• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs

    2022-09-24 08:00:50ChenWang王琛WenmoLu路文墨FengnanLi李奉南QiaomeiLuo羅巧梅andFeiMa馬飛
    Chinese Physics B 2022年9期
    關(guān)鍵詞:文墨王琛馬飛

    Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(羅巧梅), and Fei Ma(馬飛)

    State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: a-IGZO thin films,weakly bonded O atoms,threshold voltage shift

    1. Introduction

    The development of high-resolution and flexible display technology depends heavily on the channel materials of thinfilm transistors (TFTs). Amorphous indium-gallium-zinc oxide(a-IGZO)has attracted much attention due to its high mobility and potential application in flexible devices.[1-3]However,the shift of threshold voltage(Vth)of a-IGZO TFTs under positive gate bias is still a critical issue. The positiveVthshift in TFTs has been ascribed to the negative charges accumulated at the a-IGZO/insulator interface and the screened gate electric field.[4-7]The negative charges could come from electrons trapped in the gate dielectrics[8]or acceptor-like states.Electron trapping in gate dielectrics commonly occurs in TFTs with high-permittivity gate dielectrics,so it is not widespread.Nomuraet al.attributed theVthshift to shallow trap states.[9]Chowdhuryet al.carried out a time-temperature dependence experiment,and attributed theVthshift to defects corresponding to the fitted activation energy,but the fitting accuracy was limited by the narrow temperature range (27°C-90°C).[10]Umet al.observed a hump in the subthreshold region of the transfer curves under positive gate bias, and ascribed it to the acceptor-like states near the a-IGZO/insulator interface.[11]Apparently, the mechanism for theVthshift is still controversial. Furthermore,those mechanisms cannot be adopted to explain the effect of ambient O2on theVthshift. To understand the ambient effect,Zhouet al.proposed a model of chemically adsorbed O2.[12]Chenet al.found that the activation energy of O2adsorption could be lowered by gate bias,resulting in aVthshift in an O2atmosphere.[13]Xuet al.illustrated that the ambient O2could compensate for the oxygen vacancies and improve the subthreshold performance.[14]In other words, a contradiction still exists regarding the effect of ambient O2,and it is still not understood why and how the adsorption of O2at the back channel can induce acceptor-like states at the a-IGZO/insulator interface.

    In this work, a-IGZO thin films are prepared by pulsed laser deposition (PLD) and are fabricated into TFT devices.The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized,and the influences of the deposition O2pressure, vacuum annealing temperature, ambient O2,and film thickness on the electrical properties of the a-IGZO TFTs are investigated;in particular,theVthshift under positive gate bias is discussed. Furthermore,in-situx-ray photoelectron spectroscopy(XPS),a temperature variation experiment and anin-situvacuum annealing experiment were carried out to understand the mechanism responsible for theVthshift of the a-IGZO TFTs. It was found that theVthshift could be attributed to the deep acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface.

    2. Experiment

    2.1. Preparation and characterization of a-IGZO thin films

    The a-IGZO thin films are prepared by the pulsed laser deposition (PLD) technique using a KrF excimer laser(248 nm,~10 J·cm-2per pulse). The target is a homemade crystalline IGZO ceramic (In:Ga:Zn:O=2:2:1:7 mol%)sintered at 1400°C.The surface morphology of the a-IGZO thin films is observed using a scanning electron microscope(SEM)and the phase structure is characterized by xray diffraction(XRD,λ=1.5406 ?A).An interconnected XPS and PLD system in a vacuum chamber is used forin-situcharacterization of the elemental contents and chemical states to avoid contaminants and adsorbates. The excitation source for the XPS is AlKαwith an energy of 1486.6 eV. The sample is heated in an analysis chamber, which has a better vacuum than 1.0×10-5Pa. The XPS spectra of O 1s in the interior and on the surface of the thin film are measured by changing the photoelectron collection angle from 90°to 30°.

    2.2. Fabrication of TFTs and details of the electrical measurement

    The a-IGZO TFTs with a top contact and a bottom gate (p+-Si substrate) are fabricated. The insulator consists of 280 nm of thermally oxidized SiO2, and 100 nm Mo source/drain electrodes are deposited by radio frequency(RF)magnetron sputtering.In-situelectrical measurements of the TFTs are carried out using a homemade probe station in vacuum. The probe station is pumped by a molecular pump unit.Pure O2gas can be introduced into the station. Alumina ceramic heating plates and K-type thermal sensors are attached to the samples and the temperature is regulated by an Eurotherm 3504 controller. In this setup, four samples can be measured at the same time by a combination of a Keithley 2700 matrix switcher and a 2612b source meter. The transfer curves can be measured after thermal annealing in a vacuum better than 10-4Pa. The temperature variation measurements are implemented in a He exchange cryostat.The sample is cooled by the circulation of helium around a closed circuit driven by a dry pump. The helium gas is cooled by the cryo cooler to the 40 K and 4 K stages and then cooled further via expansion from the needle valve. A heat exchanger is used to adjust the temperature of the helium gas,and thus the sample temperature is controlled in the range of 20 K-300 K.All the electric measurements are done in the dark.[15,16]

