• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs

    2022-09-24 08:00:50ChenWang王琛WenmoLu路文墨FengnanLi李奉南QiaomeiLuo羅巧梅andFeiMa馬飛
    Chinese Physics B 2022年9期
    關(guān)鍵詞:文墨王琛馬飛

    Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(羅巧梅), and Fei Ma(馬飛)

    State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: a-IGZO thin films,weakly bonded O atoms,threshold voltage shift

    1. Introduction

    The development of high-resolution and flexible display technology depends heavily on the channel materials of thinfilm transistors (TFTs). Amorphous indium-gallium-zinc oxide(a-IGZO)has attracted much attention due to its high mobility and potential application in flexible devices.[1-3]However,the shift of threshold voltage(Vth)of a-IGZO TFTs under positive gate bias is still a critical issue. The positiveVthshift in TFTs has been ascribed to the negative charges accumulated at the a-IGZO/insulator interface and the screened gate electric field.[4-7]The negative charges could come from electrons trapped in the gate dielectrics[8]or acceptor-like states.Electron trapping in gate dielectrics commonly occurs in TFTs with high-permittivity gate dielectrics,so it is not widespread.Nomuraet al.attributed theVthshift to shallow trap states.[9]Chowdhuryet al.carried out a time-temperature dependence experiment,and attributed theVthshift to defects corresponding to the fitted activation energy,but the fitting accuracy was limited by the narrow temperature range (27°C-90°C).[10]Umet al.observed a hump in the subthreshold region of the transfer curves under positive gate bias, and ascribed it to the acceptor-like states near the a-IGZO/insulator interface.[11]Apparently, the mechanism for theVthshift is still controversial. Furthermore,those mechanisms cannot be adopted to explain the effect of ambient O2on theVthshift. To understand the ambient effect,Zhouet al.proposed a model of chemically adsorbed O2.[12]Chenet al.found that the activation energy of O2adsorption could be lowered by gate bias,resulting in aVthshift in an O2atmosphere.[13]Xuet al.illustrated that the ambient O2could compensate for the oxygen vacancies and improve the subthreshold performance.[14]In other words, a contradiction still exists regarding the effect of ambient O2,and it is still not understood why and how the adsorption of O2at the back channel can induce acceptor-like states at the a-IGZO/insulator interface.

    In this work, a-IGZO thin films are prepared by pulsed laser deposition (PLD) and are fabricated into TFT devices.The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized,and the influences of the deposition O2pressure, vacuum annealing temperature, ambient O2,and film thickness on the electrical properties of the a-IGZO TFTs are investigated;in particular,theVthshift under positive gate bias is discussed. Furthermore,in-situx-ray photoelectron spectroscopy(XPS),a temperature variation experiment and anin-situvacuum annealing experiment were carried out to understand the mechanism responsible for theVthshift of the a-IGZO TFTs. It was found that theVthshift could be attributed to the deep acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface.

    2. Experiment

    2.1. Preparation and characterization of a-IGZO thin films

    The a-IGZO thin films are prepared by the pulsed laser deposition (PLD) technique using a KrF excimer laser(248 nm,~10 J·cm-2per pulse). The target is a homemade crystalline IGZO ceramic (In:Ga:Zn:O=2:2:1:7 mol%)sintered at 1400°C.The surface morphology of the a-IGZO thin films is observed using a scanning electron microscope(SEM)and the phase structure is characterized by xray diffraction(XRD,λ=1.5406 ?A).An interconnected XPS and PLD system in a vacuum chamber is used forin-situcharacterization of the elemental contents and chemical states to avoid contaminants and adsorbates. The excitation source for the XPS is AlKαwith an energy of 1486.6 eV. The sample is heated in an analysis chamber, which has a better vacuum than 1.0×10-5Pa. The XPS spectra of O 1s in the interior and on the surface of the thin film are measured by changing the photoelectron collection angle from 90°to 30°.

    2.2. Fabrication of TFTs and details of the electrical measurement

    The a-IGZO TFTs with a top contact and a bottom gate (p+-Si substrate) are fabricated. The insulator consists of 280 nm of thermally oxidized SiO2, and 100 nm Mo source/drain electrodes are deposited by radio frequency(RF)magnetron sputtering.In-situelectrical measurements of the TFTs are carried out using a homemade probe station in vacuum. The probe station is pumped by a molecular pump unit.Pure O2gas can be introduced into the station. Alumina ceramic heating plates and K-type thermal sensors are attached to the samples and the temperature is regulated by an Eurotherm 3504 controller. In this setup, four samples can be measured at the same time by a combination of a Keithley 2700 matrix switcher and a 2612b source meter. The transfer curves can be measured after thermal annealing in a vacuum better than 10-4Pa. The temperature variation measurements are implemented in a He exchange cryostat.The sample is cooled by the circulation of helium around a closed circuit driven by a dry pump. The helium gas is cooled by the cryo cooler to the 40 K and 4 K stages and then cooled further via expansion from the needle valve. A heat exchanger is used to adjust the temperature of the helium gas,and thus the sample temperature is controlled in the range of 20 K-300 K.All the electric measurements are done in the dark.[15,16]

