for the correction of interlayer van der Waals forces.[40,41]The interlayer vacuum layer was set greater than 15 ?A to prevent interlayer interaction forces. The phonon dispersion spectrum was calculated according to the finite displacement method in the Phonopy code to determine the dynamic stability.Ab initiomolecular dynamics (AIMD) simulation was performed to confirm the thermal stability of theβ-GeS monolayer. NVT ensemble was considered for the AIMD simulations with the Nos′e-Hoover heat bath method.[42]The climbing image nudged elastic band(CI-NEB) method was used to study the minimum diffusion energy path of alkali metal atoms.[43,44]The atomic and electronic structures were analyzed by using the VESTA code.[45]

    3. Results and discussion

    3.1. Structure and stability of β-GeS monolayer

    We construct theβ-GeS monolayer with the space groupPmn21,and a unit cell contains two Ge atoms and two S atoms.After structural optimization, the calculated lattice constants ofβ-GeS monolayer area=5.680 ?A andb=3.502 ?A, respectively, which are in good agreement with the previous theoretical results (a=5.68 ?A andb=3.51 ?A).[46]Theβ-GeS monolayer is an indirect bandgap semiconductor,and the bandgap calculated in this paper is 1.707 eV(Fig.S1),which is slightly smaller than the 1.77 eV in the Ref. [43]. These differences are because we used the DFT-D3 method instead of the DFT-D2 method in the Ref. [43], which can better describe the interactions between AM atoms andβ-GeS monolayer with greater accuracy. The phonon spectrum of theβ-GeS monolayer exists no negative imaginary frequency in the Brillouin zone, indicating the dynamic stability of theβ-GeS monolayer(Fig.S2). A 3×3 supercell is adopted to examine the thermal stability of theβ-GeS monolayer by performing AIMD simulations. The fluctuations of the total potential energy with simulation time are plotted in Fig. S3, where the total potential energy remains almost constant throughout the simulation period. The above results indicate that theβ-GeS monolayer has good thermal stability.

    The Fermi energy level can have an impact on the potential of as an electrode material.[47]Graphite has a high Fermi energy level(-4.31 eV)with low potential,which is suitable as a negative electrode material. The researchers were able to effectively modulate the electrochemical potential(2.7-3.7 V)by tuning the graphite derivative Fermi energy level (-8.36 to-8.47 eV) through a p-type doping strategy. Theβ-GeS monolayer has a higher Fermi energy level (-3.13 eV) and a narrower band gap, and the electrons introduced after the adsorption of AM atoms will fill in the higher energy level,resulting in a lower electrochemical potential. Thus,theβ-GeS monolayer can exist in a relatively stable energy state and has promising potential as a low potential anode material.

    3.2. Adsorption of AM atoms on β-GeS monolayer

    To explore whether theβ-GeS monolayer can be a suitable anode material for AMIBs,we firstly investigated the adsorption energy(Ead)of a single AM atoms on the 2×2β-GeS supercell. Considering the symmetry of theβ-GeS monolayer structure,eight possible adsorption sites were chosen as shown in Fig.1,which are the top of P-P triangle gravity center(C1and C2sites), the top of upper S-atom position (S1site), the top of lower S-atom position (S2site), the top of upper Geatom position(G1site),the top of lower Ge-atom position(G2site),and the top of hexagonal Ge-S rings center(H1and H2sites). The adsorption energy (Ead) of an AM was calculated by the following formula:

    whereEGeS-AMis the total energy ofβ-GeS after adsorbing AM atoms,EGeSandEAMare the total energies of GeS and an AM atom in its bulk structure, respectively,Nis the number of adsorbed AM atoms. After structural optimization,the AM atoms at C1, G2, H1and S2sites would spontaneously migrate to the adjacent C2site, and the AM atoms at G1and S1sites would finally migrate to the adjacent H2site. Only C2and H2sites are stable adsorption sites for AM atoms,and the corresponding adsorption energies are-0.223 eV and 0.273 eV(Li),-0.255 eV and 0.005 eV(Na),-0.678 eV and-0.465 eV (K), respectively. The adsorption energies of the H2site are positive for Li and Na atoms,indicating that these adsorption processes are non-spontaneous exothermic reactions. And the adsorption energy of the C2site and the H2site are both negative for the case of K atoms, while the C2site is more stable for the K atoms owing to the more negative adsorption energy. An interesting finding is that theEadvalues increase with the increase of the atomic radius,indicating stronger adsorption ofβ-GeS to heavier AM atoms. Thus,the C2site is the most stable adsorption site for Li,Na and K atoms,and the charge transfer and charge density distribution discussed later only consider the C2site adsorption conformations.