    Transfer curves are measured by sweepingVgfrom-60 V to 60 V in steps of 0.5 V,withVdkept at 2 V.To evaluate theVthshift, a constant gate voltage (Vg) of 60 V and a drain voltage(Vd)of 2 V are biased for 400 s after each transfer curve measurement. For the recovery process,the a-IGZO TFTs are electrically disconnected for 400 s and theVgsweeping is stopped whenIdis larger than 5 nA,taking the turn-on voltage(Von)shift to represent theVthshift. TheVthis calculated through the transfer curve

    in whichLandWare the channel length and width, respectively,Coxis the unit area capacitance of the insulator dielectrics,andVdis the drain voltage.Vthis determined by fitting the linear region of theId-Vgcurves. The field effect mobility(μ)is obtained by fitting the linear region of the transfer curves

    2.3. Gr¨unewald method

    The Gr¨unewald method is adopted to extract the density of states(DOS)of a-IGZO from the transfer curves. The starting point for this method is the 1D Poisson equation

    The flat band voltage is considered to be approximately equal toVonwhen the source-drain current is 5 nA. The extraction of the DOS is carried out in Matlab.

    3. Results and discussion

    3.1. Characterization of the a-IGZO thin films

    Figure 1 shows SEM images of the a-IGZO thin films.Evidently, the film surface is smooth if the deposition pressure is lower than 6 Pa, but clusters appear on the surface at a deposition pressure of 10 Pa, and the thin films become rough. Therefore,deposition pressures in the range of 2.0 Pa-4.5 Pa can avoid the influence of surface roughness. Figure 2 shows XRD patterns of a-IGZO thin films deposited at oxygen pressures of 1 Pa-10 Pa and annealed at 373 K-873 K.As displayed in Fig. 2(a), no sharp peak can be identified in the patterns, confirming the deposition-pressure-independent amorphous characteristic of a-IGZO. Furthermore, as shown in Fig. 2(b), the amorphous structure can be thermally stable at up to 673 K. Therefore, the effects of phase structure and transition on the electric performance can also be excluded.

    Fig.1.SEM images of a-IGZO thin films deposited at different O2 pressures:(a)1 Pa,(b)3 Pa,(c)6 Pa,and(d)10 Pa.

    To further understand the influence of deposition pressure and vacuum annealing on the a-IGZO films,in-situXPS is carried out, and the results are shown in Fig. 3. The O 1s spectrum is deconvoluted by the Voight function into two peaks at 531.0 eV (the OIpeak) and~532.5 (±0.1) eV (the OIIpeak) in Fig. 3(a). A peak (peaks) corresponding to surface impurities is(are)not in evidence;in other words,in-situcharacterization can avoid the influences of surface impurities on the O1s spectrum. The OIpeak originates from the lattice oxygen atoms, which are tightly bonded with surrounding In atoms in the form of In-O6.[17]As shown in Fig.3(b), the O content of IGZO thin films deposited at oxygen pressures of 1 Pa-5 Pa oxygen pressure is greater than 58.3%(corresponding to the stoichiometric ratio in In2Ga2ZnO7),indicating the presence of excess O atoms in a-IGZO thin films. The bond length between the weakly bonded O atoms and the surrounding In atoms is considerably larger than the normal In-O bond(0.211 nm), with less charge transfer from In to O atoms and thus a higher binding energy of O 1s.[18]Therefore, the OIIpeak originates from the weakly bonded O atoms rather than

    Fig.2. (a)XRD patterns of a-IGZO thin films deposited at different O2 pressures,namely,1 Pa,3 Pa,6 Pa,and 10 Pa. (b)XRD patterns of a-IGZO films deposited at a pressure of 3 Pa of O2 and annealed at 373 K,473 K,673 K,and 873 K in vacuum for 12 hours.

    Fig.3. In situ XPS analysis of a-IGZO films. (a)O 1s spectrum of a-IGZO deposited at a pressure of 3.0 Pa of O2. (b) The O content and (c) the area ratio of OII/OI in a-IGZO thin films deposited at different O2 pressures. (d)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2 and annealed at different temperatures. (e)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2,collected at 90° and 30°,and then annealed at 400 °C.

    oxygen vacancies. The content of weakly bonded O atoms increases with the deposition pressure(Fig.3(c)),but decreases with increasing annealing temperature in vacuum (Fig. 3(d)).

    The content of weakly bonded O atoms both in the interior and on the surface increases once the annealed a-IGZO thin films are exposed to 105Pa ambient O2for 12 hours (Fig. 3(e)).Therefore,the increment of weakly bonded O atoms is caused by the migration of ambient O2into the a-IGZO thin films,but not by the adsorption of O2.

