• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs

    2022-09-24 08:00:50ChenWang王琛WenmoLu路文墨FengnanLi李奉南QiaomeiLuo羅巧梅andFeiMa馬飛
    Chinese Physics B 2022年9期
    關(guān)鍵詞:文墨王琛馬飛

    Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(羅巧梅), and Fei Ma(馬飛)

    State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: a-IGZO thin films,weakly bonded O atoms,threshold voltage shift

    1. Introduction

    The development of high-resolution and flexible display technology depends heavily on the channel materials of thinfilm transistors (TFTs). Amorphous indium-gallium-zinc oxide(a-IGZO)has attracted much attention due to its high mobility and potential application in flexible devices.[1-3]However,the shift of threshold voltage(Vth)of a-IGZO TFTs under positive gate bias is still a critical issue. The positiveVthshift in TFTs has been ascribed to the negative charges accumulated at the a-IGZO/insulator interface and the screened gate electric field.[4-7]The negative charges could come from electrons trapped in the gate dielectrics[8]or acceptor-like states.Electron trapping in gate dielectrics commonly occurs in TFTs with high-permittivity gate dielectrics,so it is not widespread.Nomuraet al.attributed theVthshift to shallow trap states.[9]Chowdhuryet al.carried out a time-temperature dependence experiment,and attributed theVthshift to defects corresponding to the fitted activation energy,but the fitting accuracy was limited by the narrow temperature range (27°C-90°C).[10]Umet al.observed a hump in the subthreshold region of the transfer curves under positive gate bias, and ascribed it to the acceptor-like states near the a-IGZO/insulator interface.[11]Apparently, the mechanism for theVthshift is still controversial. Furthermore,those mechanisms cannot be adopted to explain the effect of ambient O2on theVthshift. To understand the ambient effect,Zhouet al.proposed a model of chemically adsorbed O2.[12]Chenet al.found that the activation energy of O2adsorption could be lowered by gate bias,resulting in aVthshift in an O2atmosphere.[13]Xuet al.illustrated that the ambient O2could compensate for the oxygen vacancies and improve the subthreshold performance.[14]In other words, a contradiction still exists regarding the effect of ambient O2,and it is still not understood why and how the adsorption of O2at the back channel can induce acceptor-like states at the a-IGZO/insulator interface.

    In this work, a-IGZO thin films are prepared by pulsed laser deposition (PLD) and are fabricated into TFT devices.The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized,and the influences of the deposition O2pressure, vacuum annealing temperature, ambient O2,and film thickness on the electrical properties of the a-IGZO TFTs are investigated;in particular,theVthshift under positive gate bias is discussed. Furthermore,in-situx-ray photoelectron spectroscopy(XPS),a temperature variation experiment and anin-situvacuum annealing experiment were carried out to understand the mechanism responsible for theVthshift of the a-IGZO TFTs. It was found that theVthshift could be attributed to the deep acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface.

    2. Experiment

    2.1. Preparation and characterization of a-IGZO thin films

    The a-IGZO thin films are prepared by the pulsed laser deposition (PLD) technique using a KrF excimer laser(248 nm,~10 J·cm-2per pulse). The target is a homemade crystalline IGZO ceramic (In:Ga:Zn:O=2:2:1:7 mol%)sintered at 1400°C.The surface morphology of the a-IGZO thin films is observed using a scanning electron microscope(SEM)and the phase structure is characterized by xray diffraction(XRD,λ=1.5406 ?A).An interconnected XPS and PLD system in a vacuum chamber is used forin-situcharacterization of the elemental contents and chemical states to avoid contaminants and adsorbates. The excitation source for the XPS is AlKαwith an energy of 1486.6 eV. The sample is heated in an analysis chamber, which has a better vacuum than 1.0×10-5Pa. The XPS spectra of O 1s in the interior and on the surface of the thin film are measured by changing the photoelectron collection angle from 90°to 30°.