    To further understand the adsorption mechanism,the differential charge density method has been used to analyze the charge distribution between AM atoms and theβ-GeS monolayer,which is calculated by the following equation:

    whereρGeSandρGeS-AMare the charge density of theβ-GeS before and after adsorb AM atoms,andρAMis the charge density of isolated AM atoms. The differential charge density for AM atoms adsorption on theβ-GeS monolayer is plotted in Fig.2. There is a clear charge transfer between the AM atoms and theβ-GeS monolayer, the charge depletion regions are mainly concentrated around the AM atoms, while the charge accumulation regions are mainly between the AM atoms and theβ-GeS monolayer. Subsequently,the Bader charge analysis has been used to quantify the charge transfer of AM atoms,and the results show that Li,Na,and K atoms adsorbed on theβ-GeS monolayer are contributed to 0.855, 0.800, and 0.821 electrons,respectively,and existed in the form of cations.

    Fig. 1. Schematic diagram of eight highly symmetric adsorption sites on the surface of β-GeS monolayer,the yellow balls represent the possible sites of AM atoms.

    Fig.2. The differential charge density distribution of β-GeS monolayer after adsorption of alkali metal atoms. (a)Li0.125GeS,(b)Na0.125GeS,(c)K0.125GeS.The blue area represents electron depletion and the yellow area represents electron accumulation.

    Meanwhile,the electronic density of states(DOS)of theβ-GeS monolayer has been studied to identify how the electronic behavior changed. As shown in Fig. 3, the pristineβ-GeS monolayer has no electronic state near the Fermi energy level and exhibits a semiconductor characteristic, which is consistent with the previous band structure calculation. However,theβ-GeS systems after adsorb AM atoms exhibit metallic characteristics,the electrons near the Fermi energy level are mainly provided by Ge atoms and the electrons of the valence band maximum (VBM) are mainly contributed by S atoms.The density composition of the conduction band minimum(CBM)and VBM electronic states are similar before and after the adsorption of AM atoms, and the main difference is that the Fermi energy level moves upwards and crosses the CBM.

    Fig. 3. DOS of (a) β-GeS, (b) Li0.125GeS, (c) Na0.125GeS, and (d)Na0.125GeS.

    This is because after the AM atoms are adsorbed on theβ-GeS monolayer, the AM valence electrons are completely ionized into the conduction band,which increases the number of electrons in the conduction band and raises the Fermi energy level. All the above studies have shown that the adsorption of AM atoms on theβ-GeS monolayer is accompanied by a large number of electrons transfer, which makes the Fermi energy level through the CBM and exhibits metallic properties. The semiconductor-to-metallic transition will enhance the electron conductivity, reduce the internal resistance during electron transfer and improve the overall performance of AMIBs.

    Fig.4.(a)Schematic diagram of two diffusion paths on the β-GeS monolayer,(b)diffusion energy barrier curve of AM on the β-GeS monolayer surface along armchair direction,(c)diffusion energy barrier curve of AM on the β-GeS monolayer surface along the zigzag direction.

