• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric decay instabilities of lower hybrid waves on CFETR

    2022-09-24 08:00:32TaotaoZhou周濤濤NongXiang項農(nóng)ChunyunGan甘春蕓GuozhangJia賈國章andJialeChen陳佳樂
    Chinese Physics B 2022年9期
    關(guān)鍵詞:傳統(tǒng)觀念拓寬礦山

    Taotao Zhou(周濤濤) Nong Xiang(項農(nóng)) Chunyun Gan(甘春蕓)Guozhang Jia(賈國章) and Jiale Chen(陳佳樂)

    1Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Centre of Magnetic Fusion Theory,Chinese Academy of Sciences,Hefei 230031,China

    Keywords: lower hybrid,parametric instability,CFETR

    1. Introduction

    In order to maintain the steady-state operation in a tokamak,a substantial net toroidal plasma current is required.[1,2]Besides the bootstrap current, additional currents should be driven for the flexible control of the current profile.[3]The lower hybrid current drive (LHCD) system has been widely adopted in tokamak due to its high efficiency since the first successful demonstration in the PLT tokamak.[4]Recently,it also became a candidate for sustaining plasma current in operation scenarios of China Fusion Engineering Test Reactor (CFETR), a future bridging device between ITER and DEMO.[5,6]However,in some pioneering LHCD experiments with high densities(ne>0.8×1020m-3),sudden loss of fast electrons and current drive efficiency was detected,[7-9]which may also happen on CFETR with higher densities. The phenomenon results from the power depletion at the plasma edge induced by the nonlinear effects of the injected lower-hybrid(LH)wave.[10]One of the most promising mechanisms is the parameter instability(PI).[11]

    The PI process describes that a pump wave delivers its energy to two child waves when the pump power exceeds its nonlinear threshold.[10]It has been widely studied since 1970s when it was used to explain the power coupling failure in the LH heating experiments.[12-15]By solving the Vlasov equation under a dipole electric field approximation near the LH frequency, the nonlinear dispersion relation describing the PI process was first established by Porkolab.[16]Based on the results of the dispersion relation and other contemporaneous approaches, various possible decay channels were discussed in different parameter limits.[17]For the LHCD experiments in tokamaks, only two of the decay channels are found to be important.[11]One refers to the child-mode combination of a low-frequency ion cyclotron quasi-mode (ICQM) and an LH sideband with a small frequency shift. It is a possible reason for the observed non-monotonic envelope in the frequency spectra.[18,19]The other is the combination of an ion sound quasi-mode (ISQM) and an LH sideband, which causes the frequency broadening.[10]In the critical work of Cesarioet al.,[20]the ISQM-type PI was also found to be able to affect the LH deposition process through the spectral broadening on the parallel refractive indexn‖.

    Since an increased temperature or a decreased density was found to be able to reduce PIs of the two decay channels,[21,22]inspiring progress has been made in recovering the LHCD efficiency by mitigating PI in recent high-density experiments. Frascati Tokamak Upgrade (FTU) is the first tokamak achieving high-efficiency LHCD in a line-averaged density of 1.5×1020m-3with PIs suppressed through increasing the edgeTe.[23]In EAST,the LHCD efficiency is recovered by decreasing edge density with strong wall lithiation.[24]In experiments of Alactor-C Mod, efficient LHCD was realized with reduced density shoulders.[25,26]

    Fig. 1. The ne-Te distribution of SOL plasma in Alactor-C Mod,[25]CFETR,[28] DEMO,[27] EAST,[30] FTU,[23] ITER,[27] and JET.[29]These SOL ne-Te lines start from the antenna grill and end up at their own separatrix.

    To learn the nature of PI in CFETR or other situations with unforeseen parameter sets, understanding the parameter dependence is crucial. Besides a lowerneand a higherTe, a lower PI has also been found to be related to a higher magnetic fieldB0, a higher pump frequencyω0, and a higher ion mass based on numerical parameter scanning.[21,22]However,it is still hard to apply the existing conclusion to CFETR as the change of the parameter regime can also affect the parameter dependence. For example,the ICQM growth rate for JET-like parameters increases linearly withne,[22,31]while for FT parameters it increases withneat a weakening speed.[11]For the density range in the edge regions of JET, EAST and C-Mod, the ISQM growth rate decreases withneat low densities (<2.0×1018m-3) but increases at high densities.[22]As for the dependence onn‖of the child mode, the growth rate increases withn‖at a low density (2.5×1017m-3), but decreases at a high density (1.0×1018m-3).[29]Therefore,analytical analysis is required for determining the division of parameter regimes. As will be seen in this paper, a key parameter dividing the regimes will be found by analyzing the dispersion relation of the low-frequency mode. The characteristic of each regime will be studied, as well as some possible new decay channels and parameter dependence.

    The rest of the paper is organized as follows. The nonlinear dispersion relation we solved is introduced in Section 2.In Section 3,the PI decay channels and parameter dependence in different parameter limits are discussed by analyzing the PI growth rates, while the numerical solutions are also given to verify the validity. In Section 4, the analytical formula is further applied to investigate the PIs on CFETR. Finally, the summary is presented in Section 5.