    Transfer curves are measured by sweepingVgfrom-60 V to 60 V in steps of 0.5 V,withVdkept at 2 V.To evaluate theVthshift, a constant gate voltage (Vg) of 60 V and a drain voltage(Vd)of 2 V are biased for 400 s after each transfer curve measurement. For the recovery process,the a-IGZO TFTs are electrically disconnected for 400 s and theVgsweeping is stopped whenIdis larger than 5 nA,taking the turn-on voltage(Von)shift to represent theVthshift. TheVthis calculated through the transfer curve

    in whichLandWare the channel length and width, respectively,Coxis the unit area capacitance of the insulator dielectrics,andVdis the drain voltage.Vthis determined by fitting the linear region of theId-Vgcurves. The field effect mobility(μ)is obtained by fitting the linear region of the transfer curves

    2.3. Gr¨unewald method

    The Gr¨unewald method is adopted to extract the density of states(DOS)of a-IGZO from the transfer curves. The starting point for this method is the 1D Poisson equation

    The flat band voltage is considered to be approximately equal toVonwhen the source-drain current is 5 nA. The extraction of the DOS is carried out in Matlab.

    3. Results and discussion

    3.1. Characterization of the a-IGZO thin films

    Figure 1 shows SEM images of the a-IGZO thin films.Evidently, the film surface is smooth if the deposition pressure is lower than 6 Pa, but clusters appear on the surface at a deposition pressure of 10 Pa, and the thin films become rough. Therefore,deposition pressures in the range of 2.0 Pa-4.5 Pa can avoid the influence of surface roughness. Figure 2 shows XRD patterns of a-IGZO thin films deposited at oxygen pressures of 1 Pa-10 Pa and annealed at 373 K-873 K.As displayed in Fig. 2(a), no sharp peak can be identified in the patterns, confirming the deposition-pressure-independent amorphous characteristic of a-IGZO. Furthermore, as shown in Fig. 2(b), the amorphous structure can be thermally stable at up to 673 K. Therefore, the effects of phase structure and transition on the electric performance can also be excluded.

    Fig.1.SEM images of a-IGZO thin films deposited at different O2 pressures:(a)1 Pa,(b)3 Pa,(c)6 Pa,and(d)10 Pa.

    To further understand the influence of deposition pressure and vacuum annealing on the a-IGZO films,in-situXPS is carried out, and the results are shown in Fig. 3. The O 1s spectrum is deconvoluted by the Voight function into two peaks at 531.0 eV (the OIpeak) and~532.5 (±0.1) eV (the OIIpeak) in Fig. 3(a). A peak (peaks) corresponding to surface impurities is(are)not in evidence;in other words,in-situcharacterization can avoid the influences of surface impurities on the O1s spectrum. The OIpeak originates from the lattice oxygen atoms, which are tightly bonded with surrounding In atoms in the form of In-O6.[17]As shown in Fig.3(b), the O content of IGZO thin films deposited at oxygen pressures of 1 Pa-5 Pa oxygen pressure is greater than 58.3%(corresponding to the stoichiometric ratio in In2Ga2ZnO7),indicating the presence of excess O atoms in a-IGZO thin films. The bond length between the weakly bonded O atoms and the surrounding In atoms is considerably larger than the normal In-O bond(0.211 nm), with less charge transfer from In to O atoms and thus a higher binding energy of O 1s.[18]Therefore, the OIIpeak originates from the weakly bonded O atoms rather than

    Fig.2. (a)XRD patterns of a-IGZO thin films deposited at different O2 pressures,namely,1 Pa,3 Pa,6 Pa,and 10 Pa. (b)XRD patterns of a-IGZO films deposited at a pressure of 3 Pa of O2 and annealed at 373 K,473 K,673 K,and 873 K in vacuum for 12 hours.