    3.3. Diffusion of AM atoms on the β-GeS monolayer

    Fast charging is also a key technology for commercial batteries applications, which is determined by the diffusion barrier of AM atoms on the anode surface. Therefore, we have examined the diffusion of Li, Na, and K atoms on theβ-GeS monolayer, and two diffusion paths are designed between two adjacent C2sites as shown in Fig.4(a): zigzag direction(A→B)and armchair direction(B→C).The diffusion energy barriers are 0.914 eV(Li),0.475 eV(Na)and 0.453 eV(K)along the armchair direction and 0.276 eV(Li),0.258 eV(Na)and 0.208 eV(K)along the zigzag direction,respectively.Compared with Li atoms, the diffusion energy barriers of Na and K atoms are lower,this is because that as the radii of AM atoms increases, the larger the distance between the adsorption site and theβ-GeS monolayer, the smaller the interaction force between the AM atoms and theβ-GeS monolayer,and the easier for diffusion. The diffusion barriers are slightly lower or similar than other reported 2D electrode materials,such as GeP3(Li 0.5 eV,Na 0.27 eV and K 0.287 eV),MoN2(Li 0.78 eV,Na 0.56 eV and K 0.49 eV),SiC3(Li 0.47 eV,Na 0.34 eV and K 0.18 eV).[48-50]

    Considering the large difference in the diffusion energy barriers of alkali metal atoms along the armchair and zigzag directions (>0.22 eV), this can impact the diffusion rate of AM atoms in different directions. The Arrhenius equation is used to quantify the difference in diffusion constants of AM atoms along the armchair and zigzag directions,and calculated as follows:

    whereEaandkBare the diffusion barriers and Boltzmann’s constant, respectively, andTis environmental temperature.According to the Arrhenius equation, the mobility of Li, Na and K along the zigzag direction are estimated about 5.2×1010,4.4×103,1.360×104times faster than that along armchair direction forβ-GeS at the room temperature, respectively, showing a remarkable anisotropic diffusion feature.Theβ-GeS monolayer anode can easily achieve directional diffusion of AM atoms while preventing metal agglomeration.The low diffusion energy barrier and high diffusion constants ofβ-GeS monolayer make it a potentially excellent anode material for fast charge/discharge rates.

    3.4. Theoretical voltage and specific capacity

    The open-circuit voltage and theoretical capacity ofβ-GeS monolayer are futher discussed,because they have a decisive effect on the performance of AMIBs. The open-circuit voltages(OCVs)ofβ-GeS monolayer at different adsorption concentrations of AM atoms under the neglect of volume and entropy can be calculated by the following equation:

    whereE(AMx2GeS)andE(AMx1GeS)denote the total energy of the system forβ-GeS monolayer adsorption concentrations ofx2andx1, respectively.nis the number of AM valence electrons andeis the unit charge.As a suitable anode material,the open circuit voltage should be in the range of 0-1.0 V.Below 0 V will cause a dendritic phenomenon, while above 1.0 V will bring a lower operating voltage of batteries. The open circuit voltage curves and the corresponding optimized structures for different adsorption concentrations of AM atoms are shown in Figs.5(a)-5(c). The adsorption of Li atoms prefers unilateral adsorption, the adsorbed atoms are all located on the same side of theβ-GeS monolayer, and the corresponding stoichiometric ratio at the maximum adsorption capacity is Li0.5GeS.When the adsorption stoichiometry ratio exceeds Li0.5GeS,the strong interaction between Li atoms andβ-GeS monolayers produces severe structural distortion and the Ge-S bond breaks to form Li-S bonds,leading to irreversible destruction of theβ-GeS structure. A similar phenomenon that Ge-Se bond breaks to form Li-Se bonds was observed in the lithiation of GeSe monolayer.[51]Therefore,it means that theβ-GeS monolayer is unsuitable for LIBs anode. As for the Na and K atoms adsorption, the adsorbed atoms prefer simultaneous adsorption on the upper and lower surfaces, and the stoichiometric ratios of the maximum adsorption amounts are Na4GeS and KGeS, respectively. Meanwhile, theβ-GeS has the open-circuit voltage in the ranges are 0.297-0.382 V,0.293-0.177 V,and 0.674-0.168 V for of Li, Na, and K with the corresponding average OCVs of 0.340 V, 0.211 V, and 0.400 V. These average OCVs values are between those of conventional anode materials(e.g., graphite 0.11 V and TiO21.5-1.8 V),and lower than those 2D anode materials such as h-BAs(Li 0.49 V,Na 0.35 V and 0.26 V),and FeSe(Li 0.88 V,Na 0.49 V and 0.38 V).[52-55]The average OCVs of Li,Na and K are in the ideal voltage range of 0.00-1.00 V for theβ-GeS monolayer.