    2. Physical model

    The widely used nonlinear dispersion relation,derived by Porkolab in the electrostatic framework with full-kinetic ions and drift-kinetic electrons,[16,18]is applied in this paper to describe the PI process of an LH pump. Here, a homogeneous and collisionless plasma is considered with a magnetic fieldB0in thezdirection of Cartesian coordinates. For simplicity, the density and temperature of ions and electrons can be assumed to be the same (ni?ne,Ti?Te). An LH eigenmode (ω0,k0) with a high amplitude electric fieldE0oscillates in the plasma as the pump wave,whereω0is the angular frequency andk0is the wave number. The pump wave decays into a low-frequency mode (ω,k) and an LH sideband(ω1,k1)or(ω2,k2),where the selection rulesω1,2=ω ?ω0,k1,2=k ?k0are satisfied. When the LH sideband(ω1,k1)is resonant, the sideband(ω2,k2)becomes non-resonant and its contribution is negligible as compared to the resonant one.[32]The dispersion relation based on the above assumptions takes the form

    Here,εis the linear dispersion relation of the low-frequency mode and takes the form

    withωcebeing the electron cyclotron frequency.

    The coupling coefficientα1corresponds to the pumpsideband quasi-linear coupling, whileα3andβ3denote the quasi-linear and nonlinear coupling,respectively,between the pump and low-frequency mode.[17,31]These coefficients are

    3. PI in different parameter regimes

    3.1. Key parameter determining the characteristics of PI

    The left and right exponential terms in the square bracket correspond to ISQM withωr≈kzvtiand ICQM withωr≈ωci+kzvti, respectively. Here, the ISQM term is in the order of 1, and the ICQM term is in the order ofλi, suggesting that the ISQM is much stronger than ICQM in this limit.

    由于受到傳統(tǒng)觀念的影響,以往在進(jìn)行礦山資源的開采時本著“先開發(fā)、后治理”的原則,久而久之,造成了礦山地質(zhì)環(huán)境的嚴(yán)重惡化。為了改變這一現(xiàn)狀,需要加強對礦山地質(zhì)環(huán)境保護與治理工作的研究,不斷完善監(jiān)測方案,積極拓寬資金渠道,針對地質(zhì)環(huán)境破壞狀況采取可行、合理的綜合性保護與治理措施。

    Forλi≥1,the Im(κi)can be derived using the expression ofκifrom Brambilla,[34]

    Fig. 2. Normalized numerical growth rate γ/ω0 (black solid lines) versus the normalized real frequency of the low frequency mode ωr/ωci with typical parameter sets for different λi limits: (a)λi=0.024;(b)λi=0.99,kzρi=0.26;(c)λi=8.0,kzρi=0.6. The blue dashed line in(c)notes the peak location derived from Eq.(15).

    To understand these expressions in different limits ofλimore intuitively,especially the unclear decay channel implied by Eq. (15), numerical studies are also performed by solving Eq. (1). The detailed solving process for accessing the numerical PI growth rates in this paper follows Ref. [22]. Figure 2 shows theωrspectra of the numerical PI growth rates under three differentλilimits. For the case ofλi?1 shown by Fig. 2(a), two unstable regions are found. They locate atωr?ωciandωr≈ωci, which obviously correspond to the ISQM and ICQM, respectively. ISQM here is much stronger than ICQM.In Fig.2(b)(λi~1),up to 4 unstable modes are found, which are actually ISQM and ICQM harmonics. ICQMs here are much stronger than ISQM. In Fig. 2(c), whenλi?1 andkzρiapproaches 1, the ICQM harmonics can be still observed from the peaks nearωr≈nωci. Compared with Fig.2(b),these ICQMs overlap seriously,and look rather like a single peak with maximum value atωr=kvti.In this sense,the decay channel seems to be a special form of the ICQMs. From the analysis of Eqs. (14) and (15), it should also be noticed that the ion damping has changed from the cyclotron damping to the Landau damping during the overlapping. Therefore,we should regard the peak as a new decay channel driven by the nonlinear ion Landau damping(NILD)rather than the simple overlapping of the ICQMs.

    wherepB=B20/2μ0is the magnetic pressure(μ0is the permeability of the free space).

    Essentially,it is the plasma pressurepdetermining the PI decay channels,andpwill be the key parameter in the following discussion on PI parameter dependence. To give a clear division of different pressure regimes, a critical pressurepcritis defined usingλi=1,and

    The dependence on pressure can then be concluded as follows.Whenp ?pcrit, it is the low-pressure regime and there are only ISQM and fundamental ICQM.Whenp ?pcrit,it is the high-pressure regime and the NILD decay channel takes effect. For the intermediate regime, i.e.,p~pcrit, decay channels of multiple ICQM harmonics are found.

    3.2. Low-pressure regime

    As mentioned in the last subsection, ISQM and fundamental ICQM are the main decay channels of this regime. By substituting the corresponding characteristic real frequencies(ωr=kzvtifor ISQM,ωr=ωci+kzvtifor ICQM)into Eqs.(10)and(13),we can obtain the analytical growth rates of the two decay channels. For clarity and direct use,they are written in explicit forms with respect to the parameters.

    The terms in the first bracket of Eqs. (18) and (19) result from the susceptibility terms,which depend heavily on the pressure. According to Eq. (18), a higher pressure can stabilize ISQM.SinceFin Eq.(19)is an increasing function with respect top/pcrit, higher pressure may lead to higher ICQM growth rate. In the low-pressure limit,clear parameter dependence can be obtained by rewriting Eqs. (18) and (19) to the lowest order ofp/pcrit.