    Fig.3. In situ XPS analysis of a-IGZO films. (a)O 1s spectrum of a-IGZO deposited at a pressure of 3.0 Pa of O2. (b) The O content and (c) the area ratio of OII/OI in a-IGZO thin films deposited at different O2 pressures. (d)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2 and annealed at different temperatures. (e)The area ratio of OII/OI in a-IGZO thin films deposited at a pressure of 5 Pa of O2,collected at 90° and 30°,and then annealed at 400 °C.

    oxygen vacancies. The content of weakly bonded O atoms increases with the deposition pressure(Fig.3(c)),but decreases with increasing annealing temperature in vacuum (Fig. 3(d)).

    The content of weakly bonded O atoms both in the interior and on the surface increases once the annealed a-IGZO thin films are exposed to 105Pa ambient O2for 12 hours (Fig. 3(e)).Therefore,the increment of weakly bonded O atoms is caused by the migration of ambient O2into the a-IGZO thin films,but not by the adsorption of O2.

    3.2. The influence of deposition pressure on the Vth shift

    Figure 4(a) schematically displays the cross-section of the a-IGZO TFTs. Figure 4(b) shows the output curves of a-IGZO TFTs deposited at an oxygen pressure of 3.0 Pa,and the TFTs are in the linear region at aVdof 2 V. Figure 5 shows the transfer curves of a-IGZO TFTs under positive gate bias.TheVthshift is evidenced in all the a-IGZO TFTs, and increases remarkably with deposition pressure. As mentioned above, the number of weakly bonded O atoms also increases with the deposition pressure. On the whole,theVthshift might be ascribed to the acceptor-like states induced by the weakly bonded O atoms.[19]In essence,theVthshift occurs if electrons are trapped in acceptor-like states.

    Fig.4. (a)Schematic cross-section of a-IGZO TFTs. (b)Output curves of an a-IGZO TFT deposited at a pressure of 3 Pa of O2.

    3.3. Temperature variation experiment

    A temperature variation experiment is carried out to study the thermally activated process of theVthshift. As shown in Fig. 6(a), the TFTs exhibit normal transfer curves at 20 K-300 K,both the mobility andVonchange significantly for temperatures of 200 K or less,but are almost temperature independent at 200 K-300 K (Fig. 6(b)). A series of transfer curves are measured under positive gate bias and at different temperatures.The difference between theVthvalues with and without bias(ΔVth)is used to quantitatively describe theVthshift. As displayed in Figs. 6(c) and 6(d), theVthshift is thermally activated, and the temperature-dependentVthshift is a good fit for an activation model,i.e.,ΔVth=Aexp(-Ea/kT). The activation energies of theVthshift and the recovery process are fitted to 144 meV and 195 meV,which are close to the activation energy of oxygen diffusion in a-IGZO (~100 meV).[20]Accordingly, it is proved that theVthshift of a-IGZO TFTs is induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. It should be noted that the migration of weakly bonded O atoms is not significant at 200 K or below,and thus theVthshift at low temperature is mainly controlled by the electrons trapped in the pre-existing acceptor-like states,which have quite small thermal activation energies.

    Fig.5.Transfer curves(Id-Vg)of a-IGZO TFTs with 50 nm a-IGZO thin films deposited at different O2 pressures and measured under positive gate bias.

    3.4. The influences of ambient O2 on the Vth shift

    Ambient O2could also induce theVthshift.[12-14,21]Insituvacuum annealing and measurement are implemented to study the influence of ambient O2on theVthshift by allowing O2at different pressures into the vacuum chamber afterin-situannealing. Figure 7 displays the transfer curves of a-IGZO TFTs annealed at 383 K-398 K in a better vacuum than 10-4Pa for 12 hours. A remarkableVthshift occurs in the TFTs annealed at 383 K,while deteriorated subthreshold performance is observed in the TFTs annealed at 393 K and 398 K because of the large number of oxygen vacancies induced by vacuum annealing at higher temperatures.Accordingly,388 K is the optimal vacuum annealing temperature. Figure 8 shows the transfer curves of TFTs with 10 nm IGZO films deposited at an oxygen pressure of 3.0 Pa and annealed at 388 K, then exposed to O2at a pressure of 10-4Pa-105Pa. Since the film thickness is smaller than the Debye length in the subthreshold region(~11 nm),the effect of adsorbed O2can be observed in the transfer curves.[12]After vacuum annealing, the mobility of the TFTs is remarkably improved from 13.5 cm2·V-1·s-1to 31.4 cm2·V-1·s-1. Compared with the deposited TFTs,the TFTs annealed in vacuum at a pressure of 10-4Pa do not exhibit theVthshift,indicating that the weakly bonded O atoms are eliminated,which is also confirmed by thein situXPS.As the ambient O2pressure increases,Vonmoves positively,even at low O2pressures, as a result of a depletion layer induced by O2adsorption.[22]However,a considerableVthshift occurs only at high ambient O2pressures,which cannot be explained by O2adsorption. Taking this into account, it is further confirmed that theVthshift of a-IGZO TFTs in ambient O2can be ascribed to the migration of weakly bonded O atoms from ambient O2into the a-IGZO thin films, as confirmed by thein-situXPS spectra.