    3.2. The influence of deposition pressure on the Vth shift

    Figure 4(a) schematically displays the cross-section of the a-IGZO TFTs. Figure 4(b) shows the output curves of a-IGZO TFTs deposited at an oxygen pressure of 3.0 Pa,and the TFTs are in the linear region at aVdof 2 V. Figure 5 shows the transfer curves of a-IGZO TFTs under positive gate bias.TheVthshift is evidenced in all the a-IGZO TFTs, and increases remarkably with deposition pressure. As mentioned above, the number of weakly bonded O atoms also increases with the deposition pressure. On the whole,theVthshift might be ascribed to the acceptor-like states induced by the weakly bonded O atoms.[19]In essence,theVthshift occurs if electrons are trapped in acceptor-like states.

    Fig.4. (a)Schematic cross-section of a-IGZO TFTs. (b)Output curves of an a-IGZO TFT deposited at a pressure of 3 Pa of O2.

    3.3. Temperature variation experiment

    A temperature variation experiment is carried out to study the thermally activated process of theVthshift. As shown in Fig. 6(a), the TFTs exhibit normal transfer curves at 20 K-300 K,both the mobility andVonchange significantly for temperatures of 200 K or less,but are almost temperature independent at 200 K-300 K (Fig. 6(b)). A series of transfer curves are measured under positive gate bias and at different temperatures.The difference between theVthvalues with and without bias(ΔVth)is used to quantitatively describe theVthshift. As displayed in Figs. 6(c) and 6(d), theVthshift is thermally activated, and the temperature-dependentVthshift is a good fit for an activation model,i.e.,ΔVth=Aexp(-Ea/kT). The activation energies of theVthshift and the recovery process are fitted to 144 meV and 195 meV,which are close to the activation energy of oxygen diffusion in a-IGZO (~100 meV).[20]Accordingly, it is proved that theVthshift of a-IGZO TFTs is induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. It should be noted that the migration of weakly bonded O atoms is not significant at 200 K or below,and thus theVthshift at low temperature is mainly controlled by the electrons trapped in the pre-existing acceptor-like states,which have quite small thermal activation energies.

    Fig.5.Transfer curves(Id-Vg)of a-IGZO TFTs with 50 nm a-IGZO thin films deposited at different O2 pressures and measured under positive gate bias.

    3.4. The influences of ambient O2 on the Vth shift

    Ambient O2could also induce theVthshift.[12-14,21]Insituvacuum annealing and measurement are implemented to study the influence of ambient O2on theVthshift by allowing O2at different pressures into the vacuum chamber afterin-situannealing. Figure 7 displays the transfer curves of a-IGZO TFTs annealed at 383 K-398 K in a better vacuum than 10-4Pa for 12 hours. A remarkableVthshift occurs in the TFTs annealed at 383 K,while deteriorated subthreshold performance is observed in the TFTs annealed at 393 K and 398 K because of the large number of oxygen vacancies induced by vacuum annealing at higher temperatures.Accordingly,388 K is the optimal vacuum annealing temperature. Figure 8 shows the transfer curves of TFTs with 10 nm IGZO films deposited at an oxygen pressure of 3.0 Pa and annealed at 388 K, then exposed to O2at a pressure of 10-4Pa-105Pa. Since the film thickness is smaller than the Debye length in the subthreshold region(~11 nm),the effect of adsorbed O2can be observed in the transfer curves.[12]After vacuum annealing, the mobility of the TFTs is remarkably improved from 13.5 cm2·V-1·s-1to 31.4 cm2·V-1·s-1. Compared with the deposited TFTs,the TFTs annealed in vacuum at a pressure of 10-4Pa do not exhibit theVthshift,indicating that the weakly bonded O atoms are eliminated,which is also confirmed by thein situXPS.As the ambient O2pressure increases,Vonmoves positively,even at low O2pressures, as a result of a depletion layer induced by O2adsorption.[22]However,a considerableVthshift occurs only at high ambient O2pressures,which cannot be explained by O2adsorption. Taking this into account, it is further confirmed that theVthshift of a-IGZO TFTs in ambient O2can be ascribed to the migration of weakly bonded O atoms from ambient O2into the a-IGZO thin films, as confirmed by thein-situXPS spectra.

    Fig.6. Temperature dependence of transfer curves and the Vth shift. (a)Transfer curves at 20 K-300 K.(b)Field-effect mobility and turn-on voltage.(c)and(d)The Vth shift as a function of temperature in the bias and recovery processes in linear and logarithmic coordinates,respectively.

