• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Definition and expression of non-symmetric physical properties in space for uniaxial crystals

    2022-09-24 08:00:52XiaojieGuo郭曉杰LijuanChen陳麗娟ZeliangGao高澤亮XinYin尹鑫andXutangTao陶緒堂
    Chinese Physics B 2022年9期

    Xiaojie Guo(郭曉杰) Lijuan Chen(陳麗娟) Zeliang Gao(高澤亮) Xin Yin(尹鑫) and Xutang Tao(陶緒堂)

    1State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    2School of Physics Science,University of Jinan,Jinan 250100,China

    Keywords: uniaxial crystals, effective physical constant space distributions, the positive direction of optical coordinate axis

    1. Introduction

    With the rapid development of modern science and technology, crystals play an irreplaceable role in electrical and optical applications. The research on crystals is mainly focused on crystal growth techniques,systematic measurements of physical properties and fabrication of devices. Detailed research into crystal physical properties is a precondition of crystal applications. Meanwhile,the fabrication of crystal devices is also based on crystal physical properties. For crystallographers, crystal anisotropic properties are usually described by tensors. And the tensors are given in matrix form through symmetry operations in the crystallographic coordinate system.[1-4]However, for physicists, crystal physical properties are usually expressed in the physical coordinate system,which is not always the same as the crystallographic coordinate system. The space is divided into eight imaginary quadrants in the physical coordinate system. The tensor forms describing crystal physical properties are only given in quadrant I.In the research and applications of crystal physical properties, the physical constants and effective physical constants will be obtained and calculated by rotating crystal samples in the physical coordinate system.[5]The relative signs of the tensor elements indicate the anisotropic physical properties defined by the coordinate axes directions. The spatial distributions of effective physical constants for biaxial crystals have been analyzed.[6]The results show that crystal physical properties of a monoclinic system are not the same in adjacent quadrants,which is caused by the sign changes of tensor elements.[6]The different distributions of physical properties in different quadrants will bring ambiguities and difficulties to the research and applications of crystal physical properties.Uniaxial crystals have more and higher symmetrical components than biaxial crystals, but some special point groups in uniaxial crystals only have a symmetrical component along one coordinate axis. Hence, there are also similar ambiguities and difficulties for uniaxial crystals. The relative signs of the tensor elements and spatial symmetry of effective physical properties in uniaxial crystals have attracted our attention.

    In this paper, the signs of tensor elements for uniaxial crystals in space are investigated using the subscript change method. The spatial distributions of efficient physical constants describing second-order, third-order, and fourth-order tensors are discussed in detail. Our results show that the physical properties of special point groups in uniaxial crystals also have non-symmetry, which is similar to that of biaxial crystals.[6]The difference between crystallographic and physical coordinate systems and the lack of crystal symmetry operations lead to the non-symmetry of crystal physical properties. To avoid ambiguities and difficulties in the research and applications of crystals,we proposed to utilize piezoelectric properties to define the positive direction of the optical coordinate axis prior to the research and applications of optical properties.

    2. Subscripts of tensor elements in the rectangular coordinate system

    As is well known,anisotropic physical properties are described by tensors,including thermal,electro-optic,nonlinear optical, dielectric, piezoelectric properties, and so on. The physical coordinate system is defined in a rectangular coordinate system, but it is not exactly the same as the crystallographic coordinate system in some special point groups.[7]As shown in Fig.1,the rectangular coordinate system divides the space into eight quadrants, and the positive directions of the coordinate axes are defined. The relationship between the subscripts of tensor elements and coordinate axes can be represented as 1→x,-1→-x, 2→y,-2→-y, 3→z, and-3→-z. The signs of different subscripts in eight quadrants are listed in Table 1. Due to the diversity of physical properties, uniaxial crystals with asymmetrical structures are discussed in detail.

    Table 1. The signs of coordinate axes in each quadrant.

    Fig.1. The positive direction definitions of eight quadrants.