    Fig.6. Temperature dependence of transfer curves and the Vth shift. (a)Transfer curves at 20 K-300 K.(b)Field-effect mobility and turn-on voltage.(c)and(d)The Vth shift as a function of temperature in the bias and recovery processes in linear and logarithmic coordinates,respectively.

    3.5. The migration of ambient O2 controlled by the a-IGZO thickness

    Given that theVthshift is caused by the migration of ambient O2,the thickness of the a-IGZO films might affect theVthshift substantially. Thus, theVthshift of TFTs with a-IGZO thicknesses of 12 nm-95 nm are fitted to a stretched exponential function[23]in which ΔVinfis theVthshift at infinite time,tis the time,τis the time constant,andβis the exponential factor.The fitted results are plotted in Fig.9;ΔVinfandτare used to quantitatively describe theVthshift. As the thickness of a-IGZO thin films is increased,ΔVinfdecreases andτincreases,suggesting a reducedVthshift, which can be ascribed to the suppressed migration of ambient O2in the thicker a-IGZO films. A critical thickness of 50 nm is enough to avoid the influence of ambient O2. Theβvalue of 0.4 is maintained for different thicknesses,which means that the migration of weakly bonded O atoms is dominated by a short-range force.[24]

    Fig.7. Transfer curves(Id-Vg)of 10 nm a-IGZO TFTs annealed in vacuum at different temperatures: (a)383 K,(b)388 K,(c)393 K,and(d)398 K.

    Fig. 8. Transfer curves (Id-Vg) of 10 nm a-IGZO TFTs biased at different ambient O2pressures and measured under positive gate bias.

    3.6. Deep acceptor-like states generated by weakly bonded O atoms

    The acceptor-like states in a-IGZO can be divided into two types, shallow states and deep states.[25]The DOS of shallow states is extracted from the transfer curves using the Gr¨unewald method,[26,27]and the results are plotted in Fig.10.For a-IGZO films annealed in vacuum,the ionized oxygen vacancies(V2+O)induce shallow acceptor-like states at~0.1 eV above the Fermi level,[28]as shown in Fig.10(a). Oxygen vacancies affect the electrical properties of a-IGZO TFTs significantly, and can result in a negativeVthshift.[14,28]However,the positiveVthshift cannot be ascribed to oxygen vacancies(VO). If the positiveVthshift is closely related to VO,and VO,as the shadow donors,could provide free carriers,the turn-on voltage should become more negative with a larger positiveVthshift at a higher oxygen vacancy concentration, which is in contradiction to the experimental results in this work. As shown in Figs.5 and 8,if the a-IGZO thin films are deposited at lower oxygen pressures or exposed at lower ambient oxygen pressures, more VOis involved, but the TFTs exhibit a more stableVthunder a positive gate bias. Therefore,the positiveVthshift is not directly related to oxygen vacancies. On the other hand, the carriers in TFTs are confined to a thin region(~1 nm)close to the dielectrics,and will be scattered by deep trapped electrons at the a-IGZO/SiO2interface. Therefore,the reduced mobility in Figs.5 and 8 corresponds to the deep trapped electrons at the a-IGZO/SiO2interface.[19,29]

    Fig.9. The Vth shift of TFTs with different a-IGZO thicknesses tested in an O2 atmosphere;the values of Vth at infinity(ΔVinf),the time constant(τ),and the exponential factor (β) are extracted by fitting the stretched exponential equation.

    Fig.10. Density of states(DOS)with respect to the Fermi level extracted by the Gr¨unewald method. (a)DOS of TFTs before bias at different ambient O2 pressures. (b)-(f) DOS of TFTs biased at 10-4 Pa, 60 Pa, 200 Pa, 104 Pa,and 105 Pa,respectively.

    Figure 11 schematically shows a physical picture of the positiveVthshift in a-IGZO TFTs. As displayed in Figs.11(a)and 11(b), the weakly bonded O atoms in the a-IGZO thin films migrate towards the a-IGZO/SiO2interface under a positive gate bias and induce deep acceptor-like states at the interface. The electrons trapped in the deep acceptor-like states will screen the gate field, leading to a potential step and the positiveVthshift.However,the oxygen-vacancy-related mechanism(Figs.11(c)and 11(d))cannot be adopted to adequately interpret the screening effect on the gate electric field.