    2.2. Fabrication of TFTs and details of the electrical measurement

    The a-IGZO TFTs with a top contact and a bottom gate (p+-Si substrate) are fabricated. The insulator consists of 280 nm of thermally oxidized SiO2, and 100 nm Mo source/drain electrodes are deposited by radio frequency(RF)magnetron sputtering.In-situelectrical measurements of the TFTs are carried out using a homemade probe station in vacuum. The probe station is pumped by a molecular pump unit.Pure O2gas can be introduced into the station. Alumina ceramic heating plates and K-type thermal sensors are attached to the samples and the temperature is regulated by an Eurotherm 3504 controller. In this setup, four samples can be measured at the same time by a combination of a Keithley 2700 matrix switcher and a 2612b source meter. The transfer curves can be measured after thermal annealing in a vacuum better than 10-4Pa. The temperature variation measurements are implemented in a He exchange cryostat.The sample is cooled by the circulation of helium around a closed circuit driven by a dry pump. The helium gas is cooled by the cryo cooler to the 40 K and 4 K stages and then cooled further via expansion from the needle valve. A heat exchanger is used to adjust the temperature of the helium gas,and thus the sample temperature is controlled in the range of 20 K-300 K.All the electric measurements are done in the dark.[15,16]

    Transfer curves are measured by sweepingVgfrom-60 V to 60 V in steps of 0.5 V,withVdkept at 2 V.To evaluate theVthshift, a constant gate voltage (Vg) of 60 V and a drain voltage(Vd)of 2 V are biased for 400 s after each transfer curve measurement. For the recovery process,the a-IGZO TFTs are electrically disconnected for 400 s and theVgsweeping is stopped whenIdis larger than 5 nA,taking the turn-on voltage(Von)shift to represent theVthshift. TheVthis calculated through the transfer curve

    in whichLandWare the channel length and width, respectively,Coxis the unit area capacitance of the insulator dielectrics,andVdis the drain voltage.Vthis determined by fitting the linear region of theId-Vgcurves. The field effect mobility(μ)is obtained by fitting the linear region of the transfer curves

    2.3. Gr¨unewald method

    The Gr¨unewald method is adopted to extract the density of states(DOS)of a-IGZO from the transfer curves. The starting point for this method is the 1D Poisson equation

    The flat band voltage is considered to be approximately equal toVonwhen the source-drain current is 5 nA. The extraction of the DOS is carried out in Matlab.

    3. Results and discussion

    3.1. Characterization of the a-IGZO thin films

    Figure 1 shows SEM images of the a-IGZO thin films.Evidently, the film surface is smooth if the deposition pressure is lower than 6 Pa, but clusters appear on the surface at a deposition pressure of 10 Pa, and the thin films become rough. Therefore,deposition pressures in the range of 2.0 Pa-4.5 Pa can avoid the influence of surface roughness. Figure 2 shows XRD patterns of a-IGZO thin films deposited at oxygen pressures of 1 Pa-10 Pa and annealed at 373 K-873 K.As displayed in Fig. 2(a), no sharp peak can be identified in the patterns, confirming the deposition-pressure-independent amorphous characteristic of a-IGZO. Furthermore, as shown in Fig. 2(b), the amorphous structure can be thermally stable at up to 673 K. Therefore, the effects of phase structure and transition on the electric performance can also be excluded.

    Fig.1.SEM images of a-IGZO thin films deposited at different O2 pressures:(a)1 Pa,(b)3 Pa,(c)6 Pa,and(d)10 Pa.

    To further understand the influence of deposition pressure and vacuum annealing on the a-IGZO films,in-situXPS is carried out, and the results are shown in Fig. 3. The O 1s spectrum is deconvoluted by the Voight function into two peaks at 531.0 eV (the OIpeak) and~532.5 (±0.1) eV (the OIIpeak) in Fig. 3(a). A peak (peaks) corresponding to surface impurities is(are)not in evidence;in other words,in-situcharacterization can avoid the influences of surface impurities on the O1s spectrum. The OIpeak originates from the lattice oxygen atoms, which are tightly bonded with surrounding In atoms in the form of In-O6.[17]As shown in Fig.3(b), the O content of IGZO thin films deposited at oxygen pressures of 1 Pa-5 Pa oxygen pressure is greater than 58.3%(corresponding to the stoichiometric ratio in In2Ga2ZnO7),indicating the presence of excess O atoms in a-IGZO thin films. The bond length between the weakly bonded O atoms and the surrounding In atoms is considerably larger than the normal In-O bond(0.211 nm), with less charge transfer from In to O atoms and thus a higher binding energy of O 1s.[18]Therefore, the OIIpeak originates from the weakly bonded O atoms rather than

    Fig.2. (a)XRD patterns of a-IGZO thin films deposited at different O2 pressures,namely,1 Pa,3 Pa,6 Pa,and 10 Pa. (b)XRD patterns of a-IGZO films deposited at a pressure of 3 Pa of O2 and annealed at 373 K,473 K,673 K,and 873 K in vacuum for 12 hours.