    Fig.5. OVCs of β-GeS monolayer during the intercalation of AM atoms,(a)LixGeS,(b)NaxGeS,(c)KxGeS.(d)The theoretical capacities of AM atoms on the β-GeS monolayer.

    The maximum theoretical capacities(C)of AM atoms can be calculated by

    wherexmaxis the maximum ratio of adsorbed AM atoms,Fis the Faraday constant(26.8 Ah·mol-1)andMGeSis the atomic mass of GeS(104.7 g·mol-1).

    The specific capacity(Fig.5(d))of the 2Dβ-GeS anodes for Li, Na and K atoms are 128 mAh·g-1, 1024 mAh·g-1,256 mAh·g-1, respectively. Theβ-GeS monolayer is not suitable as the anode of Li-ion battery because of low Li storage capacity and poor stability. While, for Na and K atoms, the theoretical capacities are slightly higher than those reported for some 2D materials, such as MXenes(Na<400 mAh·g-1and K<200 mAh·g-1), Mo2C (Na 132 mAh·g-1and K 65 mAh·g-1),MoS2(Na 670 mAh·g-1),α-GeS (Na 512 mAh·g-1and K 256 mAh·g-1) and graphite(Na 35 mAh·g-1and K 279 mAh·g-1).[32,56-61]The sodium storage capacity ofβ-GeS monolayer is twice of that ofα-GeS, which is due to the larger lattice constant and larger pore size ofβ-GeS, the distance between adsorbed atoms is larger,and the repulsive force generated between Na ions will be weakened,which is more favorable to Na atom adsorption.However, the effect of pore size on the K atoms adsorption is not significant,the adsorption energy is smaller for the second layer of K atoms due to the large radius of K atoms and the long distance between K andβ-GeS.As shown in Table 1,like other Ge-based chalcogenides, theβ-GeS monolayer is more suitable as electrode material for NIBs with high theoretical capacity.

    Table 1. The specific capacities and energy barriers of different 2D anode materials for AM ion batteries.

    Moreover, the electron localization functions (ELF) of Na4GeS and KGeS are displayed in Fig. 6, where the value of 0.00 indicates no charge density distribution,while the values of 0.50 and 1.00 indicate fully delocalized and fully localized electrons. For Na4GeS and KGeS,the electrons form a negative electron cloud(NEC)around the Na and K atoms,which can shield the repulsive forces between metal cations and avoid the occurrence of clusters, thus better maintaining the stability of the adsorption system. Compared with current commercial graphite electrodes,β-GeS monolayer has high capacity, low diffusion energy barrier and low open-circuit voltage as anode material for NIBs. From the above described findings, we conclude thatβ-GeS monolayers can be considered as excellent anode materials for NIBs.

    Fig.6.ELF maps sliced in(010)direction of(a)Na4GeS and(b)KGeS.

    4. Conclusion

    We have systematically investigated the performance ofβ-GeS as anode material for AMIBs using the first-principles calculations. The electrical conductivity ofβ-GeS can be enhanced after the adsorption of AM atoms due to the semiconductor-to-metal transition. In addition, the low diffusion energy barrier of AM atoms on theβ-GeS monolayer provides a rapid charge/discharge rate for AIMBs applications.Moreover, we found theβ-GeS monolayer with larger pores has twice Na storage capacity(1024 mAh·g-1)than that ofα-GeS. Considering the low diffusion barrier (0.258 eV), high capacity and low average OCV (0.211 V) for Na, theβ-GeS monolayer can be used as a high performance NIBs anode material.

    Acknowledgements

    Project supported by the the National Natural Science Foundation of China (Grant Nos. 52062035 and 51861023)and the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province, China (Grant No.20213BCJ22056).