    2.1. The sign changes of second-order tensor matrix elements

    Taking the dielectric property as an example, the sign changes of the second-order tensor element subscripts are analyzed. Cubic crystals exhibit isotropic dielectric properties.In addition,crystals in trigonal,tetragonal,and hexagonal systems have only two principal axial coefficients.[8]Obviously,the subscripts of the dielectric constant are equivalent(i=j),which means that the positive direction has no direct effect on the signs of tensor elements,as shown below:

    There is only one matrix form

    in each quadrant. The analysis of dielectric properties is also applicable to other physical properties represented by secondorder tensors in uniaxial crystals,including electrical conductivity(μij), resistivity(ρi j), dielectric isolation rate(βij), dielectric polarizability(χij),magnetic permeability(μi j),thermal expansion(αij),and thermal conductivity(κij).

    2.2. The sign changes of the third-order tensor matrix elements

    Crystals in noncentrosymmetric point groups possess physical properties that are described by third-order tensors. These physical properties include piezoelectric,electricoptical, and second-order nonlinear optical properties. The third-order tensors contain simplified subscripts and more tensor elements than second-order tensors. Therefore,the piezoelectric matrixdijis also taken as an example to analyze the element sign changes of uniaxial crystals. The simplified subscriptjis an abbreviation of two subscriptslandk,expressed as 1→1,1;2→2,2;3→3,3;4→2,3;5→1,3;and 6→1,2. Due to the different directions of the coordinate axes, the subscript signs will change in each quadrant. The signs of the piezoelectric matrix elements are listed in Table 2.

    In practical crystal applications,only the absolute values or the square of the extremum of efficient physical constants are considered. Therefore, the negative sign in front of the matrix can be ignored. As shown in Table 2,the matrix forms in eight quadrants are the same in the point groups 422,4mm,ˉ42m, 622, 6mm, ˉ6m2 and the cubic system, which are similar to those of an orthogonal system.[6]There are two matrix forms in point groups 32,3m,4, ˉ4,6,and ˉ6,respectively,which are similar to those of a monoclinic system.[6]Point group 3 has four matrix forms in space, which is similar to a triclinic system.[6]

    Our analysis indicates that although uniaxial crystals have higher symmetry than biaxial crystals,the piezoelectric properties in specific point groups also exhibit similar tensor form changes to biaxial crystals. The tensor form changes of piezoelectric properties can be extended to other physical properties that are described by third-order tensors.

    Table 2. The piezoelectric matrix elements of uniaxial crystals.

    Table 2. Continued.

    Table 2. Continued.

    2.3. The sign changes of fourth-order tensor matrix elements

    The second-order electric-optical, elastic, elastic rigidity,and elastic-optical properties are described by fourth-order tensors. The two subscripts of the fourth-order tensors are simplified, which is as the same as that of subscriptjin the piezoelectric tensors. Using similar analysis to that used for third-order tensors, the tensor forms of elastic constants (sij)are listed in Table 3.

    Obviously,there is only one tensor form in the hexagonal system, cubic system, and point groups 4mm, ˉ42m, 422, and 4/mmm. There are four tensor forms in point groups 3 andˉ3. In tetragonal and trigonal systems, the matrixes have two forms in point groups 32,3m, ˉ3m,4, ˉ4 and 4/m. The analysis of elastic constants is applicable for all physical properties that are described by fourth-order tensors.

    3. The distributions and discussions of the efficient physical properties

    The dielectric properties only have axial elements, and the distribution of the dielectric properties in uniaxial crystals can be expressed as an ellipsoid with long and short axes that are parallel to the coordinate axes. This means that the distribution of the dielectric properties is the same in each quadrant.

    In our research, the distributions of piezoelectric properties in point groups 3mand 4 are taken as examples. The values of the piezoelectric constantsd'23andd'21in point groups 3mand 4 can be expressed as follows using the coordinate transformation method[9-13]in quadrants I and IV:

    in whichθandφ(0<θ <90°, 0<φ <90°) are the rotation angles around the piezoelectric axesZandY, respectively. Due to the sign changes of the matrix elementsd22andd14,the distributions of the piezoelectric constants in quadrant I are different from those in quadrant IV.The distributions ofd'23andd'21in other quadrants can be obtained using the same coordinate transformation method. It is worth noting that only piezoelectric properties containing sign changes exhibit spatial non-symmetry in adjacent quadrants. The results are also suitable for other physical properties that are described by thirdorder and fourth-order tensors in uniaxial crystals.

    Table 3. The elastic matrix elements of uniaxial crystals.

    Table 3. Continued.