    Fig.3. In situ XPS analysis of a-IGZO films. (a)O 1s spectrum of a-IGZO deposited at a pressure of 3.0 Pa of O2. (b) The O content and (c) the area ratio of OII/OI in a-IGZO thin films deposited at different O2 pressures. (d)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2 and annealed at different temperatures. (e)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2,collected at 90° and 30°,and then annealed at 400 °C.

    oxygen vacancies. The content of weakly bonded O atoms increases with the deposition pressure(Fig.3(c)),but decreases with increasing annealing temperature in vacuum (Fig. 3(d)).

    The content of weakly bonded O atoms both in the interior and on the surface increases once the annealed a-IGZO thin films are exposed to 105Pa ambient O2for 12 hours (Fig. 3(e)).Therefore,the increment of weakly bonded O atoms is caused by the migration of ambient O2into the a-IGZO thin films,but not by the adsorption of O2.

    3.2. The influence of deposition pressure on the Vth shift

    Figure 4(a) schematically displays the cross-section of the a-IGZO TFTs. Figure 4(b) shows the output curves of a-IGZO TFTs deposited at an oxygen pressure of 3.0 Pa,and the TFTs are in the linear region at aVdof 2 V. Figure 5 shows the transfer curves of a-IGZO TFTs under positive gate bias.TheVthshift is evidenced in all the a-IGZO TFTs, and increases remarkably with deposition pressure. As mentioned above, the number of weakly bonded O atoms also increases with the deposition pressure. On the whole,theVthshift might be ascribed to the acceptor-like states induced by the weakly bonded O atoms.[19]In essence,theVthshift occurs if electrons are trapped in acceptor-like states.

    Fig.4. (a)Schematic cross-section of a-IGZO TFTs. (b)Output curves of an a-IGZO TFT deposited at a pressure of 3 Pa of O2.

    3.3. Temperature variation experiment

    A temperature variation experiment is carried out to study the thermally activated process of theVthshift. As shown in Fig. 6(a), the TFTs exhibit normal transfer curves at 20 K-300 K,both the mobility andVonchange significantly for temperatures of 200 K or less,but are almost temperature independent at 200 K-300 K (Fig. 6(b)). A series of transfer curves are measured under positive gate bias and at different temperatures.The difference between theVthvalues with and without bias(ΔVth)is used to quantitatively describe theVthshift. As displayed in Figs. 6(c) and 6(d), theVthshift is thermally activated, and the temperature-dependentVthshift is a good fit for an activation model,i.e.,ΔVth=Aexp(-Ea/kT). The activation energies of theVthshift and the recovery process are fitted to 144 meV and 195 meV,which are close to the activation energy of oxygen diffusion in a-IGZO (~100 meV).[20]Accordingly, it is proved that theVthshift of a-IGZO TFTs is induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. It should be noted that the migration of weakly bonded O atoms is not significant at 200 K or below,and thus theVthshift at low temperature is mainly controlled by the electrons trapped in the pre-existing acceptor-like states,which have quite small thermal activation energies.

    Fig.5.Transfer curves(Id-Vg)of a-IGZO TFTs with 50 nm a-IGZO thin films deposited at different O2 pressures and measured under positive gate bias.

    3.4. The influences of ambient O2 on the Vth shift

    Ambient O2could also induce theVthshift.[12-14,21]Insituvacuum annealing and measurement are implemented to study the influence of ambient O2on theVthshift by allowing O2at different pressures into the vacuum chamber afterin-situannealing. Figure 7 displays the transfer curves of a-IGZO TFTs annealed at 383 K-398 K in a better vacuum than 10-4Pa for 12 hours. A remarkableVthshift occurs in the TFTs annealed at 383 K,while deteriorated subthreshold performance is observed in the TFTs annealed at 393 K and 398 K because of the large number of oxygen vacancies induced by vacuum annealing at higher temperatures.Accordingly,388 K is the optimal vacuum annealing temperature. Figure 8 shows the transfer curves of TFTs with 10 nm IGZO films deposited at an oxygen pressure of 3.0 Pa and annealed at 388 K, then exposed to O2at a pressure of 10-4Pa-105Pa. Since the film thickness is smaller than the Debye length in the subthreshold region(~11 nm),the effect of adsorbed O2can be observed in the transfer curves.[12]After vacuum annealing, the mobility of the TFTs is remarkably improved from 13.5 cm2·V-1·s-1to 31.4 cm2·V-1·s-1. Compared with the deposited TFTs,the TFTs annealed in vacuum at a pressure of 10-4Pa do not exhibit theVthshift,indicating that the weakly bonded O atoms are eliminated,which is also confirmed by thein situXPS.As the ambient O2pressure increases,Vonmoves positively,even at low O2pressures, as a result of a depletion layer induced by O2adsorption.[22]However,a considerableVthshift occurs only at high ambient O2pressures,which cannot be explained by O2adsorption. Taking this into account, it is further confirmed that theVthshift of a-IGZO TFTs in ambient O2can be ascribed to the migration of weakly bonded O atoms from ambient O2into the a-IGZO thin films, as confirmed by thein-situXPS spectra.