    Fig.11. Schematic diagram of the positive Vth shift in a-IGZO TFTs. (a)and(b)A model of the weakly bonded O atom migration under the gate electric field. (c) and (d) A model of ionized oxygen vacancies capturing electrons under the gate electric field.

    4. Conclusion

    In this work,a-IGZO thin films are prepared by PLD,and a-IGZO TFTs are fabricated. The morphology, phase structure, and chemical states of the a-IGZO thin films are characterized.In-situXPS demonstrates that weakly bonded O atoms are induced in a-IGZO thin films at high deposition pressures, but can be eliminated by vacuum annealing. High deposition pressures lead to largeVthshifts, and the activation energy of theVthshift is fitted to 144 meV as part of the temperature variation experiment. Accordingly,theVthshift is caused by the generation of deep acceptor-like states due to the accumulation of weakly bonded O atoms at the a-IGZO/SiO2interface under positive gate bias. Furthermore, theVthshift can also be caused by the migration of O atoms from ambient O2into a-IGZO, which can be suppressed if the IGZO film is thick enough. The results are helpful for the design of reliable IGZO TFTs and their potential applications in flexible displays.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51771144 and 62104189),the Natural Science Foundation of Shaanxi Province,China (Grant Nos. 2021JC-06, 2019TD-020, and 2019JLM-30), the China Postdoctoral Science Foundation (Grant No. 2020M683483), and the Fundamental scientific research business expenses of Xi’an Jiaotong University(Grant No.XZY022020017).