    黄色视频,在线免费观看| 久久久久国内视频| 美女扒开内裤让男人捅视频| 日韩成人在线观看一区二区三区| 91老司机精品| 国产精品国产av在线观看| 精品欧美一区二区三区在线| 一级黄色大片毛片| 电影成人av| 国产精品综合久久久久久久免费 | 国产高清激情床上av| 黑人巨大精品欧美一区二区mp4| 热re99久久国产66热| av一本久久久久| 18禁裸乳无遮挡免费网站照片 | 亚洲avbb在线观看| 最新的欧美精品一区二区| 国产免费现黄频在线看| 亚洲五月婷婷丁香| 国产成人精品无人区| 国产一区二区三区综合在线观看| 日本五十路高清| av不卡在线播放| 精品国内亚洲2022精品成人 | 中出人妻视频一区二区| 精品一区二区三区四区五区乱码| 国产精品亚洲av一区麻豆| 免费在线观看亚洲国产| 满18在线观看网站| a级片在线免费高清观看视频| 日本黄色视频三级网站网址 | 精品亚洲成a人片在线观看| 亚洲欧美日韩高清在线视频| 国产精品永久免费网站| 在线av久久热| 女人精品久久久久毛片| 啦啦啦 在线观看视频| 亚洲成人免费av在线播放| 国产亚洲精品久久久久久毛片 | 日韩欧美免费精品| 露出奶头的视频| 深夜精品福利| 国产精品综合久久久久久久免费 | www.自偷自拍.com| 久久ye,这里只有精品| 免费女性裸体啪啪无遮挡网站| 99精品欧美一区二区三区四区| 另类亚洲欧美激情| 99国产精品免费福利视频| 亚洲精品美女久久av网站| 国产免费av片在线观看野外av| 黄色女人牲交| 美女高潮喷水抽搐中文字幕| 欧美激情高清一区二区三区| 操美女的视频在线观看| 午夜免费观看网址| 亚洲av成人不卡在线观看播放网| 国产视频一区二区在线看| 成人av一区二区三区在线看| 中文字幕高清在线视频| 热re99久久国产66热| 成人三级做爰电影| 色综合欧美亚洲国产小说| svipshipincom国产片| 精品一区二区三区四区五区乱码| 国产色视频综合| 国产免费现黄频在线看| 亚洲熟妇中文字幕五十中出 | 91九色精品人成在线观看| 国内久久婷婷六月综合欲色啪| 久久午夜综合久久蜜桃| 日日夜夜操网爽| 在线国产一区二区在线| 美国免费a级毛片| 黄色a级毛片大全视频| 中出人妻视频一区二区| 亚洲国产中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 青草久久国产| 18禁美女被吸乳视频| 1024视频免费在线观看| 多毛熟女@视频| 咕卡用的链子| 一区二区三区激情视频| 亚洲国产欧美日韩在线播放| 欧美精品av麻豆av| 免费不卡黄色视频| 在线观看午夜福利视频| 亚洲七黄色美女视频| 久久久久精品人妻al黑| 成年人免费黄色播放视频| 精品人妻在线不人妻| 国产不卡av网站在线观看| 国产精品一区二区在线观看99| 国产成人av教育| 免费在线观看亚洲国产| 性少妇av在线| 日韩一卡2卡3卡4卡2021年| 日本wwww免费看| 国产欧美日韩综合在线一区二区| a在线观看视频网站| 满18在线观看网站| 亚洲av第一区精品v没综合| 女性生殖器流出的白浆| 国产午夜精品久久久久久| 操出白浆在线播放| 精品久久久精品久久久| 亚洲国产看品久久| 久久中文字幕人妻熟女| 久久精品国产亚洲av高清一级| 久久99一区二区三区| 亚洲熟妇中文字幕五十中出 | 国产高清视频在线播放一区| 又紧又爽又黄一区二区| 黄色a级毛片大全视频| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 天堂动漫精品| 五月开心婷婷网| 香蕉丝袜av| 国产一区二区三区综合在线观看| 亚洲av电影在线进入| 香蕉丝袜av| 欧美激情高清一区二区三区| 高清黄色对白视频在线免费看| 久久久久久久午夜电影 | 国产欧美亚洲国产| 岛国毛片在线播放| 90打野战视频偷拍视频| 亚洲人成77777在线视频| 亚洲av电影在线进入| 日本黄色日本黄色录像| 美女高潮到喷水免费观看| 两个人免费观看高清视频| 久久国产乱子伦精品免费另类| 国产亚洲精品久久久久5区| 99久久精品国产亚洲精品| 久久久久国产一级毛片高清牌| 正在播放国产对白刺激| 久久影院123| 午夜久久久在线观看| 久久久久久亚洲精品国产蜜桃av| 久久热在线av| 亚洲av成人一区二区三| 国产精品乱码一区二三区的特点 | 午夜视频精品福利| 国产精品99久久99久久久不卡| 天堂俺去俺来也www色官网| 18禁观看日本| 少妇猛男粗大的猛烈进出视频| 淫妇啪啪啪对白视频| 在线观看66精品国产| 国产成人系列免费观看| 91麻豆精品激情在线观看国产 | 亚洲成国产人片在线观看| 两性夫妻黄色片| 日本wwww免费看| 高清在线国产一区| 久久人妻av系列| 亚洲一区二区三区不卡视频| 999久久久精品免费观看国产| 老司机在亚洲福利影院| 悠悠久久av| 中文亚洲av片在线观看爽 | 