    Fig.6. Temperature dependence of transfer curves and the Vth shift. (a)Transfer curves at 20 K-300 K.(b)Field-effect mobility and turn-on voltage.(c)and(d)The Vth shift as a function of temperature in the bias and recovery processes in linear and logarithmic coordinates,respectively.

    3.5. The migration of ambient O2 controlled by the a-IGZO thickness

    Given that theVthshift is caused by the migration of ambient O2,the thickness of the a-IGZO films might affect theVthshift substantially. Thus, theVthshift of TFTs with a-IGZO thicknesses of 12 nm-95 nm are fitted to a stretched exponential function[23]in which ΔVinfis theVthshift at infinite time,tis the time,τis the time constant,andβis the exponential factor.The fitted results are plotted in Fig.9;ΔVinfandτare used to quantitatively describe theVthshift. As the thickness of a-IGZO thin films is increased,ΔVinfdecreases andτincreases,suggesting a reducedVthshift, which can be ascribed to the suppressed migration of ambient O2in the thicker a-IGZO films. A critical thickness of 50 nm is enough to avoid the influence of ambient O2. Theβvalue of 0.4 is maintained for different thicknesses,which means that the migration of weakly bonded O atoms is dominated by a short-range force.[24]

    Fig.7. Transfer curves(Id-Vg)of 10 nm a-IGZO TFTs annealed in vacuum at different temperatures: (a)383 K,(b)388 K,(c)393 K,and(d)398 K.

    Fig. 8. Transfer curves (Id-Vg) of 10 nm a-IGZO TFTs biased at different ambient O2pressures and measured under positive gate bias.

    3.6. Deep acceptor-like states generated by weakly bonded O atoms

    The acceptor-like states in a-IGZO can be divided into two types, shallow states and deep states.[25]The DOS of shallow states is extracted from the transfer curves using the Gr¨unewald method,[26,27]and the results are plotted in Fig.10.For a-IGZO films annealed in vacuum,the ionized oxygen vacancies(V2+O)induce shallow acceptor-like states at~0.1 eV above the Fermi level,[28]as shown in Fig.10(a). Oxygen vacancies affect the electrical properties of a-IGZO TFTs significantly, and can result in a negativeVthshift.[14,28]However,the positiveVthshift cannot be ascribed to oxygen vacancies(VO). If the positiveVthshift is closely related to VO,and VO,as the shadow donors,could provide free carriers,the turn-on voltage should become more negative with a larger positiveVthshift at a higher oxygen vacancy concentration, which is in contradiction to the experimental results in this work. As shown in Figs.5 and 8,if the a-IGZO thin films are deposited at lower oxygen pressures or exposed at lower ambient oxygen pressures, more VOis involved, but the TFTs exhibit a more stableVthunder a positive gate bias. Therefore,the positiveVthshift is not directly related to oxygen vacancies. On the other hand, the carriers in TFTs are confined to a thin region(~1 nm)close to the dielectrics,and will be scattered by deep trapped electrons at the a-IGZO/SiO2interface. Therefore,the reduced mobility in Figs.5 and 8 corresponds to the deep trapped electrons at the a-IGZO/SiO2interface.[19,29]

    Fig.9. The Vth shift of TFTs with different a-IGZO thicknesses tested in an O2 atmosphere;the values of Vth at infinity(ΔVinf),the time constant(τ),and the exponential factor (β) are extracted by fitting the stretched exponential equation.

    Fig.10. Density of states(DOS)with respect to the Fermi level extracted by the Gr¨unewald method. (a)DOS of TFTs before bias at different ambient O2 pressures. (b)-(f) DOS of TFTs biased at 10-4 Pa, 60 Pa, 200 Pa, 104 Pa,and 105 Pa,respectively.

    Figure 11 schematically shows a physical picture of the positiveVthshift in a-IGZO TFTs. As displayed in Figs.11(a)and 11(b), the weakly bonded O atoms in the a-IGZO thin films migrate towards the a-IGZO/SiO2interface under a positive gate bias and induce deep acceptor-like states at the interface. The electrons trapped in the deep acceptor-like states will screen the gate field, leading to a potential step and the positiveVthshift.However,the oxygen-vacancy-related mechanism(Figs.11(c)and 11(d))cannot be adopted to adequately interpret the screening effect on the gate electric field.

