• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave mode computing method using the step-split Pad′e parabolic equation

    2022-09-24 08:00:16ChuanXiuXu徐傳秀andGuangYingZheng鄭廣贏
    Chinese Physics B 2022年9期

    Chuan-Xiu Xu(徐傳秀) and Guang-Ying Zheng(鄭廣贏)

    1Hangzhou Applied Acoustics Research Institute,Hangzhou 310023,China

    2Science and Technology on Sonar Laboratory,Hangzhou 310023,China

    Keywords: parabolic equation,propagation matrix,eigenvalue decomposition

    1. Introduction

    Underwater acoustic propagation modeling is a significant research project in underwater acoustics. It provides a theoretical basis and technical reference for underwater acoustic equipment and exhibits considerable practical significance for improving the detection performance of sonar. The key to underwater acoustic propagation modeling is to change a physical problem into a mathematical problem, including wave equations and boundary conditions. In accordance with the different approximate solutions for a wave equation, numerous sound propagation models have been consecutively presented, considerably promoting the capability of sound field calculation and analysis. Existing underwater sound propagation methods include the normal mode (NM),[1-6]parabolic equation(PE)[7-9]ray theory,[10]and fast field[11-13]methods. Mixed models of various methods have also been derived,such as ray-NM,NM-PE,and ray-NM-PE.

    Compared with most sound propagation theories,the PE method exhibits the advantages of fast and flexible computing,and it can effectively solve the sound propagation problem in range-dependent environments. Many outstanding achievements in PE have been reported in recent years. An additional and important physical propagation mechanism that can be investigated in elastic PE models[14-21]is the propagation of interface waves,namely,Scholte,Rayleigh,and Stoneley waves.Breakthroughs have been achieved in 3D PE models,[22-30]disregarding the assumption of cylindrical symmetry and enabling these models to solve a wider class of ocean acoustic problems due to developments in PE theory and computer efficiency.Effort has also been exerted to applying the PE method to various realistic problems, such as forecasting reverberations. As a numerical method, however, PE experiences difficulty in effectively analyzing the physical performance and interference structure of a sound propagation problem in the wave mode domain, limiting the further development of this method. In normal mode theory, the sound field is regarded as a sum of a certain number of orthogonal modes. The energy and phase of the sound field under each mode propagate in accordance with the group velocity and phase velocity of the mode. The received sound field is the boarding form of all arriving modes. It has a simple physical meaning and is intuitive. Therefore,an alternative method to address this limitation is to establish the relationship between the PE method and normal mode theory.

    To expand the application of PE effectively in sound field analysis, the wave mode computing method based on PE is proposed in the current study.By using this new method,wave mode eigenvalue and eigenfunction can be calculated via the split-step PE model.[7]The numerical results of the sound field in shallow-water, deep-water, and multilayer-bottom waveguides verify the validity and accuracy of the new method.Meanwhile,the angle limitation of Pad′e approximation is verified in the wave mode domain by using the PE mode method(PM)and the problem of missing root in NM is also solved by PM.

    2. PM

    The split-step Pad′e PE model developed by Collins(RAM-PE)[7,8]divides the range-dependent ocean environment into a series of locally range-independent regions. In each of these regions,the wave equation is transformed into a PE solution that can be expressed as

    whereLis the order of the Pad′e approximant, matrixUl(l=1,2,...,L) is the discrete form ofuin stepl,RlandSlareN×Nreversible tridiagonal matrices, andNis the depth number of grid points. The chase method can achieve faster calculation speed in actual matrix operation.

    From the perspective of mathematical form,the transformation between the same dimensions of column vectors can be realized by multiplying the same dimension square matrix,which can be regarded as the simplest form of vector transformation. Inspired by the aforementioned mathematical ideas,the column vectors obtained by the discrete depth operators at different ranges in the PE model can also be calculated via single equal dimension reversible square matrix multiplication.The square matrix that connects two sound field vectors can be called the propagation matrix.

    The recurrence formula for the sound field with the propagation matrix method[31]is expressed as

    whereMis the propagation matrix for calculating the sound field at different distances, and it contains the information of the marine environment parameters at the propagation distance. MatrixUis the discrete form ofu.where[φ,φ]represents the inner product of two vectorsφandφ.

    Equation (12) is the core formula for mode decomposition theory of the parabolic equation model, which is consistent with NM.The modes of the parabolic equation model can be considered the result of the uniform sampling of NM in the depth direction. The expression of underwater sound pressure can be obtained by the relation between quantityuand sound pressurep,that is,

    where Δzis the step length in the depth direction.