    The crystal physical coordinate system is used to describe anisotropic physical properties. However, the symmetry of crystals in crystallography is obtained based on the rotation operation of the crystallographic coordinate system.The traditional crystallographic coordinate system only provides a definition of the lattice parameters and the angles, and does not give the positive and negative directions of thea,b,andccoordinate axes. But the physical properties have positive and negative effects,such as the piezoelectric constantd33: the value is equal but the sign is opposite in the opposite direction. In addition, when studying the physical properties and devices of crystals,the crystal samples are manufactured in the physical coordinate system (rectangular coordinate system). For some specific point groups, because the crystallographic coordinate system is a non-rectangular coordinate system, the physical coordinate system is not consistent with the crystallographic coordinate system. Taking point group 3 as an example,the relationship between the angles of crystallographic coordinate axes is as follows:α=β=90°,γ=120°. The relationship between the angles of physical coordinate axes isα=β=γ=90°.According to the piezoelectric rule of IEEE,Z//c,X//a, exist andYis determined by the right-hand rule in a trigonal system. As shown in Fig.2,the physical properties along the crystallographic coordinateaandbaxes are the same,but the physical properties of the violet line and red line directions that are symmetrically distributed along the physical coordinateYaxis are not the same. Hence,we believe that the difference between the crystallography and physical coordinate systems is the source of the non-symmetry in physical properties.

    Fig.2. The crystallographic coordinate system and physical coordinate system of point group 3.

    Meanwhile,the lack of crystal symmetry operation in different directions also contributes to non-symmetry of physical properties in uniaxial crystals. Taking point group 4 as an example, the crystallographic and physical coordinate systems are shown in Fig.3. In the crystallographic coordinate system,there is only a quartic axis along thecaxis. Hence,the physical properties along the violet line directions are the same.However,due to the lack of a symmetry plane along theaaxis,the physical properties along the blue dotted line are not the same as in the violet line direction.Therefore,the lack of crystal symmetry operations is also considered to be one origin of the non-symmetry. The piezoelectric coordinate system is defined according to the IEEE standard.[14]We take the direction of thed33positive value as the positive direction of theZaxis,and other positive directions obey the right-hand rule. The piezoelectric properties along the violet and blue lines can be distinguished byθand-θ. In the optical coordinate system,the directions of the coordinate axes only obey the right-hand rule.Due to no positive direction definition of theZaxis,there are two optical coordinate definitions, as shown in Fig. 3. In optical properties research and applications, crystal samples are manufactured in the crystallographic or physical coordinate systems. Ifθis the angle of the sample from theXaxis to the light propagation direction, there are two directions with different optical properties,and they cannot be distinguished.According to the tensor analysis, all the optical properties of crystals with different tensor forms show the same difficulties as the crystals of point group 4.

    Fig.3. The optical coordinate definitions of point group 4 based on crystallographic and physical coordinate systems.

    To accurately describe and apply the physical properties,the cutting directions of crystals should be in the assigned quadrant. This means that the positive direction of the optical coordinate axis should be defined. As shown in Tables 2 and 3, crystals with both piezoelectric and optical properties are described by third-order and fourth-order tensors. The positive direction of the optical coordinate axis cannot be defined by optical properties,but it can be determined with the aid of the piezoelectric properties. The positive directions of the optical axis do not need to be specified in the point groups 622,422,23, ˉ6m2, ˉ42m,andˉ43m.There are piezoelectric constantsdii(i=1, 2, or 3) in the point groups 32, 3m, 4, 6, ˉ6, and 3,respectively. Hence,the positive direction of the optical coordinate axis can be defined withdiiexhibiting positive values,as shown in Fig. 4. For point groups 3 and 3min the trigonal system,the direction of the piezoelectric constantd33→+is the positive direction ofnc, and the direction ofd22→+is the positive direction ofnacin point group 3m. For point group 32, the direction ofd11→+ is the positive direction ofna. For point groups 4mmand 4 in the tetragonal system,the direction ofd33→+ is the positive direction ofnc. For point group ˉ4, the direction ofd31→+ is the positive directionnc. For point groups 6 and 6mmin the hexagonal system,the direction ofd33→+is the positive directionnc. The coordinate axes, which have not been defined above, should obey the right-hand rule.