    Fig.11. Schematic diagram of the positive Vth shift in a-IGZO TFTs. (a)and(b)A model of the weakly bonded O atom migration under the gate electric field. (c) and (d) A model of ionized oxygen vacancies capturing electrons under the gate electric field.

    4. Conclusion

    In this work,a-IGZO thin films are prepared by PLD,and a-IGZO TFTs are fabricated. The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized.In-situXPS demonstrates that weakly bonded O atoms are induced in a-IGZO thin films at high deposition pressures, but can be eliminated by vacuum annealing. High deposition pressures lead to largeVthshifts, and the activation energy of theVthshift is fitted to 144 meV as part of the temperature variation experiment. Accordingly,theVthshift is caused by the generation of deep acceptor-like states due to the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. Furthermore, theVthshift can also be caused by the migration of O atoms from ambient O2into a-IGZO, which can be suppressed if the IGZO film is thick enough. The results are helpful for the design of reliable IGZO TFTs and their potential applications in flexible displays.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51771144 and 62104189),the Natural Science Foundation of Shaanxi Province,China (Grant Nos. 2021JC-06, 2019TD-020, and 2019JLM-30), the China Postdoctoral Science Foundation (Grant No. 2020M683483), and the Fundamental scientific research business expenses of Xi’an Jiaotong University(Grant No.XZY022020017).