    Fig.3. The trends of ISQM and ICQM growth rates(purple dashed lines)on ne[(a),(c)]and Te[(b),(d)]predicted by Eqs.(20)and(21). Here p/pcrit is in the range of 0.01-0.2, a typical value for the low-pressure regime. In(a)and(c), the ^ne is the normalized to the critical densityB0ω0 to show whether the range is in the low density or high density limit. Here, the effects of both density limits are included since ^ne is 0.15-1.8. As verification, the corresponding numerical parameter dependence of ISQM and ICQM growth rates (black solid lines) is also plotted. For better comparison,the constants of the analytical lines(C in the legends)are chosen as the mean values of the numerical lines.

    In a qualitative aspect, the dependence in this regime agrees well with the published works.[21,22]Quantitatively,the present results can additionally show the sensitivities to the parameter through their powers in the equations. For example,ISQM is more sensitive toTethan ICQM in both density limits. In the high density limit,ISQM also increases withne,but with a rather slower speed than ICQM.

    In Fig. 3, the dependence of growth rates predicted by Eqs. (20) and (21) onneandTeare plotted, together with the corresponding numerical growth rates as verification. The numerical growth rate of a decay channel indicates the peak growth rate of the corresponding unstable region similar to that shown in Fig.2. Consequently,most of the numerical growth rates agree with the analytical trends. In Fig.3(a),the analytical trend of ISQM grows slightly slower than the numerical growth rate because the finite effect of the term 1-1.89p/pcritin Eq.(18)not included.

    3.3. High-pressure regime

    In the high density regime,only the NILD decay channel can be found. As illustrated in Eq.(13),the ion susceptibility here is independent ofp/pcrit. The characteristic frequency of NILD isωr=1.17kzvti, where susceptibility term reaches its maximum value. Therefore, the growth rate of NILD can be derived as

    The expression can also be used for quick estimation on growth rate like Eqs. (18) and (19). In the high density limit for the high pressure,the parameter dependence is

    It can be easily seen that the parameter dependence of NILD is the same as the ISQM in the low-pressure limit, because both of their susceptibility terms are almost irrelevant to the ion cyclotron motion and then contribute nothing to the dependence. For ISQM,only the ion motion parallel toB0is considered.For NILD,the ions move approximately in a straight line within a wavelength of the low-frequency mode as it is much shorter than the Larmor radius.

    Fig.4. Similar to Fig.3,the analytical trends(purple dashed lines)on ne and Te predicted by Eqs.(27)and(28),compared with the corresponding numerical NILD growth rates(black lines).Here,p/pcrit is in the range of 6-20;kzρi is in the range of 0.6-1.9,typical for the high-pressure regime. [(a),(b)]Dependence on ne in the low and high density limits,respectively. (c)Dependence on Te.

    For the high-pressure regime, the trend predictions from Eqs. (27) and (28) are also compared with the numerical parameter dependence in Fig. 4. It can be seen that the trends agree with the numerical results,except for some subtle jitters on the numerical lines in Fig.4(c). The jitters are attributed to insufficient overlapping of the ICQM harmonics as shown by Fig.2(c). They will vanish whenTefurther rises.

    3.4. Intermediate regime

    The dependences onneandB0shown in Eq. (30) are quite different from the present knowledge. Under the effect ofE0zcoupling term, an increasingneor a decreasingB0no longer strengthens the growth rates of the ICQMs but decreases them instead. Actually, such a trend holds in a very finite parameter range. As the density increases further, the effect of theE0⊥×B0term will take in charge,and the dependences onneandB0are then recovered as described by Eq.(31).

    Fig. 5. The susceptibility term Imversus λi. Here, κi is in a complete form of Eq.(12),kzρi is fixed at a typical value of 0.3.

    Fig.6. Similar to Fig.3, the analytical trends of ICQM and its secondary harmonic(ICQM2)predicted by the middle parts of Eqs.(30)and(31)are shown as purple dashed lines,while the relevant numerical growth rates are shown as black solid lines for comparison. All the scans are performed around p/pcrit =1 for ICQM, and p/pcrit =2 for ICQM2, referring to the parameter range of the intermediate regime. The positions with the critical pressure pcrit (2pcrit for ICQM2) are labeled with blue dot-dashed lines. The dependence on ne in the low density limit is shown in(a)and(d),while in the high density limit shown in(b)and(e). [(c),(f)]The trends on Te.

    Table 1. Summary of the parameter dependence of PI growth rates in different density limits and pressure regimes.

    In the next section, the theory is applied in PI estimation for the typical profile of CFETR hybrid scenario. The radial profile will be divided into regimes representing different dominant decay channels and parameter dependence. To observe the validity of the analytical descriptions, numerical growth rates will also be calculated by scanning with pointby-point parameters.

    4. PIs in the hybrid scenario of CFETR

    4.1. Division of pressure regimes on the CFETR profile

    Here,a typical set of CFETR edge parameters is studied.The density and temperature distributions along the radial direction are shown in Fig.7(a). These data are extracted from a set of typical CFETR edge data for the hybrid scenario,which is provided by Chenet al.[28]The toroidal magnetic field at the plasma core isBt=6.5 T, and the magnetic field at the lowfield-side edge is around 5 T.As for the ions,pure deuterium gas is used for the numerical setup(mi/me=3672). Following the last section, the density and temperature of ions are assumed the same as electrons. A 4.6 GHz 10 MW LH pump is injected into the plasma with a nominaln0zat 1.7.[36]The antenna cross section is set perpendicular to the radial axis. Its areaSis assumed to be 1 m2.