    猜你喜歡
    文墨王琛馬飛
    “鉗王”煉成大國工匠:銼刀聲聲熔愛意,戰(zhàn)鷹烈烈震九霄
    方文墨,大國工匠的精度
    Air entrainment of hydraulic jump aeration basin *
    Mg元素對A356合金力學(xué)性能影響
    智富時代(2018年8期)2018-09-28 00:12:34
    Energy dissipation of slot-type flip buckets *
    北京廣播電視報(2018年47期)2018-01-25 06:42:42
    Standing wave at dropshaft inlets*
    Ski-jump trajectory based on take-off velocity*
    Corpus—based Study of First Person Pronouns in Research Articles
    人死不毀信義
    做人與處世(2014年6期)2014-05-22 21:16:03
    脱女人内裤的视频| 精品国产美女av久久久久小说| 亚洲av成人av| 午夜精品在线福利| 亚洲avbb在线观看| 曰老女人黄片| av天堂在线播放| 91麻豆精品激情在线观看国产| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 国产亚洲精品av在线| 亚洲国产欧美日韩在线播放| 午夜福利,免费看| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区| 男女下面插进去视频免费观看| 国产麻豆成人av免费视频| 91老司机精品| 在线观看免费视频日本深夜| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 黄片播放在线免费| 激情视频va一区二区三区| 精品人妻在线不人妻| 少妇裸体淫交视频免费看高清 | 人人妻,人人澡人人爽秒播| 一二三四社区在线视频社区8| 日韩大码丰满熟妇| 亚洲情色 制服丝袜| 亚洲专区国产一区二区| 1024香蕉在线观看| 久久九九热精品免费| 欧美大码av| av免费在线观看网站| 欧美在线黄色| 久久久久久久久久久久大奶| 正在播放国产对白刺激| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 一本久久中文字幕| 夜夜躁狠狠躁天天躁| 午夜激情av网站| 欧美不卡视频在线免费观看 | 精品卡一卡二卡四卡免费| 天天一区二区日本电影三级 | 男人的好看免费观看在线视频 | 国产黄a三级三级三级人| 国产高清激情床上av| 亚洲国产欧美日韩在线播放| 老司机靠b影院| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 在线天堂中文资源库| 啦啦啦 在线观看视频| 亚洲av电影在线进入| 一本久久中文字幕| 亚洲成国产人片在线观看| 色尼玛亚洲综合影院| 欧美日韩乱码在线| 女人高潮潮喷娇喘18禁视频| 午夜福利欧美成人| 国产主播在线观看一区二区| 午夜福利,免费看| 淫秽高清视频在线观看| av视频在线观看入口| www.www免费av| 免费在线观看黄色视频的| 精品日产1卡2卡| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 麻豆av在线久日| 国产精品永久免费网站| 国产99白浆流出| 国产精品二区激情视频| 亚洲人成伊人成综合网2020| 亚洲最大成人中文| 国产不卡一卡二| 日韩av在线大香蕉| 久久伊人香网站| 在线观看66精品国产| 他把我摸到了高潮在线观看| 国产欧美日韩综合在线一区二区| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 久久久精品欧美日韩精品| 性少妇av在线| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 国产1区2区3区精品| 日韩精品青青久久久久久| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 夜夜看夜夜爽夜夜摸| 日本精品一区二区三区蜜桃| 免费在线观看黄色视频的| 国产亚洲精品综合一区在线观看 | 美国免费a级毛片| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 9色porny在线观看| 亚洲全国av大片| 久久久精品欧美日韩精品| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 国产精品免费一区二区三区在线| 黄色片一级片一级黄色片| netflix在线观看网站| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 91大片在线观看| 黄色 视频免费看| 成人免费观看视频高清| 精品久久蜜臀av无| 精品国产亚洲在线| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 亚洲国产高清在线一区二区三 | 搡老妇女老女人老熟妇| 成人18禁高潮啪啪吃奶动态图| 国产成人欧美| 亚洲人成77777在线视频| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 国产精品精品国产色婷婷| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 久久人人精品亚洲av| 久久久久久国产a免费观看| 99国产综合亚洲精品| 国产色视频综合| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品亚洲一区二区| 亚洲精品在线美女| 亚洲精品一区av在线观看| 国产精品免费一区二区三区在线| 一二三四社区在线视频社区8| 一夜夜www| av福利片在线| 日本在线视频免费播放| 精品久久久久久久人妻蜜臀av | 国产一区在线观看成人免费| 国产精品九九99| 亚洲精华国产精华精| 亚洲人成伊人成综合网2020| 麻豆一二三区av精品| 午夜免费成人在线视频| 日韩高清综合在线| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区三| 一区在线观看完整版| 可以在线观看毛片的网站| av中文乱码字幕在线| 久久亚洲真实| 波多野结衣巨乳人妻| 丁香欧美五月| 午夜免费激情av| 热re99久久国产66热| 最好的美女福利视频网| 久久性视频一级片| 天天一区二区日本电影三级 | 一级毛片高清免费大全| 男女做爰动态图高潮gif福利片 | 女同久久另类99精品国产91| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 国产亚洲精品久久久久久毛片| 亚洲中文av在线| 91麻豆av在线| 