    猜你喜歡
    文墨王琛馬飛
    “鉗王”煉成大國工匠:銼刀聲聲熔愛意,戰(zhàn)鷹烈烈震九霄
    方文墨,大國工匠的精度
    Air entrainment of hydraulic jump aeration basin *
    Mg元素對A356合金力學(xué)性能影響
    智富時代(2018年8期)2018-09-28 00:12:34
    Energy dissipation of slot-type flip buckets *
    北京廣播電視報(2018年47期)2018-01-25 06:42:42
    Standing wave at dropshaft inlets*
    Ski-jump trajectory based on take-off velocity*
    Corpus—based Study of First Person Pronouns in Research Articles
    人死不毀信義
    做人與處世(2014年6期)2014-05-22 21:16:03
    两性夫妻黄色片| 亚洲黑人精品在线| 一个人观看的视频www高清免费观看 | 高潮久久久久久久久久久不卡| 久久草成人影院| 在线av久久热| 国产精品亚洲av一区麻豆| 亚洲国产中文字幕在线视频| 91麻豆av在线| 波多野结衣一区麻豆| 最近最新中文字幕大全免费视频| 亚洲少妇的诱惑av| 日本欧美视频一区| 女同久久另类99精品国产91| 最新美女视频免费是黄的| 男人的好看免费观看在线视频 | 一a级毛片在线观看| 亚洲精品一区av在线观看| 欧美日本亚洲视频在线播放| 少妇 在线观看| 99国产精品99久久久久| 一进一出抽搐动态| 无人区码免费观看不卡| 亚洲一区二区三区欧美精品| 美女 人体艺术 gogo| 欧美日韩乱码在线| 免费高清在线观看日韩| 日本精品一区二区三区蜜桃| 国产精品国产高清国产av| 国产在线精品亚洲第一网站| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 99久久国产精品久久久| 亚洲一区高清亚洲精品| 女人被狂操c到高潮| 人人澡人人妻人| 久久精品国产综合久久久| 老司机在亚洲福利影院| 日韩精品青青久久久久久| 亚洲成人国产一区在线观看| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 午夜久久久在线观看| 国产成人免费无遮挡视频| 在线观看66精品国产| 亚洲 国产 在线| 国产真人三级小视频在线观看| 国产高清激情床上av| 免费少妇av软件| 亚洲国产精品999在线| 亚洲第一av免费看| 另类亚洲欧美激情| 午夜免费观看网址| 男女床上黄色一级片免费看| 亚洲熟妇熟女久久| 欧美激情高清一区二区三区| a级毛片在线看网站| 亚洲免费av在线视频| 淫妇啪啪啪对白视频| 国产精品99久久99久久久不卡| 12—13女人毛片做爰片一| 精品人妻1区二区| 欧美黑人欧美精品刺激| 丝袜美腿诱惑在线| 高清毛片免费观看视频网站 | 首页视频小说图片口味搜索| 亚洲精品国产一区二区精华液| 国产日韩一区二区三区精品不卡| 亚洲中文日韩欧美视频| 黑人巨大精品欧美一区二区mp4| 午夜免费成人在线视频| 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 黄色成人免费大全| 国产免费av片在线观看野外av| a级毛片在线看网站| 国产精品永久免费网站| 精品少妇一区二区三区视频日本电影| 欧美黑人欧美精品刺激| 69精品国产乱码久久久| 日日夜夜操网爽| 午夜视频精品福利| 亚洲中文av在线| 美女 人体艺术 gogo| 黑人操中国人逼视频| 国产三级在线视频| 日韩欧美免费精品| 欧美一级毛片孕妇| 日韩精品中文字幕看吧| 久久狼人影院| 日韩大码丰满熟妇| 精品一区二区三区av网在线观看| 18禁观看日本| 露出奶头的视频| 夜夜夜夜夜久久久久| 亚洲一区二区三区不卡视频| 亚洲国产看品久久| 最近最新免费中文字幕在线| 怎么达到女性高潮| 韩国精品一区二区三区| 国产精品av久久久久免费| 最新在线观看一区二区三区| 久久国产精品影院| 国产精品免费一区二区三区在线| 久久久精品国产亚洲av高清涩受| 老司机亚洲免费影院| 两个人免费观看高清视频| 午夜免费激情av| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡 | 99在线视频只有这里精品首页| 日日爽夜夜爽网站| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9| 热99国产精品久久久久久7| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 久久中文字幕人妻熟女| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图av天堂| 一进一出好大好爽视频| 成人手机av| 精品国内亚洲2022精品成人| 日本欧美视频一区| 麻豆av在线久日| 国产成人av激情在线播放| 18禁观看日本| 亚洲五月天丁香| 91老司机精品| 国产成人系列免费观看| 这个男人来自地球电影免费观看| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| xxx96com| 搡老岳熟女国产| 免费高清视频大片| 日本免费a在线| √禁漫天堂资源中文www| 激情视频va一区二区三区| 女生性感内裤真人,穿戴方法视频| 很黄的视频免费| 老司机亚洲免费影院| 1024香蕉在线观看| 国产精品美女特级片免费视频播放器 | 国产亚洲精品综合一区在线观看 | 丰满迷人的少妇在线观看| 日本免费一区二区三区高清不卡 | 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 91av网站免费观看| 91麻豆av在线| 又紧又爽又黄一区二区| 亚洲国产精品999在线| 视频在线观看一区二区三区| 韩国av一区二区三区四区| www.www免费av| 欧美最黄视频在线播放免费 | av福利片在线| 国产精品一区二区精品视频观看| 国产午夜精品久久久久久| 欧美黄色淫秽网站| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 久久草成人影院| 日韩中文字幕欧美一区二区| 久久人妻熟女aⅴ| 伦理电影免费视频| 亚洲全国av大片| 天堂中文最新版在线下载| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 国产成人影院久久av| 99精品在免费线老司机午夜| 在线观看一区二区三区激情| 久久九九热精品免费| 国产亚洲精品一区二区www| 