    Fig.7. (a)The plasma density(blue solid line)and temperature(green dashed line)distribution near the separatrix at the outer mid-plane. The radial position xs is the distance from the separatrix. Negative values of xs are inside the separatrix. (b)The radial profile of the normalized pressure p/pcrit and the division of the pressure regimes.The green area is the low-pressure regime,while the yellow area refers to the intermediate regime and the red area is the high-pressure regime. The blue dot-dashed line corresponds to the critical pressure. The red dashed line marks where the values of E0⊥×B0 term and E0z term are equal,ne=B0ω0,and neither of them could be neglected in the vicinity.

    Considering a smooth convective growth in the inhomogeneous plasma,[29,37]the parallel refractive index of the sidebandn1zis chosen as a low value of 3. Then in Fig.7(b),the corresponding pressure distribution of CFETR in shown. It can be seen that the critical pressure locates just near the separatrix. Hence, the outer part of the SOL corresponds to the low-pressure regime. The region ofxs=-1~3 cm belongs to the intermediate regime,while the high-pressure regime distributes inside the separatrix.

    Fig.9. The growth rates versus xs,showing the comparison between the numerical growth rates extracted from Fig.8 and the corresponding analytical approximations. (a)Comparison between the numerical ISQM growth rate and Eq.(18). (b)Numerical ICQM growth rate compared with Eq.(19). (c)Numerical NILD growth rate compared with Eq.(26).

    4.2. Growth rates as functions of radial positions

    In Fig.8, numerical growth rates of various decay channels are shown as a function ofxs. We can see that from the outside of the separatrix to the inside of the separatrix, the most unstable decay channel changes in the order of ISQM,ICQM,ICQM2,and finally NILD.ISQM is the strongest decay channel at the far edge ofxs>4.5 cm, while ICQM dominates at most parts of the SOL (xs=0~4.5 cm). The ICQM2 dominates within a centimeter inside the separatrix(xs=-1~0 cm),and NILD becomes the major decay channel atxs=-4~-1 cm. The radial distributions of the dominant decay channels agree with the division of the parameter regimes shown in Fig. 7(b). Among the shown decay channels, the ICQM has the maximum growth rate near the position where thepcritlocates. The maximum growth rate is 1.6×10-3ω0,which is a value slightly lower than the growth rates found in conventional tokamaks,[24,25,29]implying that comparable PI can also be found in a CFETR-like plasma edge.

    Fig. 8. The distribution of the numerical growth rates on the radial profile for different decay channels, including ISQM(black dot-dash),ICQM (blue solid), ICQM2 (brown dot-dash) and NILD (red-solid).The growth rate of a decay channel is the maximum growth rate scanning the vicinity of the characteristic frequency.

    Notice that Eqs. (18), (19) and (26) are explicit expressions of growth rates,which can be used for PI estimation by directly substituting the parameters. In Fig.9, the applicability of these equations are checked by comparing their results on the profile with the numerical ones which have been shown in Fig. 8. In Figs. 9(a) and 9(b), the analytical growth rates of ISQM and ICQM in the low-pressure regime are checked.It can be found that Eqs. (18) and (19) agree well with the numerical black line atxs>3 cm, and fail whenxsis lower than 3 cm. Similarly, in Fig. 9(c), the NILD growth rate in the high-pressure regime is checked. It is almost valid at-4 cm<xs<-1 cm,and fails elsewhere. The disagreement atxs<-4 cm is attributed to electron absorption in highTe,which is not included in the analytical growth rates.

    4.3. Effects of Nz,B0,and ω0

    Fig.10. The division of the parameter regimes and the corresponding numerical growth rates affected by[(a),(d)]a higher N1z at 6,[(b),(e)]a higher B0 at 9 T and[(c),(f)]a higher ω0 at 8 GHz. Parameters used here are the same as those in Fig.7 except the changed one. The gray zones found in(a)refer to stable regions where the sidebands are strongly damped by electrons.

    In Figs.10(d)-10(f),the radial distribution of the numerical growth rates is plotted correspondingly. The distribution of dominant decay channels almost follows the division of parameter regime shown in Figs. 10(a)-10(c). Furthermore,comparing the numerical results in Fig. 10 with the original results in Fig. 8, we can see that the change in the numerical growth rates also follows the analytical predictions. Since the ISQM growth rate in the low-pressure regime can hardly be affected by neitherNzandB0norω0, their results in all subfigures are almost unchanged. According to Eq. (21), ICQM growth rate in the low-pressure regime increases withNzand decreases withB0andω0. Correspondingly, it is stronger in Fig.10(d)and stabilized in Figs.10(e)and 10(f).

    5. Discussion and conclusions

    PI is a ubiquitous phenomenon found in LHCD process near plasma edge with low electron temperature. For a reactor level tokamak like CFETR, the onset of PI may be a serious issue affecting the LHCD efficiency as it has higher edge densities and higher pump LH power. In this paper,the nonlinear dispersion relation is analytically and numerically solved to understand the PI effects in CFETR and in further wide parameter ranges.

    By analyzing the susceptibility terms of the PI growth rate, the pressure is found to be an important parameter determining the PI decay channels. In the low-pressure regime,ISQM is the dominant decay channel. It decreases rapidly with pressure and is eventually overtaken by the ICQM and its harmonics in the intermediate regime. In the high-pressure regime,only NILD decay channel is found.