激情视频va一区二区三区| 嫩草影院精品99| 美女扒开内裤让男人捅视频| 自线自在国产av| 狠狠狠狠99中文字幕| 最新美女视频免费是黄的| 国产精品久久久久久亚洲av鲁大| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 久久热在线av| av在线播放免费不卡| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 少妇的丰满在线观看| 国产视频一区二区在线看| 91精品三级在线观看| 欧美中文日本在线观看视频| 亚洲精品在线美女| av网站免费在线观看视频| 中文字幕久久专区| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 女性被躁到高潮视频| 欧美老熟妇乱子伦牲交| 很黄的视频免费| 久热爱精品视频在线9| 国产一区二区激情短视频| 99久久综合精品五月天人人| 91字幕亚洲| 男女下面插进去视频免费观看| 免费观看精品视频网站| 免费av毛片视频| 人人妻人人澡人人看| 免费无遮挡裸体视频| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| av超薄肉色丝袜交足视频| 免费观看精品视频网站| 久久精品国产清高在天天线| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 嫁个100分男人电影在线观看| 精品卡一卡二卡四卡免费| 亚洲激情在线av| 亚洲欧美激情综合另类| 老司机靠b影院| 国产成人精品久久二区二区91| 日韩大尺度精品在线看网址 | 91老司机精品| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 国产日韩一区二区三区精品不卡| 国产主播在线观看一区二区| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| bbb黄色大片| 亚洲专区国产一区二区| 国产成人精品无人区| 中文字幕av电影在线播放| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 黄色 视频免费看| 一级片免费观看大全| 久久久久久久久中文| 一进一出好大好爽视频| 老司机福利观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 国产乱人伦免费视频| videosex国产| 欧美一级a爱片免费观看看 | 精品国产一区二区三区四区第35| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸| 两个人视频免费观看高清| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 日本黄色视频三级网站网址| 视频在线观看一区二区三区| 老司机在亚洲福利影院| 两个人视频免费观看高清| 丝袜美足系列| 99热只有精品国产| 久久午夜综合久久蜜桃| 国产在线观看jvid| 性少妇av在线| 亚洲av成人不卡在线观看播放网| 麻豆国产av国片精品| 久热爱精品视频在线9| 黄频高清免费视频| 91九色精品人成在线观看| 99国产精品免费福利视频| 免费在线观看亚洲国产| 97碰自拍视频| 波多野结衣一区麻豆| 欧美日韩精品网址| 日日干狠狠操夜夜爽| 91老司机精品| 欧美日本亚洲视频在线播放| 美女高潮到喷水免费观看| 一边摸一边抽搐一进一小说| 真人做人爱边吃奶动态| av在线播放免费不卡| 午夜精品久久久久久毛片777| 亚洲精品av麻豆狂野| 日本五十路高清| 日韩av在线大香蕉| 91老司机精品| 好男人电影高清在线观看| 极品教师在线免费播放| 欧美日本视频| 国产成人精品在线电影| 国产成人精品久久二区二区免费| 深夜精品福利| 人人澡人人妻人| 久久精品aⅴ一区二区三区四区| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 午夜免费激情av| 777久久人妻少妇嫩草av网站| 亚洲av第一区精品v没综合| 咕卡用的链子| 国产精品自产拍在线观看55亚洲| 丝袜美足系列| 日韩视频一区二区在线观看| 在线国产一区二区在线| 久久久国产精品麻豆| 免费在线观看日本一区| 91精品三级在线观看| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 欧美一级毛片孕妇| 一a级毛片在线观看| 成年女人毛片免费观看观看9| 国产精品久久久久久亚洲av鲁大| 免费在线观看亚洲国产| 人人妻人人澡欧美一区二区 | 一级a爱片免费观看的视频| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 国产国语露脸激情在线看| 不卡一级毛片| 亚洲色图 男人天堂 中文字幕| 女同久久另类99精品国产91| 桃红色精品国产亚洲av| 在线观看www视频免费| a在线观看视频网站| 一级黄色大片毛片| 久久精品成人免费网站| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片 | 老熟妇仑乱视频hdxx| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 国产精品影院久久| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 在线观看日韩欧美| 日韩免费av在线播放| 久久香蕉激情| 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 亚洲精品中文字幕在线视频| av福利片在线| 亚洲精品在线观看二区| 久久久久久亚洲精品国产蜜桃av| 丁香欧美五月| 亚洲国产中文字幕在线视频| 久久婷婷人人爽人人干人人爱 | 国产三级黄色录像| 波多野结衣巨乳人妻| 久久久久久久午夜电影| 在线观看舔阴道视频| 黑丝袜美女国产一区| 日日夜夜操网爽| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 欧美不卡视频在线免费观看 | 丝袜美腿诱惑在线| 99国产精品一区二区三区| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| av超薄肉色丝袜交足视频| 亚洲欧美精品综合一区二区三区| 欧美成人一区二区免费高清观看 | 可以在线观看的亚洲视频| 12—13女人毛片做爰片一| av福利片在线| 国产av在哪里看| 很黄的视频免费| 最好的美女福利视频网| 精品日产1卡2卡| 亚洲精品久久成人aⅴ小说| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 亚洲视频免费观看视频| 国产在线精品亚洲第一网站| 亚洲精品美女久久av网站| 99精品在免费线老司机午夜| 亚洲狠狠婷婷综合久久图片| 精品国产国语对白av| 