男女做爰动态图高潮gif福利片 | 欧美中文综合在线视频| 免费在线观看影片大全网站| 亚洲精品中文字幕一二三四区| 丰满迷人的少妇在线观看| 婷婷精品国产亚洲av在线| 麻豆av在线久日| 一区二区三区国产精品乱码| 宅男免费午夜| 中出人妻视频一区二区| 超碰97精品在线观看| 丝袜美腿诱惑在线| 最近最新中文字幕大全电影3 | 久久精品亚洲精品国产色婷小说| 80岁老熟妇乱子伦牲交| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 三级毛片av免费| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 婷婷六月久久综合丁香| 新久久久久国产一级毛片| 一个人观看的视频www高清免费观看 | 日日爽夜夜爽网站| 精品第一国产精品| 久久久久久免费高清国产稀缺| 精品乱码久久久久久99久播| 超色免费av| 国产在线精品亚洲第一网站| 国产一区二区三区视频了| 国产精品一区二区三区四区久久 | 999久久久精品免费观看国产| www.999成人在线观看| 国产欧美日韩一区二区精品| 国产在线精品亚洲第一网站| 丰满饥渴人妻一区二区三| 国产91精品成人一区二区三区| 免费看十八禁软件| 成人影院久久| 亚洲三区欧美一区| 中文字幕人妻丝袜一区二区| 在线观看免费日韩欧美大片| 男女高潮啪啪啪动态图| av免费在线观看网站| 一区二区日韩欧美中文字幕| 日本a在线网址| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 在线免费观看的www视频| 又大又爽又粗| 制服人妻中文乱码| 成人特级黄色片久久久久久久| 精品国产美女av久久久久小说| a级毛片在线看网站| svipshipincom国产片| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 国产成人影院久久av| 国产日韩一区二区三区精品不卡| 妹子高潮喷水视频| 亚洲久久久国产精品| 波多野结衣一区麻豆| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| 欧美黑人欧美精品刺激| 青草久久国产| 国产99久久九九免费精品| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 淫妇啪啪啪对白视频| 身体一侧抽搐| 国产亚洲欧美在线一区二区| 国产麻豆69| 一本综合久久免费| 黄色女人牲交| 国产黄色免费在线视频| 最新美女视频免费是黄的| 中文亚洲av片在线观看爽| 免费av毛片视频| 人人妻人人澡人人看| x7x7x7水蜜桃| 一本大道久久a久久精品| 欧美在线黄色| a在线观看视频网站| 可以在线观看毛片的网站| 好男人电影高清在线观看| 黄色视频,在线免费观看| 精品久久久久久成人av| 精品国产亚洲在线| 国产黄a三级三级三级人| 日本撒尿小便嘘嘘汇集6| 曰老女人黄片| 99热只有精品国产| 精品一区二区三区四区五区乱码| 啦啦啦在线免费观看视频4| 老司机亚洲免费影院| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲伊人色综图| 亚洲成av片中文字幕在线观看| 高清毛片免费观看视频网站 | 亚洲国产欧美网| 国产在线观看jvid| 国产精品 国内视频| 看免费av毛片| 91成人精品电影| 满18在线观看网站| 国产高清videossex| ponron亚洲| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 国产免费男女视频| 巨乳人妻的诱惑在线观看| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| av网站在线播放免费| 国产亚洲av高清不卡| 五月开心婷婷网| 老司机福利观看| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 在线观看66精品国产| 99国产综合亚洲精品| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 伦理电影免费视频| 欧美一区二区精品小视频在线| 国产免费现黄频在线看| 久久草成人影院| 999久久久精品免费观看国产| 国产有黄有色有爽视频| 国产片内射在线| 亚洲伊人色综图| 亚洲av熟女| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 精品国产乱码久久久久久男人| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡 | 91av网站免费观看| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区蜜桃| 欧美在线一区亚洲| 国产成人av激情在线播放| av中文乱码字幕在线| 1024视频免费在线观看| 男男h啪啪无遮挡| 波多野结衣av一区二区av| cao死你这个sao货| 看免费av毛片| 久久国产精品男人的天堂亚洲| 大香蕉久久成人网| 色综合婷婷激情| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 十八禁网站免费在线| 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽| 国产精品爽爽va在线观看网站 | 国产欧美日韩一区二区三区在线| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 在线视频色国产色| 国产av又大| 热99国产精品久久久久久7| 亚洲熟妇中文字幕五十中出 | av在线播放免费不卡| 久99久视频精品免费| 9热在线视频观看99| 中文字幕人妻丝袜一区二区| 狂野欧美激情性xxxx| 动漫黄色视频在线观看| 91av网站免费观看| 精品久久久久久久久久免费视频 | 亚洲黑人精品在线| 真人做人爱边吃奶动态| 村上凉子中文字幕在线| 1024视频免费在线观看| 精品久久久精品久久久| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 国产精品乱码一区二三区的特点 | 免费女性裸体啪啪无遮挡网站| 人妻丰满熟妇av一区二区三区| 男女午夜视频在线观看| 又大又爽又粗| 欧美 亚洲 国产 日韩一| www.999成人在线观看| 国产三级黄色录像| 中文字幕人妻丝袜制服| 日韩欧美在线二视频| 99国产极品粉嫩在线观看| 大香蕉久久成人网| www日本在线高清视频| 亚洲精品国产精品久久久不卡| 久久伊人香网站| 日本五十路高清| 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 天堂动漫精品| 精品午夜福利视频在线观看一区| 