    Fig.4. Positive direction definitions of the optical coordinate axis in different point groups: (a) point group 3; (b) point group 3m; (c) point group 32; (d)point group 4;(e)point group 6;(f)point group ˉ6.

    4. Conclusion and perspectives

    In conclusion,the sign changes of physical properties described by second-order,third-order,and fourth-order tensors of uniaxial crystals are given in space. The physical constant distributions of special point groups in uniaxial crystals show non-symmetry in adjacent quadrants. The difference between the crystallographic and physical coordinate systems and the lack of crystal symmetry operations are considered to be the origins of the non-symmetry.The lack of the positive direction of the optical coordinate axis makes research and application of optical characteristics ambiguous and difficult. Therefore,we proposed the use of piezoelectric properties to define the positive directions of the optical coordinate axis prior to the research and applications of optical properties.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51772170, 51572155, and 11504389),the National Key Research and Development Program of China(Grant No.2016YFB1102201),and the Young Scholars Program(Grant No.2018WLJH67).

    十分钟在线观看高清视频www| 欧美在线一区亚洲| 久久精品国产亚洲av香蕉五月 | 97在线人人人人妻| 高清视频免费观看一区二区| 国产亚洲精品久久久久5区| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 老司机亚洲免费影院| 男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利免费观看在线| 69精品国产乱码久久久| 美女扒开内裤让男人捅视频| 成人三级做爰电影| av电影中文网址| 99热国产这里只有精品6| 日本一区二区免费在线视频| 黄色片一级片一级黄色片| 大片电影免费在线观看免费| 欧美大码av| 搡老熟女国产l中国老女人| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 国产成人欧美| 日韩熟女老妇一区二区性免费视频| tocl精华| 成人影院久久| 妹子高潮喷水视频| 99在线人妻在线中文字幕 | 免费观看a级毛片全部| 免费久久久久久久精品成人欧美视频| 变态另类成人亚洲欧美熟女 | av天堂久久9| 精品福利观看| 国产一卡二卡三卡精品| 99精国产麻豆久久婷婷| 国产av一区二区精品久久| 亚洲精品一二三| 国产老妇伦熟女老妇高清| 精品国产亚洲在线| 男女午夜视频在线观看| 91麻豆精品激情在线观看国产 | 久久 成人 亚洲| 欧美性长视频在线观看| 精品一区二区三区视频在线观看免费 | 亚洲情色 制服丝袜| 国产成人免费观看mmmm| av网站在线播放免费| 黄片播放在线免费| 精品卡一卡二卡四卡免费| 手机成人av网站| 乱人伦中国视频| 久久久国产精品麻豆| 亚洲人成电影免费在线| xxxhd国产人妻xxx| 韩国精品一区二区三区| 黄频高清免费视频| 午夜成年电影在线免费观看| 亚洲一区中文字幕在线| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲| 美女午夜性视频免费| 亚洲av日韩在线播放| 成人国产av品久久久| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 操美女的视频在线观看| 欧美国产精品va在线观看不卡| 极品少妇高潮喷水抽搐| 久久久久久久精品吃奶| 亚洲国产中文字幕在线视频| 99国产精品一区二区三区| 啦啦啦免费观看视频1| 少妇裸体淫交视频免费看高清 | 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 男女高潮啪啪啪动态图| 一区二区三区国产精品乱码| 捣出白浆h1v1| 国产不卡av网站在线观看| 国产欧美日韩一区二区三| 热99久久久久精品小说推荐| 国内毛片毛片毛片毛片毛片| 免费观看av网站的网址| 