    Explicit forms of PI parameter dependence in each pressure regime are obtained by further analysis, which has been summarized in Table 1. The parameter dependence found in the low-pressure regime shows a good agreement with the published work.[21,22]In the intermediate regime,ICQMs display a quite different dependence from that in the low pressure due to the cyclotron motion of ions. For example, they may stop from increasing withneand even decrease if the density is low enough. In the high-pressure regime,where the perpendicular ion orbit is almost a straight line just like the parallel motion,the parameter dependence recovers to the same as ISQM.

    PIs in CFETR are investigated by applying the above analytical results to a typical set of parameters of the hybrid scenario. Numerical calculations are also performed to verify and replenish the analytical conclusions. Along such anne-Tecoupled profile,all the three pressure regimes are found successively. The ISQM-dominant low-pressure regime occupies the outer half of SOL, while the inner half of SOL and the separatrix belong to the intermediate regime. The highpressure regime occupies the region several centimeters inside the separatrix. As a result, the fundamental ICQM in the intermediate regime is the most unstable PI decay channel of the profile, with a maximum growth rate comparable to the maximum growth rates in conventional tokamaks. Increasing parameters likeB0orω0can help reduce the dominant ICQMtype PI and the low growth rate of NILD,but has little effect on ISQM-type PI.

    Through this work, the present understanding of PI parameter dependence is rearranged in the clue of pressure. For investigating PI in a certain position, we can now understand its decay channel and parameter dependence just by determining which pressure regime it locates.Sensitivities of parameter dependence are now clarified through the analytical expressions. For example,in the past,we only knew that the PI decays with an increasingTe. Now we realize that for ICQM,the growth rate decays fastest withTein the intermediate regime and slowest in the low-pressure regime. This work also shows some situations with unforeseen parameter dependence. For instance, if the density of the intermediate regime is sufficiently low, the ICQM growth rate may stop from increasing withneand even decrease.

    It should be noticed that the additional effects on sidebands such as plasma inhomogeneity and finite pump width may strongly limit the growth of sideband with highN1zor aδ1nearπ/2, whereδ1is the angle betweenk0⊥andk1⊥.[37,38]These effects are not considered here because this paper mainly focuses on the analysis of the PI growth rate.Since a rather traditional version of PI model is used for the simplicity of the analysis, effects mentioned in the recent PI models such as collision and electromagnetic pumps could not be included.[39,40]The former can inhibit PIs near the antenna mouth, while the latter reduces PIs at high densities. In the future,more efforts on these issues will be made to refine the present results.

    Appendix A:Derivation to an explicit form of the PI growth rate

    To give an explicit form ofγNL, the coefficients ofμ1,shown as Eqs.(7)-(9),aresimplifiedto

    To make the parameter dependence ofγNLmore clear,we transform the pump potentialφ0into a realistic parameter such as the pump powerP0. The relation between them is approximately

    where the angleδ1has been set asπ/2 to seek the maximum growth rate.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0300406 and 2019YFE00308050) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12175274,12005258, and 11705236). We sincerely appreciate the data support from the CFETR physics team.