欧美亚洲日本最大视频资源| 精品免费久久久久久久清纯| 50天的宝宝边吃奶边哭怎么回事| av在线播放免费不卡| 国产精品自产拍在线观看55亚洲| 欧美久久黑人一区二区| 国产不卡一卡二| 一进一出抽搐动态| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 欧美中文日本在线观看视频| ponron亚洲| 丝袜人妻中文字幕| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 乱人伦中国视频| 国产欧美日韩一区二区精品| 九色亚洲精品在线播放| 香蕉丝袜av| 看免费av毛片| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| av电影中文网址| 国内久久婷婷六月综合欲色啪| 亚洲av成人一区二区三| 亚洲片人在线观看| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 国产一区二区三区综合在线观看| 午夜成年电影在线免费观看| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 最新美女视频免费是黄的| 国产成人系列免费观看| 很黄的视频免费| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 美女福利国产在线| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 在线视频色国产色| 一进一出抽搐动态| 午夜两性在线视频| 夜夜爽天天搞| 一本大道久久a久久精品| a级毛片在线看网站| 热re99久久精品国产66热6| 长腿黑丝高跟| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 久久午夜亚洲精品久久| 一边摸一边做爽爽视频免费| 91av网站免费观看| 在线观看免费高清a一片| 国产精品一区二区三区四区久久 | 欧美精品亚洲一区二区| 丝袜美足系列| 美女高潮喷水抽搐中文字幕| 久久久国产一区二区| 成人国产一区最新在线观看| 日日干狠狠操夜夜爽| 热re99久久国产66热| 日韩欧美一区视频在线观看| 欧美中文日本在线观看视频| 三上悠亚av全集在线观看| 国产精品成人在线| 欧美日韩精品网址| 中文字幕人妻丝袜制服| 久久久久久久久中文| 亚洲,欧美精品.| √禁漫天堂资源中文www| 亚洲成人精品中文字幕电影 | av国产精品久久久久影院| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 性少妇av在线| 亚洲成人久久性| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 久久青草综合色| 宅男免费午夜| 老司机福利观看| 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 在线观看www视频免费| 高清毛片免费观看视频网站 | 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 国产片内射在线| 美女午夜性视频免费| 成年人黄色毛片网站| 久久国产亚洲av麻豆专区| 国产一卡二卡三卡精品| 国产成人一区二区三区免费视频网站| 午夜91福利影院| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 国产免费av片在线观看野外av| 国产成人欧美在线观看| 97碰自拍视频| 在线观看日韩欧美| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 在线观看免费视频日本深夜| 国产成人影院久久av| 国产亚洲av高清不卡| 丝袜人妻中文字幕| 一边摸一边做爽爽视频免费| www.www免费av| 成人特级黄色片久久久久久久| 亚洲人成电影观看| 亚洲精品成人av观看孕妇| 国产精品 国内视频| 97人妻天天添夜夜摸| 免费搜索国产男女视频| 亚洲av五月六月丁香网| av网站免费在线观看视频| 欧美日韩精品网址| 久久天躁狠狠躁夜夜2o2o| 亚洲五月色婷婷综合| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 国产精品九九99| 看黄色毛片网站| 成人亚洲精品一区在线观看| 看黄色毛片网站| 欧美日韩中文字幕国产精品一区二区三区 | 免费看a级黄色片| 国产精品美女特级片免费视频播放器 | 亚洲精品中文字幕一二三四区| 欧美 亚洲 国产 日韩一| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 免费日韩欧美在线观看| 亚洲av熟女| 成年版毛片免费区| 电影成人av| 日韩中文字幕欧美一区二区| 如日韩欧美国产精品一区二区三区| 国产精品亚洲一级av第二区| 成年人黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 欧美精品一区二区免费开放| 超碰97精品在线观看| 午夜精品在线福利| 国产成人欧美| 午夜老司机福利片| 99久久人妻综合| 成人国语在线视频| 国产一区在线观看成人免费| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 亚洲 欧美一区二区三区| 五月开心婷婷网| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片| 欧美 亚洲 国产 日韩一| а√天堂www在线а√下载| 亚洲av五月六月丁香网| 免费看十八禁软件| 不卡一级毛片| 人人妻人人澡人人看| 国产av在哪里看| 成年女人毛片免费观看观看9| av欧美777| av天堂久久9| 欧美日本中文国产一区发布| 精品国内亚洲2022精品成人| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 黄频高清免费视频| a级毛片黄视频| 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美激情综合另类| 精品久久久久久,| 免费久久久久久久精品成人欧美视频| 免费av毛片视频| 亚洲 欧美一区二区三区| 淫秽高清视频在线观看| 亚洲一区二区三区不卡视频| 性色av乱码一区二区三区2| 亚洲一区中文字幕在线| 这个男人来自地球电影免费观看| 亚洲一区二区三区色噜噜 | 成人精品一区二区免费| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 亚洲人成电影观看| 99久久久亚洲精品蜜臀av| 午夜老司机福利片| 国产一区在线观看成人免费| 高清在线国产一区| 午夜免费观看网址| 99国产精品99久久久久|