    3.5. The migration of ambient O2 controlled by the a-IGZO thickness

    Given that theVthshift is caused by the migration of ambient O2,the thickness of the a-IGZO films might affect theVthshift substantially. Thus, theVthshift of TFTs with a-IGZO thicknesses of 12 nm-95 nm are fitted to a stretched exponential function[23]in which ΔVinfis theVthshift at infinite time,tis the time,τis the time constant,andβis the exponential factor.The fitted results are plotted in Fig.9;ΔVinfandτare used to quantitatively describe theVthshift. As the thickness of a-IGZO thin films is increased,ΔVinfdecreases andτincreases,suggesting a reducedVthshift, which can be ascribed to the suppressed migration of ambient O2in the thicker a-IGZO films. A critical thickness of 50 nm is enough to avoid the influence of ambient O2. Theβvalue of 0.4 is maintained for different thicknesses,which means that the migration of weakly bonded O atoms is dominated by a short-range force.[24]

    Fig.7. Transfer curves(Id-Vg)of 10 nm a-IGZO TFTs annealed in vacuum at different temperatures: (a)383 K,(b)388 K,(c)393 K,and(d)398 K.

    Fig. 8. Transfer curves (Id-Vg) of 10 nm a-IGZO TFTs biased at different ambient O2pressures and measured under positive gate bias.

    3.6. Deep acceptor-like states generated by weakly bonded O atoms

    The acceptor-like states in a-IGZO can be divided into two types, shallow states and deep states.[25]The DOS of shallow states is extracted from the transfer curves using the Gr¨unewald method,[26,27]and the results are plotted in Fig.10.For a-IGZO films annealed in vacuum,the ionized oxygen vacancies(V2+O)induce shallow acceptor-like states at~0.1 eV above the Fermi level,[28]as shown in Fig.10(a). Oxygen vacancies affect the electrical properties of a-IGZO TFTs significantly, and can result in a negativeVthshift.[14,28]However,the positiveVthshift cannot be ascribed to oxygen vacancies(VO). If the positiveVthshift is closely related to VO,and VO,as the shadow donors,could provide free carriers,the turn-on voltage should become more negative with a larger positiveVthshift at a higher oxygen vacancy concentration, which is in contradiction to the experimental results in this work. As shown in Figs.5 and 8,if the a-IGZO thin films are deposited at lower oxygen pressures or exposed at lower ambient oxygen pressures, more VOis involved, but the TFTs exhibit a more stableVthunder a positive gate bias. Therefore,the positiveVthshift is not directly related to oxygen vacancies. On the other hand, the carriers in TFTs are confined to a thin region(~1 nm)close to the dielectrics,and will be scattered by deep trapped electrons at the a-IGZO/SiO2interface. Therefore,the reduced mobility in Figs.5 and 8 corresponds to the deep trapped electrons at the a-IGZO/SiO2interface.[19,29]

    Fig.9. The Vth shift of TFTs with different a-IGZO thicknesses tested in an O2 atmosphere;the values of Vth at infinity(ΔVinf),the time constant(τ),and the exponential factor (β) are extracted by fitting the stretched exponential equation.

    Fig.10. Density of states(DOS)with respect to the Fermi level extracted by the Gr¨unewald method. (a)DOS of TFTs before bias at different ambient O2 pressures. (b)-(f) DOS of TFTs biased at 10-4 Pa, 60 Pa, 200 Pa, 104 Pa,and 105 Pa,respectively.

    Figure 11 schematically shows a physical picture of the positiveVthshift in a-IGZO TFTs. As displayed in Figs.11(a)and 11(b), the weakly bonded O atoms in the a-IGZO thin films migrate towards the a-IGZO/SiO2interface under a positive gate bias and induce deep acceptor-like states at the interface. The electrons trapped in the deep acceptor-like states will screen the gate field, leading to a potential step and the positiveVthshift.However,the oxygen-vacancy-related mechanism(Figs.11(c)and 11(d))cannot be adopted to adequately interpret the screening effect on the gate electric field.

    Fig.11. Schematic diagram of the positive Vth shift in a-IGZO TFTs. (a)and(b)A model of the weakly bonded O atom migration under the gate electric field. (c) and (d) A model of ionized oxygen vacancies capturing electrons under the gate electric field.

    4. Conclusion

    In this work,a-IGZO thin films are prepared by PLD,and a-IGZO TFTs are fabricated. The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized.In-situXPS demonstrates that weakly bonded O atoms are induced in a-IGZO thin films at high deposition pressures, but can be eliminated by vacuum annealing. High deposition pressures lead to largeVthshifts, and the activation energy of theVthshift is fitted to 144 meV as part of the temperature variation experiment. Accordingly,theVthshift is caused by the generation of deep acceptor-like states due to the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. Furthermore, theVthshift can also be caused by the migration of O atoms from ambient O2into a-IGZO, which can be suppressed if the IGZO film is thick enough. The results are helpful for the design of reliable IGZO TFTs and their potential applications in flexible displays.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51771144 and 62104189),the Natural Science Foundation of Shaanxi Province,China (Grant Nos. 2021JC-06, 2019TD-020, and 2019JLM-30), the China Postdoctoral Science Foundation (Grant No. 2020M683483), and the Fundamental scientific research business expenses of Xi’an Jiaotong University(Grant No.XZY022020017).