国产精品精品国产色婷婷| 欧美日本视频| 男女下面插进去视频免费观看| 精品福利观看| 青草久久国产| 18禁观看日本| 亚洲成国产人片在线观看| 欧美在线黄色| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 真人做人爱边吃奶动态| 欧美日韩乱码在线| av免费在线观看网站| 桃红色精品国产亚洲av| 日本免费一区二区三区高清不卡 | 国产主播在线观看一区二区| 9色porny在线观看| 国产亚洲欧美在线一区二区| 国产熟女xx| 日本免费a在线| 日韩精品中文字幕看吧| 久久久久九九精品影院| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 欧美日本亚洲视频在线播放| 国产激情久久老熟女| 在线永久观看黄色视频| 精品国产乱子伦一区二区三区| 久久久久久国产a免费观看| 咕卡用的链子| 亚洲黑人精品在线| 亚洲精品在线美女| 亚洲人成伊人成综合网2020| 日韩 欧美 亚洲 中文字幕| 欧美中文综合在线视频| 亚洲av美国av| 精品久久久久久久人妻蜜臀av | 精品久久久久久久人妻蜜臀av | 真人做人爱边吃奶动态| 一夜夜www| 一二三四在线观看免费中文在| 久久久久国内视频| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 黄色女人牲交| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 国产精品乱码一区二三区的特点 | 一进一出抽搐gif免费好疼| 极品人妻少妇av视频| 国产精品亚洲一级av第二区| 香蕉国产在线看| 国产精品综合久久久久久久免费 | 一区二区三区高清视频在线| 亚洲免费av在线视频| 男人舔女人下体高潮全视频| 黄片播放在线免费| 亚洲性夜色夜夜综合| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 欧美+亚洲+日韩+国产| 欧美丝袜亚洲另类 | 丁香六月欧美| 日韩视频一区二区在线观看| 国语自产精品视频在线第100页| 一本久久中文字幕| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 亚洲av美国av| 欧美乱码精品一区二区三区| 亚洲精华国产精华精| 老司机靠b影院| 夜夜夜夜夜久久久久| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 亚洲熟妇中文字幕五十中出| 国产精品一区二区免费欧美| 欧美黑人精品巨大| 色综合欧美亚洲国产小说| 乱人伦中国视频| www.www免费av| 亚洲中文字幕日韩| 一本久久中文字幕| 黄网站色视频无遮挡免费观看| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 国产极品粉嫩免费观看在线| 亚洲伊人色综图| 狂野欧美激情性xxxx| 亚洲国产精品999在线| 国产成人欧美在线观看| 免费少妇av软件| 美女扒开内裤让男人捅视频| 日韩成人在线观看一区二区三区| 又大又爽又粗| 国产精品99久久99久久久不卡| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站 | 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 99国产极品粉嫩在线观看| 免费不卡黄色视频| 国产精品影院久久| 18禁黄网站禁片午夜丰满| 变态另类成人亚洲欧美熟女 | 一本综合久久免费| 99国产精品一区二区蜜桃av| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 欧美激情久久久久久爽电影 | 精品第一国产精品| 美女午夜性视频免费| 十分钟在线观看高清视频www| 悠悠久久av| 欧美乱妇无乱码| 日韩中文字幕欧美一区二区| 丝袜人妻中文字幕| 女同久久另类99精品国产91| 午夜免费激情av| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 男人舔女人下体高潮全视频| 人妻久久中文字幕网| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 免费无遮挡裸体视频| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色 | 色哟哟哟哟哟哟| 午夜老司机福利片| 亚洲欧美日韩无卡精品| 50天的宝宝边吃奶边哭怎么回事| 中文字幕另类日韩欧美亚洲嫩草| 妹子高潮喷水视频| 狂野欧美激情性xxxx| 99国产精品免费福利视频| 欧美精品啪啪一区二区三区| av福利片在线| 两个人免费观看高清视频| 色综合婷婷激情| 免费看十八禁软件| 男女午夜视频在线观看| 91老司机精品| 高清黄色对白视频在线免费看| 久久婷婷成人综合色麻豆| 人妻久久中文字幕网| 女生性感内裤真人,穿戴方法视频| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| avwww免费| 男男h啪啪无遮挡| 久久精品成人免费网站| 色在线成人网| 精品国产乱子伦一区二区三区| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| 免费高清在线观看日韩| 激情视频va一区二区三区| 亚洲第一欧美日韩一区二区三区| 日韩三级视频一区二区三区| 国语自产精品视频在线第100页| 国产麻豆69| 精品乱码久久久久久99久播| 成人永久免费在线观看视频| 欧美色视频一区免费| 国产真人三级小视频在线观看| 国产1区2区3区精品| 欧美成人一区二区免费高清观看 | 国产精品一区二区在线不卡| 欧美日韩乱码在线| 久久久久久人人人人人| 成人18禁在线播放| 香蕉丝袜av| 成人av一区二区三区在线看| 欧美国产日韩亚洲一区| 欧美日韩亚洲综合一区二区三区_| 国产99白浆流出| 亚洲精品国产一区二区精华液| 久久久国产精品麻豆| 黄网站色视频无遮挡免费观看| 亚洲欧美精品综合久久99| 国产黄a三级三级三级人| 在线观看66精品国产| 国产精品亚洲av一区麻豆| 在线天堂中文资源库| 少妇 在线观看| 欧美中文日本在线观看视频| 亚洲精品国产精品久久久不卡| 国产精品99久久99久久久不卡| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 亚洲色图av天堂| 桃色一区二区三区在线观看| 天堂√8在线中文| 欧美 亚洲 国产 日韩一| 女警被强在线播放| 日韩欧美三级三区| 成人国产综合亚洲| 老司机午夜十八禁免费视频| 欧美黑人欧美精品刺激| 欧美日韩精品网址| 最新在线观看一区二区三区| 老汉色av国产亚洲站长工具| 在线观看66精品国产| 精品久久蜜臀av无| 亚洲无线在线观看| 夜夜看夜夜爽夜夜摸| 欧美另类亚洲清纯唯美| av在线天堂中文字幕|