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 成人18禁在线播放| 一级毛片精品| 国产免费男女视频| 在线十欧美十亚洲十日本专区| 欧美性长视频在线观看| 九色亚洲精品在线播放| 超碰97精品在线观看| 亚洲第一av免费看| 久久精品aⅴ一区二区三区四区| 捣出白浆h1v1| 欧美日韩福利视频一区二区| 亚洲综合色网址| 午夜免费鲁丝| 国产精品久久久久成人av| 啦啦啦在线免费观看视频4| 欧美日韩瑟瑟在线播放| 纯流量卡能插随身wifi吗| av天堂在线播放| 精品国产一区二区三区四区第35| 国产欧美日韩精品亚洲av| 男女之事视频高清在线观看| 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 一级片'在线观看视频| 欧美国产精品一级二级三级| 一级毛片女人18水好多| 色老头精品视频在线观看| 亚洲av成人不卡在线观看播放网| 一区福利在线观看| 国产男女超爽视频在线观看| 亚洲精品中文字幕一二三四区| tocl精华| 国产精品免费大片| 天天躁日日躁夜夜躁夜夜| 成人特级黄色片久久久久久久| 国产成人欧美| 亚洲视频免费观看视频| 俄罗斯特黄特色一大片| 亚洲av日韩在线播放| 99精品久久久久人妻精品| 最新在线观看一区二区三区| www.熟女人妻精品国产| 99国产精品99久久久久| 激情在线观看视频在线高清 | 亚洲av美国av| 精品久久久久久久毛片微露脸| 十八禁人妻一区二区| 无人区码免费观看不卡| √禁漫天堂资源中文www| 黄片播放在线免费| 亚洲一区中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 麻豆av在线久日| 99热国产这里只有精品6| 国产在线精品亚洲第一网站| 9191精品国产免费久久| 亚洲精品在线美女| 一a级毛片在线观看| 18禁国产床啪视频网站| 久久久久久久精品吃奶| 无人区码免费观看不卡| 亚洲 欧美一区二区三区| 国产视频一区二区在线看| 91字幕亚洲| 巨乳人妻的诱惑在线观看| 欧美黑人欧美精品刺激| 桃红色精品国产亚洲av| 中出人妻视频一区二区| 国产在视频线精品| 久久久久久免费高清国产稀缺| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 99久久综合精品五月天人人| 一边摸一边抽搐一进一小说 | 99久久人妻综合| 国产精品久久视频播放| 欧美激情高清一区二区三区| 日本一区二区免费在线视频| 亚洲欧美一区二区三区久久| tube8黄色片| 电影成人av| 99久久综合精品五月天人人| 国产单亲对白刺激| √禁漫天堂资源中文www| 精品国产亚洲在线| 天天影视国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文日韩欧美视频| 99久久人妻综合| 国产精品久久视频播放| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 很黄的视频免费| 不卡av一区二区三区| 深夜精品福利| 在线观看日韩欧美| 黄色a级毛片大全视频| 午夜福利视频在线观看免费| 一级片免费观看大全| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 国产精品九九99| 亚洲成国产人片在线观看| 激情在线观看视频在线高清 | 国产区一区二久久| a级毛片黄视频| 亚洲久久久国产精品| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 久久精品熟女亚洲av麻豆精品| 高清毛片免费观看视频网站 | 免费一级毛片在线播放高清视频 | 国内毛片毛片毛片毛片毛片| 欧美一级毛片孕妇| 999精品在线视频| 免费女性裸体啪啪无遮挡网站| 国产精品 欧美亚洲| 不卡一级毛片| 国产精品九九99| 99久久综合精品五月天人人| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免费看| 最新的欧美精品一区二区| 多毛熟女@视频| 天堂俺去俺来也www色官网| 91麻豆精品激情在线观看国产 | 香蕉丝袜av| 久久国产精品人妻蜜桃| 精品人妻1区二区| 亚洲五月天丁香| 国产激情欧美一区二区| 亚洲伊人色综图| 最近最新中文字幕大全免费视频| 国产片内射在线| 国产亚洲一区二区精品| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 久久久久精品人妻al黑| 日韩有码中文字幕| av电影中文网址| 国产主播在线观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 91av网站免费观看| 国产精品免费大片| 国产99白浆流出| 99国产综合亚洲精品| 