    猜你喜歡
    文墨王琛馬飛
    “鉗王”煉成大國工匠:銼刀聲聲熔愛意,戰(zhàn)鷹烈烈震九霄
    方文墨,大國工匠的精度
    Air entrainment of hydraulic jump aeration basin *
    Mg元素對A356合金力學(xué)性能影響
    智富時代(2018年8期)2018-09-28 00:12:34
    Energy dissipation of slot-type flip buckets *
    北京廣播電視報(2018年47期)2018-01-25 06:42:42
    Standing wave at dropshaft inlets*
    Ski-jump trajectory based on take-off velocity*
    Corpus—based Study of First Person Pronouns in Research Articles
    人死不毀信義
    做人與處世(2014年6期)2014-05-22 21:16:03
    国模一区二区三区四区视频| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 天堂俺去俺来也www色官网| 天美传媒精品一区二区| av又黄又爽大尺度在线免费看| 男的添女的下面高潮视频| 欧美精品高潮呻吟av久久| 99热全是精品| 一本大道久久a久久精品| 免费大片18禁| 国产一区二区在线观看av| 在线看a的网站| 三级国产精品片| 91精品国产国语对白视频| 九九久久精品国产亚洲av麻豆| 日产精品乱码卡一卡2卡三| 欧美日韩一区二区视频在线观看视频在线| 91精品一卡2卡3卡4卡| av在线app专区| 青春草国产在线视频| 人妻人人澡人人爽人人| av又黄又爽大尺度在线免费看| 亚洲美女黄色视频免费看| 老司机影院毛片| 日本欧美视频一区| 婷婷成人精品国产| 国产精品久久久久久精品电影小说| 综合色丁香网| 久久久久久伊人网av| 亚洲精品,欧美精品| 免费观看av网站的网址| 成年人免费黄色播放视频| 在线亚洲精品国产二区图片欧美 | 高清毛片免费看| 日韩一区二区三区影片| 国产亚洲精品久久久com| 久久97久久精品| 18禁在线播放成人免费| 激情五月婷婷亚洲| 各种免费的搞黄视频| 大香蕉久久成人网| 99国产综合亚洲精品| 女性生殖器流出的白浆| 欧美激情国产日韩精品一区| 亚洲精品一二三| 赤兔流量卡办理| 精品一区二区三卡| 午夜影院在线不卡| 乱码一卡2卡4卡精品| 亚洲图色成人| 飞空精品影院首页| 午夜激情福利司机影院| 狂野欧美白嫩少妇大欣赏| 日本欧美国产在线视频| 91在线精品国自产拍蜜月| 免费观看性生交大片5| 午夜激情久久久久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲av.av天堂| 国产伦精品一区二区三区视频9| 欧美bdsm另类| 日本色播在线视频| 久久99精品国语久久久| 免费少妇av软件| xxxhd国产人妻xxx| 国产精品一国产av| 伊人亚洲综合成人网| av.在线天堂| 亚洲无线观看免费| xxxhd国产人妻xxx| 精品午夜福利在线看| 人妻夜夜爽99麻豆av| 一区二区日韩欧美中文字幕 | 亚洲高清免费不卡视频| 欧美日韩精品成人综合77777| 久久精品人人爽人人爽视色| 亚洲国产精品国产精品| 嫩草影院入口| 多毛熟女@视频| 少妇人妻 视频| 久久久久久久久久久久大奶| 欧美97在线视频| 亚洲精品成人av观看孕妇| 一级二级三级毛片免费看| 亚洲伊人久久精品综合| av.在线天堂| 黄色一级大片看看| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 人妻系列 视频| 97在线视频观看| 国产精品一区二区在线观看99| 日韩,欧美,国产一区二区三区| 欧美亚洲日本最大视频资源| 久久久久久久精品精品| 十分钟在线观看高清视频www| 亚洲第一区二区三区不卡| 日韩一区二区视频免费看| 婷婷色av中文字幕| 丝袜美足系列| 免费观看a级毛片全部| 国产精品一区二区三区四区免费观看| 丝袜在线中文字幕| 久久 成人 亚洲| 日本猛色少妇xxxxx猛交久久| 国产伦精品一区二区三区视频9| freevideosex欧美| 在线精品无人区一区二区三| 欧美日韩亚洲高清精品| 国内精品宾馆在线| 高清不卡的av网站| 午夜久久久在线观看| 亚洲精品视频女| 女性生殖器流出的白浆| 中文字幕人妻熟人妻熟丝袜美| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美精品永久| 如日韩欧美国产精品一区二区三区 | 97在线人人人人妻| 18禁在线无遮挡免费观看视频| 久久精品国产自在天天线| 看免费成人av毛片| 久热这里只有精品99| 丝袜在线中文字幕| 日韩 亚洲 欧美在线| 91在线精品国自产拍蜜月| 