    Compared with the classic parabolic equation model,propagation decomposition theory of sound field assumes that the different eigenvectors of the propagation matrix satisfy orthogonality and make approximations in two aspects. Firstly,the approximate orthogonal decomposition of the propagation matrix is adopted. When different eigenvectors are orthogonal to one another,no energy exchange occurs among the propagation mode components,which are all independent propagation modes. In fact, the modes are not completely consistent because the propagation matrix cannot be strictly symmetric in ocean sound waveguides. Then,a redistribution of energy occurs when different modes propagate to a long distance, and the role of this phenomenon is disregarded in the new theory. Secondly, the approximate orthogonal decomposition of the initial sound field is adopted. In the process of representing the initial sound field as a linear combination of different eigenvectors,the different eigenvectors are assumed to be orthogonal and the influences of each component on the coefficients are not considered. This approximation disregards the influence of the correlation between modes in the sound field,and it exerts an evident influence on the results of the nearrange sound field. However, the influence on the sound field decreases rapidly with an increase in propagation range.

    In accordance with the uniqueness of the sound propagation modes,the new PE mode theory can be used to calculate the wave mode eigenvalues and eigenfunctions. On the basis of normal mode theory,sound pressure can be written as

    Then, the PE model establishes a relationship with normal mode theory.

    3. Numerical examples

    To verify the validity of PM,this section presents a simulation analysis of the sound propagation problem in some representative waveguides, namely, shallow-water, deep-water,and multilayer waveguides.

    In next numerical experiment, the normal modes and incoherent transmission loss (TL) lines are calculated by using the NM program KRAKENC[32]and PM.Meanwhile,the coherent TL results are obtained by using PE, NM, and PM. In PM, the setting methods ofL(the order of the Pad′e approximant),Δr(the step length in the range direction),and Δz(the step length in the depth direction)are consistent with those of the RAM-PE method.

    3.1. Shallow-water waveguide

    In Fig. 1, a 100 Hz source is located atz=50 m, withc1=1500 m/s andρ1=1 g/cm3in the water column. An ocean with a depth of 200 m is overlying a fluid sediment in whichc2=1700 m/s,ρ2=1.5 g/cm3, and attenuation is 0.5 dB/λ. In the experiment,the thickness of the artificial absorption layer is 200 m withL=6,Δr=5,and Δz=1.

    Fig.1. Shallow-water waveguide.

    Fig.2. Eigenfunctions in the shallow-water waveguide.

    Figure 2 shows the eigenfunctions of modes 1, 5, and 9 calculated by using the NM(the blue dotted line)and PM(the red solid line) solutions. The solid blue line represents the result of NM,while the red dotted line indicates the result of PM.The subsequent experiments are labeled in the same manner. The mode eigenfunction lines are consistent with one another. The normal mode eigenvalue results of NM and PM from modes 1-9 are provided in Table 1. The eigenvalues obtained using PM exhibit good agreement with the results of NM.With an increase in the order of mode,the eigenvalue error between the two methods becomes larger due to the phase error of the PE method. In the experiment,the real and imaginary parts of the eigenvalues of PM are larger than those of NM,indicating that the major PM modes from modes 1-9 exhibit faster phase speed and energy loss. Figure 3 shows the 2D TL results calculated using NM, PM, and RAM-PE. The overall fields are highly similar,and thus,the accuracy of the three methods should be compared further. Figure 4 shows the TL lines calculated using NM,PM,and RAM-PE.The coherent TL lines are highly similar, particularly between PM and RAM-PE. The difference in mode phase speed between NM and PM causes the range expansion of the coherent TL. The PM and RAM-PE TL lines are stretched in the range direction in the shallow-water waveguide. The incoherent TL line of PM is slightly (within 1 dB) smaller than that of NM within 2 km due to the larger imaginary part of mode eigenvalues.This result is in good agreement with NM in the long range.

    Table 1. Eigenvalues in the shallow-water waveguide.

    Fig.3. TL field in the shallow-water waveguide. (a)NM;(b)PM;(c)RAM-PE.

    Fig.4. TL lines in the shallow-water waveguide.

    3.2. Deep-sea waveguide

    The deep-water waveguide adopts the Munk profile, a typical sound speed profile that can exhibit many features of deep water sound propagation. In the experiment, a 50 Hz source is located atz=50 m. The detailed environment parameters are presented in Fig.5. The thickness of the artificial absorption layer in PE is 1000 m withL=6, Δr=10, and Δz=5.

    Fig.5. Deep-water waveguide.

    The normal mode eigenvalues and eigenfunctions calculated by using NM and PM are provided in Table 2 and Fig.6,where NM uses the blue dotted line and PM adopts the red solid line.The eigenfunctions of the two methods exhibit minimal difference,including higher-order modes.