男人操女人黄网站| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 成人特级黄色片久久久久久久 | 91精品三级在线观看| av超薄肉色丝袜交足视频| 亚洲人成伊人成综合网2020| 国产精品一区二区在线不卡| 曰老女人黄片| 午夜免费成人在线视频| 午夜福利视频在线观看免费| 精品人妻在线不人妻| 久久精品国产亚洲av香蕉五月 | 亚洲av日韩在线播放| 国产精品成人在线| 亚洲成a人片在线一区二区| 亚洲国产中文字幕在线视频| 少妇猛男粗大的猛烈进出视频| 欧美性长视频在线观看| 日韩中文字幕欧美一区二区| 国产精品久久久久久精品古装| 999久久久精品免费观看国产| 99国产极品粉嫩在线观看| 十八禁高潮呻吟视频| 亚洲 国产 在线| 亚洲三区欧美一区| 不卡av一区二区三区| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 男女无遮挡免费网站观看| 国产在线视频一区二区| 亚洲欧美一区二区三区黑人| 后天国语完整版免费观看| 欧美黄色淫秽网站| 久久热在线av| 成年版毛片免费区| 女人高潮潮喷娇喘18禁视频| 亚洲国产看品久久| 后天国语完整版免费观看| 美女福利国产在线| av在线播放免费不卡| 一边摸一边抽搐一进一小说 | 国产精品国产高清国产av | 亚洲黑人精品在线| 精品第一国产精品| 国产野战对白在线观看| 久久精品成人免费网站| 黄色a级毛片大全视频| 午夜视频精品福利| 狠狠狠狠99中文字幕| 亚洲精品国产色婷婷电影| 999久久久精品免费观看国产| 女性生殖器流出的白浆| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站| 成年人午夜在线观看视频| 在线永久观看黄色视频| bbb黄色大片| 成人永久免费在线观看视频 | 一级毛片女人18水好多| 免费少妇av软件| 最近最新免费中文字幕在线| 男男h啪啪无遮挡| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说 | 亚洲国产成人一精品久久久| 香蕉丝袜av| 国产激情久久老熟女| 亚洲欧美激情在线| 国产一区二区三区在线臀色熟女 | 免费在线观看黄色视频的| 高清欧美精品videossex| 久久久精品免费免费高清| 在线观看免费日韩欧美大片| 成人精品一区二区免费| 国产av一区二区精品久久| 久9热在线精品视频| 亚洲av片天天在线观看| 久久人人97超碰香蕉20202| 久久中文看片网| 美女主播在线视频| 国产精品一区二区精品视频观看| 露出奶头的视频| 成人黄色视频免费在线看| 在线播放国产精品三级| 麻豆乱淫一区二区| 1024香蕉在线观看| bbb黄色大片| 女性被躁到高潮视频| 国产精品免费一区二区三区在线 | 国产成人欧美在线观看 | 久久久精品免费免费高清| 成人黄色视频免费在线看| 中文字幕精品免费在线观看视频| 少妇被粗大的猛进出69影院| 亚洲伊人久久精品综合| 不卡一级毛片| 俄罗斯特黄特色一大片| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 午夜福利乱码中文字幕| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 高清在线国产一区| 欧美av亚洲av综合av国产av| 成人黄色视频免费在线看| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 黄片大片在线免费观看| 黑人操中国人逼视频| 日韩视频在线欧美| 麻豆国产av国片精品| 不卡av一区二区三区| 高清视频免费观看一区二区| 国产成人免费观看mmmm| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 午夜91福利影院| 国产精品国产av在线观看| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 在线观看66精品国产| 视频区欧美日本亚洲| 国产男女内射视频| av天堂在线播放| 精品免费久久久久久久清纯 | 激情视频va一区二区三区| 久久中文字幕一级| 黄色毛片三级朝国网站| 91麻豆精品激情在线观看国产 | 国产精品偷伦视频观看了| 咕卡用的链子| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 亚洲 国产 在线| 男女边摸边吃奶| 91老司机精品| 成年动漫av网址| 别揉我奶头~嗯~啊~动态视频| 成年人午夜在线观看视频| 美女高潮到喷水免费观看| 欧美中文综合在线视频| 国产日韩欧美亚洲二区| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区| 国产免费福利视频在线观看| 午夜日韩欧美国产| 久久久久精品人妻al黑| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 日本wwww免费看| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 久久ye,这里只有精品| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 俄罗斯特黄特色一大片| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 男人舔女人的私密视频| 大陆偷拍与自拍| 精品久久蜜臀av无| 国产精品国产高清国产av | 亚洲精品美女久久av网站| 91国产中文字幕| 脱女人内裤的视频| 欧美日韩黄片免| 久久久水蜜桃国产精品网| 国产成人av教育| 亚洲专区字幕在线| 国产av一区二区精品久久| 