日本猛色少妇xxxxx猛交久久| 精品国产乱码久久久久久小说| 精品人妻偷拍中文字幕| 亚洲人成77777在线视频| h视频一区二区三区| 极品少妇高潮喷水抽搐| 韩国av在线不卡| 我要看黄色一级片免费的| 最新中文字幕久久久久| 人妻夜夜爽99麻豆av| 色5月婷婷丁香| 18禁观看日本| 制服人妻中文乱码| av免费在线看不卡| 成人毛片a级毛片在线播放| 人妻制服诱惑在线中文字幕| 日本黄色日本黄色录像| 夜夜爽夜夜爽视频| 天堂俺去俺来也www色官网| av电影中文网址| 18禁在线播放成人免费| 精品久久国产蜜桃| 少妇人妻久久综合中文| 一级,二级,三级黄色视频| 欧美激情国产日韩精品一区| 亚洲国产毛片av蜜桃av| 天堂俺去俺来也www色官网| 婷婷色综合www| 99九九线精品视频在线观看视频| 黑人高潮一二区| 日本vs欧美在线观看视频| 国产白丝娇喘喷水9色精品| 考比视频在线观看| 特大巨黑吊av在线直播| 成年人午夜在线观看视频| 日韩强制内射视频| 少妇被粗大猛烈的视频| 亚洲av日韩在线播放| 日韩成人伦理影院| 在线观看免费视频网站a站| 丝瓜视频免费看黄片| 日日摸夜夜添夜夜爱| 精品久久久久久久久av| 日本色播在线视频| 国产黄色免费在线视频| 亚洲精品aⅴ在线观看| 国产精品一区二区三区四区免费观看| 午夜影院在线不卡| 人妻系列 视频| 丰满少妇做爰视频| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕视频在线看片| 久久精品久久久久久噜噜老黄| 亚洲欧美成人综合另类久久久| 97超视频在线观看视频| 精品国产一区二区久久| 免费久久久久久久精品成人欧美视频 | 国内精品宾馆在线| 欧美日韩视频高清一区二区三区二| 搡女人真爽免费视频火全软件| 大香蕉久久成人网| 亚洲成人av在线免费| 亚洲精品美女久久av网站| 欧美变态另类bdsm刘玥| 国产日韩欧美在线精品| 亚洲图色成人| 亚洲精品第二区| 水蜜桃什么品种好| 一区二区三区四区激情视频| 久久综合国产亚洲精品| 一级片'在线观看视频| 日韩不卡一区二区三区视频在线| 国产免费一级a男人的天堂| 99久久精品一区二区三区| 日韩精品免费视频一区二区三区 | tube8黄色片| 国产乱人偷精品视频| 国产爽快片一区二区三区| 妹子高潮喷水视频| 久久久精品区二区三区| a级毛色黄片| 青春草国产在线视频| 国产日韩欧美视频二区| 久久久久国产精品人妻一区二区| 日日爽夜夜爽网站| 久久久久人妻精品一区果冻| 精品久久蜜臀av无| 久久人人爽人人爽人人片va| 中国三级夫妇交换| 我的女老师完整版在线观看| 国产成人91sexporn| 精品久久久久久电影网| av在线观看视频网站免费| 2022亚洲国产成人精品| 亚洲精品,欧美精品| 九九在线视频观看精品| 看免费成人av毛片| 精品少妇黑人巨大在线播放| 亚洲欧美成人精品一区二区| 久久婷婷青草| 亚洲成人一二三区av| 狂野欧美激情性bbbbbb| 国产视频内射| 国产视频内射| av电影中文网址| 日本av手机在线免费观看| 亚洲欧洲日产国产| 久久久久精品久久久久真实原创| 亚洲美女黄色视频免费看| 22中文网久久字幕| 国产成人精品在线电影| 日韩精品免费视频一区二区三区 | 丝袜在线中文字幕| 国产老妇伦熟女老妇高清| 亚洲欧美清纯卡通| 国产精品嫩草影院av在线观看| 一边亲一边摸免费视频| 精品国产一区二区久久| 久久99精品国语久久久| 亚洲欧美精品自产自拍| 久久国产精品男人的天堂亚洲 | 男女边吃奶边做爰视频| 欧美bdsm另类| 亚洲精品自拍成人| 99国产综合亚洲精品| 午夜免费观看性视频| 丝袜在线中文字幕| 国产黄色视频一区二区在线观看| 精品卡一卡二卡四卡免费| 777米奇影视久久| 成人国产麻豆网| av免费观看日本| 日韩伦理黄色片| 久久99蜜桃精品久久| 69精品国产乱码久久久| 夜夜看夜夜爽夜夜摸| 人妻制服诱惑在线中文字幕| 青春草视频在线免费观看| 999精品在线视频| 韩国av在线不卡| 国产 精品1| 插阴视频在线观看视频| 在线观看美女被高潮喷水网站| 成人影院久久| 在线观看国产h片| 亚洲欧洲精品一区二区精品久久久 | 嫩草影院入口| 日韩强制内射视频| 一本色道久久久久久精品综合| 国产男人的电影天堂91| 国产成人精品婷婷| 狂野欧美激情性xxxx在线观看| 人人妻人人添人人爽欧美一区卜| 一区二区三区四区激情视频| av卡一久久| 日韩亚洲欧美综合| 久久精品国产亚洲网站| 妹子高潮喷水视频| 免费黄频网站在线观看国产| 秋霞伦理黄片| 精品酒店卫生间| 在线看a的网站| 久久99蜜桃精品久久| 美女国产视频在线观看| 国产国拍精品亚洲av在线观看| 免费不卡的大黄色大毛片视频在线观看| 一级毛片电影观看| 欧美性感艳星| 99九九在线精品视频| 精品久久久精品久久久| 国内精品宾馆在线| 久久精品国产亚洲网站| 999精品在线视频| 久久久久久久国产电影| 99热全是精品| 黑人巨大精品欧美一区二区蜜桃 | 