国产麻豆69| 国产在视频线精品| 丁香欧美五月| 欧美黑人欧美精品刺激| 国产熟女午夜一区二区三区| 欧美乱色亚洲激情| 波多野结衣av一区二区av| 69av精品久久久久久| 一级片'在线观看视频| 欧美精品亚洲一区二区| 国产精品免费一区二区三区在线 | 国产成人啪精品午夜网站| 国产精品98久久久久久宅男小说| 欧美黑人精品巨大| 久久久久国内视频| 精品国产乱子伦一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲熟妇中文字幕五十中出 | 91国产中文字幕| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| www.999成人在线观看| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 午夜影院日韩av| 男女免费视频国产| 亚洲精品国产色婷婷电影| 国产99白浆流出| 999久久久国产精品视频| 一本一本久久a久久精品综合妖精| videosex国产| 91国产中文字幕| 亚洲综合色网址| 精品久久久精品久久久| 精品国产亚洲在线| 久久亚洲精品不卡| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 女人被狂操c到高潮| 欧美不卡视频在线免费观看 | 国产精品欧美亚洲77777| 国产亚洲av高清不卡| 99精品欧美一区二区三区四区| 一进一出抽搐动态| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 久久99一区二区三区| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 久久久久精品人妻al黑| 狂野欧美激情性xxxx| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 成人三级做爰电影| www.自偷自拍.com| 一夜夜www| 久久久精品国产亚洲av高清涩受| 好看av亚洲va欧美ⅴa在| 日韩精品免费视频一区二区三区| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 午夜福利在线观看吧| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费 | 美女 人体艺术 gogo| 看片在线看免费视频| 丝瓜视频免费看黄片| 亚洲av日韩在线播放| 多毛熟女@视频| 在线观看免费视频日本深夜| 亚洲精品久久成人aⅴ小说| 久久精品91无色码中文字幕| 搡老乐熟女国产| 午夜福利在线观看免费完整高清在 | 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看| 亚洲精品在线美女| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 一个人看视频在线观看www免费 | 黄色片一级片一级黄色片| 美女被艹到高潮喷水动态| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| 免费观看的影片在线观看| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 亚洲第一欧美日韩一区二区三区| 91久久精品电影网| 亚洲黑人精品在线| 午夜免费男女啪啪视频观看 | 色老头精品视频在线观看| 欧美bdsm另类| 亚洲精品久久国产高清桃花| 国产高清videossex| 国产精品影院久久| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 国产爱豆传媒在线观看| 俄罗斯特黄特色一大片| 欧美国产日韩亚洲一区| 嫩草影视91久久| 日本a在线网址| 亚洲在线观看片| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 国产精品亚洲美女久久久| 美女高潮喷水抽搐中文字幕| 国产v大片淫在线免费观看| 熟女电影av网| 天天躁日日操中文字幕| 18禁美女被吸乳视频| 欧美另类亚洲清纯唯美| 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| 国产激情欧美一区二区| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 亚洲成人久久爱视频| 国产老妇女一区| 一夜夜www| 国产探花在线观看一区二区| 丁香欧美五月| 亚洲国产色片| 欧美日本视频| 国产私拍福利视频在线观看| 99热6这里只有精品| 欧美不卡视频在线免费观看| 波多野结衣高清无吗| 国产精品三级大全| 一级作爱视频免费观看| 欧美日本视频| 久久精品国产清高在天天线| 亚洲人与动物交配视频| 