欧美激情高清一区二区三区| 女人精品久久久久毛片| 国产亚洲一区二区精品| 亚洲七黄色美女视频| 中文字幕av电影在线播放| 久久久欧美国产精品| 久久久久久亚洲精品国产蜜桃av| 午夜视频精品福利| 久久九九热精品免费| 手机成人av网站| 久久国产精品大桥未久av| 91老司机精品| 久久天堂一区二区三区四区| 欧美一级毛片孕妇| 91字幕亚洲| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 日韩欧美免费精品| 美女福利国产在线| 19禁男女啪啪无遮挡网站| 成人影院久久| 国产精品久久久人人做人人爽| 成人国语在线视频| 国产日韩欧美亚洲二区| 国产麻豆69| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 热99久久久久精品小说推荐| 黑人猛操日本美女一级片| 人人妻,人人澡人人爽秒播| 中文欧美无线码| 亚洲va日本ⅴa欧美va伊人久久| 国产免费现黄频在线看| 免费一级毛片在线播放高清视频 | 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 亚洲avbb在线观看| 国产又色又爽无遮挡免费看| 成年女人毛片免费观看观看9 | 亚洲成人免费av在线播放| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 亚洲专区国产一区二区| 男女边摸边吃奶| 女性被躁到高潮视频| 久久中文字幕人妻熟女| 91精品国产国语对白视频| 久久中文看片网| 欧美国产精品一级二级三级| 精品人妻在线不人妻| 精品欧美一区二区三区在线| 91成人精品电影| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 欧美日韩成人在线一区二区| 国产日韩欧美视频二区| 国产成人精品无人区| 成人永久免费在线观看视频 | a级毛片黄视频| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 日日摸夜夜添夜夜添小说| 人人妻人人爽人人添夜夜欢视频| 欧美大码av| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久| 精品一区二区三卡| 国产男女内射视频| 久久精品国产亚洲av香蕉五月 | 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女 | 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 国产男女内射视频| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 国产成人系列免费观看| 精品久久蜜臀av无| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 免费看a级黄色片| 国产一区二区在线观看av| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| 欧美黄色淫秽网站| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 久热这里只有精品99| 久久香蕉激情| 欧美日韩黄片免| 男女下面插进去视频免费观看| 美女福利国产在线| 精品亚洲成a人片在线观看| 亚洲国产欧美日韩在线播放| 亚洲第一青青草原| 午夜老司机福利片| 99精品在免费线老司机午夜| 美女视频免费永久观看网站| 中文字幕人妻丝袜一区二区| 久久亚洲真实| 777米奇影视久久| 亚洲欧美一区二区三区久久| 黑人巨大精品欧美一区二区蜜桃| 国产精品二区激情视频| 亚洲精华国产精华精| 午夜激情久久久久久久| 国产精品久久久久成人av| 麻豆乱淫一区二区| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 怎么达到女性高潮| 他把我摸到了高潮在线观看 | 免费在线观看视频国产中文字幕亚洲| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 天堂俺去俺来也www色官网| 日本欧美视频一区| 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 午夜两性在线视频| 国产三级黄色录像| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日本黄色日本黄色录像| 欧美日韩一级在线毛片| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 精品卡一卡二卡四卡免费| 亚洲av成人不卡在线观看播放网| 性高湖久久久久久久久免费观看| av福利片在线| 99国产精品99久久久久| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 亚洲精品一卡2卡三卡4卡5卡| 在线看a的网站| 精品欧美一区二区三区在线| 国产精品影院久久| 国产精品av久久久久免费| 精品久久蜜臀av无| 91字幕亚洲| 又大又爽又粗| 亚洲国产欧美网| 18禁国产床啪视频网站| 国产成人一区二区三区免费视频网站| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 久久精品亚洲精品国产色婷小说| 日韩欧美三级三区| 淫妇啪啪啪对白视频| 国产三级黄色录像| 久久精品亚洲精品国产色婷小说| av超薄肉色丝袜交足视频| 午夜两性在线视频| 日韩有码中文字幕| 日本五十路高清| 91麻豆av在线| a级片在线免费高清观看视频| 淫妇啪啪啪对白视频| 