99热网站在线观看| 亚洲国产欧美在线一区| 校园人妻丝袜中文字幕| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区| 免费日韩欧美在线观看| 日韩 亚洲 欧美在线| 如何舔出高潮| 涩涩av久久男人的天堂| 欧美97在线视频| 黄色配什么色好看| 交换朋友夫妻互换小说| 观看av在线不卡| 欧美国产精品一级二级三级| 亚洲国产av影院在线观看| 爱豆传媒免费全集在线观看| 国产黄片视频在线免费观看| 成年人午夜在线观看视频| av国产精品久久久久影院| 校园人妻丝袜中文字幕| 亚洲国产最新在线播放| 国产精品99久久99久久久不卡 | 日韩亚洲欧美综合| 一本一本综合久久| 久久99热6这里只有精品| 人妻系列 视频| 亚洲精品456在线播放app| 国产亚洲av片在线观看秒播厂| 午夜视频国产福利| 日韩,欧美,国产一区二区三区| .国产精品久久| 日本av免费视频播放| 亚洲国产精品专区欧美| 精品午夜福利在线看| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 国产成人aa在线观看| 内地一区二区视频在线| 精品一区二区三卡| 久久狼人影院| 国产精品国产av在线观看| 成人综合一区亚洲| 成人综合一区亚洲| 亚洲av综合色区一区| 三上悠亚av全集在线观看| 九九爱精品视频在线观看| 嘟嘟电影网在线观看| 国产亚洲av片在线观看秒播厂| 日韩成人伦理影院| 国产精品.久久久| 交换朋友夫妻互换小说| 欧美日韩一区二区视频在线观看视频在线| 国产免费一级a男人的天堂| 男女边摸边吃奶| 少妇的逼水好多| 亚洲av不卡在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久精品免费免费高清| 国产成人精品一,二区| 人妻 亚洲 视频| 亚洲欧美成人精品一区二区| 亚洲av二区三区四区| 国产av码专区亚洲av| 国产毛片在线视频| 亚洲人成77777在线视频| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久av网站| 99re6热这里在线精品视频| 99国产精品免费福利视频| 女人久久www免费人成看片| 在线观看免费视频网站a站| kizo精华| 午夜福利,免费看| 午夜视频国产福利| 精品人妻在线不人妻| 高清视频免费观看一区二区| 亚洲无线观看免费| 免费人成在线观看视频色| 亚洲人成网站在线观看播放| 亚洲av在线观看美女高潮| 99久久精品一区二区三区| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| 欧美日韩视频精品一区| 日本vs欧美在线观看视频| 3wmmmm亚洲av在线观看| 啦啦啦在线观看免费高清www| 丝袜美足系列| a级毛片黄视频| 麻豆乱淫一区二区| 国产色婷婷99| 天天影视国产精品| .国产精品久久| 蜜臀久久99精品久久宅男| 日本vs欧美在线观看视频| 欧美日韩在线观看h| xxx大片免费视频| 国产欧美另类精品又又久久亚洲欧美| 欧美另类一区| 99九九在线精品视频| 亚洲欧美中文字幕日韩二区| 亚洲人成网站在线播| 青春草视频在线免费观看| 黄色欧美视频在线观看| 久久婷婷青草| 伦理电影大哥的女人| 国产精品人妻久久久影院| 欧美日韩av久久| 亚洲精品美女久久av网站| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 日韩欧美一区视频在线观看| 午夜日本视频在线| 色视频在线一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲精品美女久久av网站| 狠狠婷婷综合久久久久久88av| 两个人免费观看高清视频| 久久综合国产亚洲精品| 国产色爽女视频免费观看| 欧美精品高潮呻吟av久久| 美女中出高潮动态图| 精品久久久噜噜| 久久久久久久久久成人| 男的添女的下面高潮视频| 免费不卡的大黄色大毛片视频在线观看| 美女福利国产在线| 亚洲成人一二三区av| 免费看不卡的av| 纵有疾风起免费观看全集完整版| 亚洲美女视频黄频| 国精品久久久久久国模美| 美女视频免费永久观看网站| 日韩在线高清观看一区二区三区| 国产免费一级a男人的天堂| 国产午夜精品久久久久久一区二区三区| 国产片内射在线| 女性被躁到高潮视频| 在线免费观看不下载黄p国产| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 激情五月婷婷亚洲| 2021少妇久久久久久久久久久| 久久精品久久久久久久性| 性色av一级| 欧美变态另类bdsm刘玥| 22中文网久久字幕| 十分钟在线观看高清视频www| 日韩强制内射视频| 简卡轻食公司| 一级黄片播放器| 亚洲精品国产av蜜桃| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 高清av免费在线| 国产精品久久久久成人av| 