    猜你喜歡
    傳統(tǒng)觀念拓寬礦山
    小小羊肚菌 拓寬致富路
    城市道路拓寬改造設(shè)計探討
    四大“礦山修復(fù)”方法
    在礦山里耕耘(國畫)
    神劍(2021年3期)2021-08-14 02:30:08
    智能化礦山建設(shè)在中小型礦山的應(yīng)用探討
    昆鋼科技(2021年2期)2021-07-22 07:47:06
    我國礦企海外十大礦山簡介
    我省拓寬企業(yè)“混改”——不搞“一刀切”、不搞“拉郎配”
    傳統(tǒng)觀念與民法結(jié)構(gòu):再論中國古代民法的價值
    法制博覽(2017年1期)2017-02-14 14:31:03
    電視廣告中女性模式化形象分析
    改變傳統(tǒng)教學(xué)觀念 培養(yǎng)數(shù)學(xué)閱讀能力
    東方教育(2016年6期)2017-01-16 22:35:10
    美国免费a级毛片| 我要看黄色一级片免费的| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久| 人人妻,人人澡人人爽秒播 | 男女之事视频高清在线观看 | 99久久人妻综合| 欧美另类一区| 亚洲精品美女久久久久99蜜臀 | 久久人妻熟女aⅴ| 亚洲第一av免费看| 高清欧美精品videossex| 黄片播放在线免费| 观看av在线不卡| 久久久久久久久久久久大奶| 九草在线视频观看| 午夜福利,免费看| 成年av动漫网址| 精品福利观看| 国产成人精品久久二区二区免费| 黑人猛操日本美女一级片| 国产成人免费观看mmmm| 欧美日韩一级在线毛片| 最近中文字幕2019免费版| 免费在线观看完整版高清| 乱人伦中国视频| 精品亚洲乱码少妇综合久久| 一二三四在线观看免费中文在| 咕卡用的链子| 国产成人av激情在线播放| 国产激情久久老熟女| 各种免费的搞黄视频| 亚洲av日韩在线播放| 精品国产一区二区三区久久久樱花| 岛国毛片在线播放| 国产精品国产av在线观看| 日韩电影二区| 欧美 日韩 精品 国产| www日本在线高清视频| 亚洲成人手机| 黑人欧美特级aaaaaa片| 精品久久蜜臀av无| 两人在一起打扑克的视频| 视频在线观看一区二区三区| 丝袜美腿诱惑在线| 熟女av电影| 精品人妻在线不人妻| 十八禁高潮呻吟视频| 999久久久国产精品视频| 久久久久网色| 亚洲 欧美一区二区三区| av网站在线播放免费| 欧美黄色淫秽网站| 日本午夜av视频| 免费人妻精品一区二区三区视频| 黄色视频不卡| 99国产精品一区二区蜜桃av | 亚洲中文字幕日韩| 丝袜美足系列| 亚洲色图综合在线观看| 伦理电影免费视频| av一本久久久久| 国产精品人妻久久久影院| 久久性视频一级片| 欧美xxⅹ黑人| 国产精品香港三级国产av潘金莲 | 男人操女人黄网站| 色精品久久人妻99蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩精品亚洲av| 久久天堂一区二区三区四区| 亚洲视频免费观看视频| 国产不卡av网站在线观看| 亚洲人成网站在线观看播放| 精品人妻1区二区| 精品亚洲乱码少妇综合久久| 亚洲专区中文字幕在线| 伊人久久大香线蕉亚洲五| 成人国产一区最新在线观看 | 欧美在线一区亚洲| 亚洲av日韩在线播放| 国产av精品麻豆| 国产精品一区二区在线观看99| 国产高清不卡午夜福利| 午夜福利一区二区在线看| 一区二区日韩欧美中文字幕| h视频一区二区三区| 欧美97在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠躁躁| 欧美+亚洲+日韩+国产| 成年av动漫网址| 亚洲欧美色中文字幕在线| 久久久精品免费免费高清| 人妻一区二区av| www.999成人在线观看| videosex国产| 大陆偷拍与自拍| 国产精品一区二区在线观看99| 深夜精品福利| 亚洲成色77777| 亚洲一码二码三码区别大吗| 丝袜人妻中文字幕| 国产色视频综合| 少妇的丰满在线观看| av天堂久久9| 国产精品一区二区在线不卡| 校园人妻丝袜中文字幕| 啦啦啦中文免费视频观看日本| 国产1区2区3区精品| 2021少妇久久久久久久久久久| 亚洲欧美清纯卡通| 亚洲一区中文字幕在线| 久久久久国产精品人妻一区二区| 亚洲av综合色区一区| 悠悠久久av| 在线观看人妻少妇| 久久精品aⅴ一区二区三区四区| 91精品三级在线观看| 亚洲人成77777在线视频| 一本一本久久a久久精品综合妖精| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 一级,二级,三级黄色视频| 日韩av不卡免费在线播放| 欧美人与性动交α欧美精品济南到| 国产一区二区在线观看av| 又粗又硬又长又爽又黄的视频| 欧美久久黑人一区二区| 精品国产国语对白av| 97精品久久久久久久久久精品| 精品亚洲乱码少妇综合久久| 久热这里只有精品99| 波野结衣二区三区在线| 亚洲欧美一区二区三区黑人| 婷婷色麻豆天堂久久| 18禁黄网站禁片午夜丰满| 女人精品久久久久毛片| 国产精品一区二区免费欧美 | 丰满人妻熟妇乱又伦精品不卡| 少妇猛男粗大的猛烈进出视频| 九色亚洲精品在线播放| av天堂在线播放| 欧美日本中文国产一区发布| 一级片免费观看大全| 精品一区二区三区四区五区乱码 | 我的亚洲天堂| 女人爽到高潮嗷嗷叫在线视频| 国产日韩欧美视频二区| 妹子高潮喷水视频| 国产日韩欧美亚洲二区| 在线观看免费视频网站a站| 亚洲精品美女久久av网站| 老司机影院成人| 99九九在线精品视频| 国产精品99久久99久久久不卡| 国产高清视频在线播放一区 | 免费女性裸体啪啪无遮挡网站| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 久久久久久久久久久久大奶| av天堂久久9| 黄片播放在线免费| 亚洲精品一区蜜桃| 国产熟女欧美一区二区| 多毛熟女@视频| 国产亚洲一区二区精品| 大香蕉久久网| 国产成人啪精品午夜网站| 国产精品免费视频内射| 岛国毛片在线播放| 久久久国产一区二区| 国产精品99久久99久久久不卡| 精品一品国产午夜福利视频| 欧美日韩福利视频一区二区| 超碰成人久久| 亚洲久久久国产精品| bbb黄色大片| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 久久精品久久久久久噜噜老黄| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看 | 91成人精品电影| 天天操日日干夜夜撸| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 国产男女超爽视频在线观看| 