成年人免费黄色播放视频| 国产精品一区二区免费欧美| 成年动漫av网址| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 天堂中文最新版在线下载| 午夜成年电影在线免费观看| 97在线人人人人妻| 最近最新中文字幕大全免费视频| 男女高潮啪啪啪动态图| 亚洲精品国产区一区二| 69av精品久久久久久 | 激情在线观看视频在线高清 | 中文字幕高清在线视频| 999精品在线视频| 午夜福利在线免费观看网站| 黑人猛操日本美女一级片| 啦啦啦免费观看视频1| 操美女的视频在线观看| av线在线观看网站| 操出白浆在线播放| 黄色怎么调成土黄色| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 国产亚洲av高清不卡| cao死你这个sao货| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 日韩三级视频一区二区三区| 久久99热这里只频精品6学生| 蜜桃在线观看..| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费午夜福利视频| 国产成人欧美| tocl精华| 老汉色∧v一级毛片| 嫁个100分男人电影在线观看| 五月天丁香电影| 国产一区二区三区综合在线观看| 免费在线观看黄色视频的| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看. | av一本久久久久| 婷婷成人精品国产| 色94色欧美一区二区| 搡老乐熟女国产| 飞空精品影院首页| 午夜福利在线免费观看网站| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 亚洲成人国产一区在线观看| 亚洲综合色网址| 午夜免费成人在线视频| 午夜精品久久久久久毛片777| 亚洲熟女毛片儿| 视频在线观看一区二区三区| 国产精品98久久久久久宅男小说| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| 中文字幕另类日韩欧美亚洲嫩草| 天天躁日日躁夜夜躁夜夜| 免费高清在线观看日韩| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜添小说| 国产在线免费精品| 久久国产亚洲av麻豆专区| 捣出白浆h1v1| 国产99久久九九免费精品| 国产在线视频一区二区| 看免费av毛片| 在线天堂中文资源库| 窝窝影院91人妻| 日本黄色日本黄色录像| 精品国产乱子伦一区二区三区| 99国产精品免费福利视频| 怎么达到女性高潮| 日本黄色日本黄色录像| 日日夜夜操网爽| 美女高潮到喷水免费观看| 一区二区三区国产精品乱码| 露出奶头的视频| 9191精品国产免费久久| 国产三级黄色录像| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 美女国产高潮福利片在线看| 十八禁网站免费在线| 一级片'在线观看视频| 亚洲三区欧美一区| 日韩欧美免费精品| 免费在线观看日本一区| 色在线成人网| 久久精品亚洲av国产电影网| 中文字幕精品免费在线观看视频| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区视频在线观看| 国产精品免费大片| 久久精品国产亚洲av香蕉五月 | 男女高潮啪啪啪动态图| 亚洲精品一二三| 天堂8中文在线网| 天堂动漫精品| 丁香六月欧美| 免费高清在线观看日韩| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 在线 av 中文字幕| 母亲3免费完整高清在线观看| 欧美日韩av久久| 中国美女看黄片| 在线观看www视频免费| 久久香蕉激情| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 免费av中文字幕在线| 90打野战视频偷拍视频| 黑人巨大精品欧美一区二区mp4| bbb黄色大片| 欧美变态另类bdsm刘玥| 99九九在线精品视频| 日韩大码丰满熟妇| videos熟女内射| 91老司机精品| 国产福利在线免费观看视频| 在线亚洲精品国产二区图片欧美| 国产亚洲午夜精品一区二区久久| 90打野战视频偷拍视频| 亚洲熟女毛片儿| 波多野结衣一区麻豆| 少妇粗大呻吟视频| 亚洲天堂av无毛| 精品国产亚洲在线| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| a在线观看视频网站| 在线观看66精品国产| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 国产成人精品在线电影| 脱女人内裤的视频| 亚洲精品美女久久av网站| 久久99热这里只频精品6学生| 久久中文看片网| 国产精品一区二区免费欧美| 宅男免费午夜| 91老司机精品| 亚洲,欧美精品.| 我的亚洲天堂| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲va日本ⅴa欧美va伊人久久| a级毛片在线看网站| 亚洲熟女毛片儿| 99久久国产精品久久久| 日韩成人在线观看一区二区三区| 国产男女内射视频| 美女高潮喷水抽搐中文字幕| 久久 成人 亚洲| 91av网站免费观看| 亚洲欧美精品综合一区二区三区| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 日韩中文字幕视频在线看片| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 一个人免费在线观看的高清视频|