免费黄网站久久成人精品| 精品少妇黑人巨大在线播放| 日韩av不卡免费在线播放| 精品久久久久久久久av| 国产精品久久久久成人av| 亚洲精品一区蜜桃| 免费高清在线观看日韩| 伊人久久国产一区二区| 一级二级三级毛片免费看| 99热6这里只有精品| 亚洲国产欧美日韩在线播放| 久久久精品免费免费高清| 汤姆久久久久久久影院中文字幕| 激情五月婷婷亚洲| 亚洲国产色片| 美女中出高潮动态图| 久久免费观看电影| 夫妻午夜视频| 曰老女人黄片| 男人添女人高潮全过程视频| 亚洲av欧美aⅴ国产| xxx大片免费视频| 曰老女人黄片| 午夜免费观看性视频| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 亚洲av综合色区一区| av有码第一页| www.色视频.com| 综合色丁香网| 人妻系列 视频| 精品人妻在线不人妻| 成人毛片60女人毛片免费| 国产成人精品婷婷| 日本欧美国产在线视频| 天天影视国产精品| 精品视频人人做人人爽| 天天操日日干夜夜撸| 亚洲av福利一区| 免费观看a级毛片全部| 18+在线观看网站| 欧美bdsm另类| a级毛色黄片| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 新久久久久国产一级毛片| 免费观看a级毛片全部| 亚洲人与动物交配视频| 亚洲国产精品一区二区三区在线| 精品少妇内射三级| 国产欧美亚洲国产| 校园人妻丝袜中文字幕| 尾随美女入室| 国产片内射在线| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 国产爽快片一区二区三区| 国产精品偷伦视频观看了| 午夜激情福利司机影院| 纵有疾风起免费观看全集完整版| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 人人澡人人妻人| 在线播放无遮挡| 大片电影免费在线观看免费| tube8黄色片| 99热网站在线观看| 久久久久久久久久久丰满| 99热国产这里只有精品6| 久久精品久久久久久久性| 免费人妻精品一区二区三区视频| 人妻少妇偷人精品九色| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 五月开心婷婷网| 中文字幕av电影在线播放| 国产成人freesex在线| 日本爱情动作片www.在线观看| 看免费成人av毛片| 大片电影免费在线观看免费| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 日日啪夜夜爽| 草草在线视频免费看| 中文字幕制服av| 日本午夜av视频| 国产69精品久久久久777片| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的| 蜜臀久久99精品久久宅男| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 久久99一区二区三区| 在现免费观看毛片| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 肉色欧美久久久久久久蜜桃| 插阴视频在线观看视频| 大陆偷拍与自拍| 亚洲国产最新在线播放| 插逼视频在线观看| 免费观看的影片在线观看| 亚洲人成77777在线视频| av卡一久久| 久久久久国产网址| 国产综合精华液| 麻豆成人av视频| 91在线精品国自产拍蜜月| 黄色配什么色好看| 一二三四中文在线观看免费高清| 亚洲中文av在线| 最近中文字幕高清免费大全6| 国产精品99久久久久久久久| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 亚洲久久久国产精品| 精品少妇久久久久久888优播| 91精品三级在线观看| 亚洲精品av麻豆狂野| 成人免费观看视频高清| 精品国产国语对白av| 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 日本黄大片高清| 亚洲人与动物交配视频| 亚洲一区二区三区欧美精品| a级毛色黄片| 国产午夜精品久久久久久一区二区三区| 婷婷色av中文字幕| 日韩中字成人| 老熟女久久久| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| 黑人高潮一二区| 久久婷婷青草| 久久午夜综合久久蜜桃| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 国产精品一区二区三区四区免费观看| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 国产精品成人在线| 丝袜在线中文字幕| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 日韩中文字幕视频在线看片| av专区在线播放| 欧美性感艳星|