欧美另类一区| 亚洲国产精品国产精品| 18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| av在线老鸭窝| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 91麻豆精品激情在线观看国产 | 亚洲,一卡二卡三卡| 丁香六月天网| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 国产av一区二区精品久久| 后天国语完整版免费观看| 91九色精品人成在线观看| 日韩电影二区| 精品国产一区二区久久| 国产日韩欧美视频二区| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 国产深夜福利视频在线观看| 日韩av不卡免费在线播放| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 老司机午夜十八禁免费视频| 性色av一级| 国产av精品麻豆| 一级毛片电影观看| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 亚洲专区国产一区二区| 久久中文字幕一级| 免费在线观看日本一区| 美女中出高潮动态图| 亚洲天堂av无毛| 夜夜骑夜夜射夜夜干| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| 免费久久久久久久精品成人欧美视频| 亚洲图色成人| 国产色视频综合| 欧美性长视频在线观看| 看十八女毛片水多多多| 50天的宝宝边吃奶边哭怎么回事| 午夜福利一区二区在线看| 久久精品久久久久久噜噜老黄| 97人妻天天添夜夜摸| 啦啦啦 在线观看视频| 婷婷丁香在线五月| 久久久久久久国产电影| 国产精品国产三级专区第一集| 亚洲av片天天在线观看| 欧美日本中文国产一区发布| 丰满人妻熟妇乱又伦精品不卡| 天天躁夜夜躁狠狠躁躁| 只有这里有精品99| 亚洲一区中文字幕在线| 香蕉丝袜av| 久久热在线av| 日韩精品免费视频一区二区三区| 欧美黄色淫秽网站| 在线亚洲精品国产二区图片欧美| 视频在线观看一区二区三区| 一级毛片我不卡| 熟女av电影| 久久久久国产一级毛片高清牌| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 亚洲自偷自拍图片 自拍| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 午夜视频精品福利| 超色免费av| 夜夜骑夜夜射夜夜干| 欧美日本中文国产一区发布| 黑人欧美特级aaaaaa片| 人妻 亚洲 视频| 少妇人妻 视频| 亚洲五月色婷婷综合| 色网站视频免费| 久久国产精品人妻蜜桃| 一区福利在线观看| 777米奇影视久久| 中文字幕亚洲精品专区| 91国产中文字幕| av不卡在线播放| 亚洲精品美女久久av网站| 国产精品免费大片| 美女午夜性视频免费| 免费在线观看黄色视频的| 国产视频一区二区在线看| 亚洲人成网站在线观看播放| 色综合欧美亚洲国产小说| 国产深夜福利视频在线观看| 欧美日韩一级在线毛片| 亚洲精品在线美女| 男女边摸边吃奶| 亚洲国产最新在线播放| 亚洲中文av在线| 国产人伦9x9x在线观看| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 一个人免费看片子| 精品久久久久久电影网| 午夜精品国产一区二区电影| 国产一区二区三区av在线| 国产精品99久久99久久久不卡| 国产熟女欧美一区二区| 丰满少妇做爰视频| videosex国产| 亚洲,一卡二卡三卡| 宅男免费午夜| 男女高潮啪啪啪动态图| 一区福利在线观看| 一边亲一边摸免费视频| 午夜影院在线不卡| 最新在线观看一区二区三区 | 丝袜人妻中文字幕| 老司机在亚洲福利影院| 亚洲黑人精品在线| 欧美国产精品va在线观看不卡| 国产男女超爽视频在线观看| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| 国产精品免费大片| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 97在线人人人人妻| 两人在一起打扑克的视频| 免费在线观看影片大全网站 | 国产成人av教育| 91九色精品人成在线观看| 一边摸一边抽搐一进一出视频| 人妻人人澡人人爽人人| 午夜福利视频在线观看免费| 一区福利在线观看| 久久精品亚洲av国产电影网| 亚洲av片天天在线观看| 久久久久久久国产电影| 男女之事视频高清在线观看 | 国精品久久久久久国模美| 丝袜喷水一区| 天天影视国产精品| 亚洲av日韩在线播放| 亚洲精品国产一区二区精华液| 午夜两性在线视频| 婷婷色麻豆天堂久久| a级毛片黄视频| 日本a在线网址| 丰满少妇做爰视频| 精品国产乱码久久久久久男人| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 久久午夜综合久久蜜桃| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院| 欧美另类一区| 91麻豆精品激情在线观看国产 | 国产精品一区二区精品视频观看| cao死你这个sao货| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 久久久国产精品麻豆| 免费在线观看日本一区| 国产三级黄色录像| 国产成人免费无遮挡视频| 黄色视频不卡| 丝袜美足系列| 国产男女超爽视频在线观看| 日韩免费高清中文字幕av| 久久女婷五月综合色啪小说| 精品少妇内射三级| 精品久久久久久久毛片微露脸 | 久久久久网色| 纵有疾风起免费观看全集完整版| 男人爽女人下面视频在线观看| 欧美xxⅹ黑人| 老司机影院成人| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产av成人精品| 免费高清在线观看日韩| av国产久精品久网站免费入址| 国产高清不卡午夜福利| 欧美人与性动交α欧美软件| 纵有疾风起免费观看全集完整版| 国产黄色视频一区二区在线观看| 亚洲人成电影观看| 啦啦啦啦在线视频资源| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 国产色视频综合| 欧美日韩黄片免| 国产精品成人在线| 久久久久久人人人人人| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区三区在线| 精品久久久久久电影网| 亚洲国产毛片av蜜桃av| 中文字幕色久视频| 国产免费又黄又爽又色| 国产精品免费大片| 国产一卡二卡三卡精品| 久久99热这里只频精品6学生| 