亚洲色图av天堂| 国产国拍精品亚洲av在线观看 | 美女cb高潮喷水在线观看| 无限看片的www在线观看| 国产欧美日韩一区二区三| 99热6这里只有精品| 日本黄大片高清| 午夜亚洲福利在线播放| 国产色婷婷99| 黄色女人牲交| 无人区码免费观看不卡| 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件 | 国产欧美日韩精品亚洲av| 麻豆成人av在线观看| 成人av一区二区三区在线看| 日本五十路高清| 日韩欧美精品v在线| 一个人看视频在线观看www免费 | 国产亚洲精品一区二区www| 欧美bdsm另类| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 丰满的人妻完整版| 一进一出抽搐动态| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 高清在线国产一区| 国产av不卡久久| 久久精品国产综合久久久| 欧美一区二区亚洲| 免费av不卡在线播放| 欧美乱妇无乱码| 婷婷精品国产亚洲av在线| 成人亚洲精品av一区二区| 97超视频在线观看视频| 国产亚洲精品av在线| 色播亚洲综合网| 午夜福利在线观看免费完整高清在 | 丁香欧美五月| 日韩欧美在线二视频| 国产精品一区二区三区四区久久| 91在线观看av| 男女视频在线观看网站免费| 国产高潮美女av| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看| 最近在线观看免费完整版| 男女午夜视频在线观看| 内地一区二区视频在线| 床上黄色一级片| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 美女高潮的动态| 小说图片视频综合网站| 黄色视频,在线免费观看| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 熟女电影av网| 久久亚洲真实| 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美98| 久久久久久久久大av| 精品久久久久久久人妻蜜臀av| 女人十人毛片免费观看3o分钟| 国产午夜福利久久久久久| x7x7x7水蜜桃| 精品国产美女av久久久久小说| 国产精品电影一区二区三区| 91久久精品国产一区二区成人 | 91久久精品国产一区二区成人 | 日本一二三区视频观看| 午夜免费成人在线视频| 级片在线观看| 噜噜噜噜噜久久久久久91| 一个人看的www免费观看视频| 好男人在线观看高清免费视频| 色在线成人网| 男女那种视频在线观看| 偷拍熟女少妇极品色| 中文亚洲av片在线观看爽| 一级黄片播放器| www.色视频.com| 久久久久久久久中文| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 成年免费大片在线观看| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| 久9热在线精品视频| 国产真人三级小视频在线观看| 亚洲在线观看片| 亚洲av第一区精品v没综合| 国产一区二区三区视频了| 中出人妻视频一区二区| 一二三四社区在线视频社区8| 国产探花极品一区二区| 美女cb高潮喷水在线观看| 久久人人精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 国产视频内射| 精品乱码久久久久久99久播| 国产免费男女视频| 美女cb高潮喷水在线观看| 成年女人看的毛片在线观看| 国产精品久久视频播放| 99久久综合精品五月天人人| 欧美一级a爱片免费观看看| 国产成人系列免费观看| 日韩高清综合在线| 国产成+人综合+亚洲专区| 一a级毛片在线观看| 国产精品亚洲av一区麻豆| 日韩欧美国产一区二区入口| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 1024手机看黄色片| 中文亚洲av片在线观看爽| 久久性视频一级片| 久久精品亚洲精品国产色婷小说| 色综合站精品国产| 中文字幕久久专区| 国产三级黄色录像| 精品国内亚洲2022精品成人| 亚洲精品色激情综合| 窝窝影院91人妻| 啪啪无遮挡十八禁网站| 日韩欧美在线乱码| 黄片大片在线免费观看| 少妇人妻一区二区三区视频| 久久久精品大字幕| 91久久精品国产一区二区成人 | 波多野结衣高清无吗| 亚洲人成网站在线播| 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 最近在线观看免费完整版| 99久久精品热视频| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| 午夜免费成人在线视频| 国产探花在线观看一区二区|