亚洲国产日韩一区二区| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 99九九在线精品视频| 美女脱内裤让男人舔精品视频| 一本综合久久免费| 纵有疾风起免费观看全集完整版| 久久国产精品影院| 久久精品亚洲av国产电影网| 999久久久国产精品视频| 操出白浆在线播放| 亚洲精品一区蜜桃| 91麻豆av在线| 国产又色又爽无遮挡免| 亚洲情色 制服丝袜| 捣出白浆h1v1| 91精品伊人久久大香线蕉| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 久久人妻福利社区极品人妻图片 | 18在线观看网站| 激情视频va一区二区三区| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 少妇人妻 视频| av在线app专区| 欧美黄色淫秽网站| 一区二区日韩欧美中文字幕| 欧美大码av| 尾随美女入室| av国产精品久久久久影院| 国产在线免费精品| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 国产一区二区在线观看av| 日本五十路高清| 精品欧美一区二区三区在线| 午夜福利乱码中文字幕| 人人澡人人妻人| 日本黄色日本黄色录像| 热re99久久国产66热| 99国产综合亚洲精品| 国产精品久久久久成人av| 久久99一区二区三区| 久久国产精品影院| 亚洲美女黄色视频免费看| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线观看av| 91成人精品电影| 操出白浆在线播放| 丝袜在线中文字幕| 国产麻豆69| 自线自在国产av| 男人操女人黄网站| 一区二区三区激情视频| 少妇人妻 视频| 国产在线观看jvid| www.熟女人妻精品国产| 91精品三级在线观看| 大片免费播放器 马上看| 国产伦人伦偷精品视频| 国产亚洲av高清不卡| 99精品久久久久人妻精品| av天堂在线播放| 亚洲国产欧美在线一区| kizo精华| 啦啦啦视频在线资源免费观看| 久久精品久久精品一区二区三区| 精品久久久久久久毛片微露脸 | 蜜桃国产av成人99| 亚洲国产av影院在线观看| 日韩制服丝袜自拍偷拍| 亚洲伊人色综图| 久久这里只有精品19| 欧美97在线视频| 欧美精品av麻豆av| 国产精品九九99| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 99香蕉大伊视频| 人人妻,人人澡人人爽秒播 | av在线app专区| 熟女少妇亚洲综合色aaa.| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 久久99一区二区三区| 丰满饥渴人妻一区二区三| 精品一区二区三区四区五区乱码 | 最新在线观看一区二区三区 | 婷婷丁香在线五月| 国产成人一区二区在线| 美国免费a级毛片| 母亲3免费完整高清在线观看| 亚洲精品在线美女| 七月丁香在线播放| av视频免费观看在线观看| 日日爽夜夜爽网站| 成年美女黄网站色视频大全免费| 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 国产高清不卡午夜福利| 亚洲精品第二区| 最黄视频免费看| 无遮挡黄片免费观看| 久久影院123| 久久国产精品大桥未久av| 国产黄色视频一区二区在线观看| 18禁黄网站禁片午夜丰满| 精品国产一区二区三区四区第35| xxxhd国产人妻xxx| 男女免费视频国产| 免费在线观看影片大全网站 | 亚洲伊人色综图| 多毛熟女@视频| 五月开心婷婷网| 在现免费观看毛片| 国产一区二区三区av在线| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 一区二区三区激情视频| 日韩大片免费观看网站| 亚洲男人天堂网一区| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 亚洲伊人色综图| 久久久久精品国产欧美久久久 | 电影成人av| 国产爽快片一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲男人天堂网一区| 又黄又粗又硬又大视频| 亚洲色图 男人天堂 中文字幕| 国产精品久久久av美女十八| 校园人妻丝袜中文字幕| 男女之事视频高清在线观看 | 1024视频免费在线观看| 天天躁夜夜躁狠狠躁躁| 丰满人妻熟妇乱又伦精品不卡| 午夜福利免费观看在线| 狂野欧美激情性bbbbbb| 国产成人av教育| 欧美变态另类bdsm刘玥| 丰满少妇做爰视频| 久久性视频一级片| 免费少妇av软件| 色视频在线一区二区三区| 亚洲七黄色美女视频| 免费看av在线观看网站| 又粗又硬又长又爽又黄的视频| 国产精品久久久人人做人人爽| 9191精品国产免费久久| 只有这里有精品99| 欧美精品高潮呻吟av久久| 人人澡人人妻人| 亚洲七黄色美女视频| 久久久久久久大尺度免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产亚洲av涩爱| 成年人午夜在线观看视频| 亚洲天堂av无毛| 日韩精品免费视频一区二区三区| 男男h啪啪无遮挡| 国产黄色免费在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲欧洲精品一区二区精品久久久| 波野结衣二区三区在线| 国产亚洲一区二区精品| 91麻豆av在线| 女性生殖器流出的白浆| 国产精品99久久99久久久不卡| 少妇人妻久久综合中文| 亚洲第一青青草原| 夜夜骑夜夜射夜夜干| 日本午夜av视频| 人妻 亚洲 视频| 一级毛片我不卡| 后天国语完整版免费观看| 久久精品熟女亚洲av麻豆精品| 黄色毛片三级朝国网站| 18在线观看网站| 国产在线观看jvid| 久久国产亚洲av麻豆专区| 丝袜人妻中文字幕| 搡老岳熟女国产| 国产免费视频播放在线视频| 国产福利在线免费观看视频| 国产欧美日韩一区二区三区在线| 激情五月婷婷亚洲| 一级毛片黄色毛片免费观看视频| 每晚都被弄得嗷嗷叫到高潮| 男女高潮啪啪啪动态图| 少妇裸体淫交视频免费看高清 | 男女无遮挡免费网站观看| 男男h啪啪无遮挡| 一区二区三区精品91| 波多野结衣av一区二区av| 高潮久久久久久久久久久不卡| 国产成人精品无人区| 久久人人97超碰香蕉20202| 在线观看国产h片| 成在线人永久免费视频| 美女视频免费永久观看网站| svipshipincom国产片| 免费观看人在逋| 黄色 视频免费看| 国产亚洲午夜精品一区二区久久| 美女脱内裤让男人舔精品视频| 欧美 日韩 精品 国产| 亚洲精品国产色婷婷电影| 国产成人精品久久久久久| 丝瓜视频免费看黄片| 色视频在线一区二区三区| 久久天躁狠狠躁夜夜2o2o |