    Fig.6. Eigenfunctions in the deep-water waveguide.

    In contrast with the shallow-water waveguide, the real part of the primary eigenvalues of PM is larger than that of NM, and the phase error of PE leads to a slower propagation speed, as demonstrated by the coherent TL results in Fig. 7.Meanwhile,the order of modes reaches up to several hundreds in the deep-water waveguide,causing a larger TL error in NM and PM.Figure 8 illustrates that the 2D TL results of PM and RAM-PE are consistent with each other and exhibit evident energy difference with NM in the first shadow zone.

    Table 2. Eigenvalues in the deep-water waveguide.

    Fig.7. TL lines in the deep-water waveguide.

    Fig.8. TL field in the deep-water waveguide. (a)NM;(b)PM;(c)RAM-PE.

    3.3. Multilayer-bottom waveguide

    Compared with the two preceding numerical examples,the multilayer waveguide shown in Fig. 9 is a more complex environment. A 50 m seafloor sediment is set above a semiinfinite seabed with a positive gradient sound speed profile. In the waveguide, a negative gradient sound speed profile is set in the water layer. The depth of the 200 Hz source is 50 m.The density and sound absorption coefficient of the different layers are presented in the figure. The thickness of the artificial absorption layer in PE is 200 m withL=6, Δr=2, and Δz=1.

    Fig.9. Multilayer-bottom waveguide.

    Fig.10. Eigenfunctions in the multilayer-bottom waveguide.

    In higher-order modes, the eigenfunction amplitude of PM (the red solid line) is slightly smaller than the result of NM(the blue dotted line),as shown in Fig.10. The eigenvalues calculated using NM and PM also exhibit a complex difference in Table 3. The real part of the PM eigenvalues is larger than that of the NM eigenvalues in higher-order modes. The diverse mode differences between NM and PM cause a more evident error of the TL results calculated using NM and PM than the shallow-water and deep-water waveguides. The influence can be clearly observed in the 2D TL results presented in Fig.11,but it can be demonstrated using the TL lines from Fig.12. In multilayer-bottom waveguides,the validity of NM and PM must be verified in future work.

    Table 3. Eigenvalues in the multilayer-bottom waveguide.

    Fig.11. TL field in the multilayer-bottom waveguide. (a)NM;(b)PM;(c)RAM-PE.

    Fig.12. TL lines in the multilayer-bottom waveguide.

    3.4. Discussion

    As demonstrated in the previous numerical examples,PE is an effective method for calculating normal mode. The type of sound source in most underwater sound propagation models is omnidirectional,including NM.Through the proposed PM,the normal mode stimulated by certain directional sources can be solved. When the acceptable phase error of PE is set to 0.0002, the angle limitations of Pad′e approximation are approximately 45°[Pad′e(2)] and 90°[Pad′e(8)]. A±45°direction source in the main propagation direction is considered in the following example. To reduce the number of normal modes, two 10 Hz sources are located atz= 1000 m andz= 3000 m in the deep-water waveguide shown in Fig. 5.The thickness of the artificial absorption layer in PE is 1000 m with Δr=20,and Δz=10. The real and imaginary parts of all mode eigenvalues calculated using NM and PM in Pad′e(8)and Pad′e(2)are shown in Figs.13(a)and 13(b). A conclusion can be drawn that the eigenvalues obtained using PM in Pad′e(2)have a considerably larger imaginary part than the results obtained under the two other conditions when the order is above 50. That is, the order of modes above 50 can be disregarded.The grazing angle of mode 50 is approximately 49°,which is consistent with the angle limitation of Pad′e(2). The TL results in Figs.14(a)and 14(b)can also verify the validity of the angle limitations quantitatively.

    Fig.13. Mode eigenvalues calculated using NM and PM.(a)Real part;(b)imaginary part.

    Fig.14. TL field calculated using PM.(a)Pad′e(8)N=63;(b)Pad′e(2)N=63;(c)Pad′e(8)N=50.

    PM can get N modes based on the matrix eigenvalue decomposition method. If the real part of eigenvalues calculated by NM is greater than the real part ofk2(k2=ω/cmax,cmaxis the maximum sound speed on the seabed)and less than the real part ofk1(k1=ω/cmin,cminis minimum sound speed of sea water), it can be called as waveguide normal mode in accordance with NM.

    When using NM to calculate the wave mode eigenvalues, it is possible to miss its roots. However, the PM method can solve this problem. Some numerical experiments are carried out by using the shallow-water waveguide in Fig.1. The source frequency is 25 Hz and the depth of sea water adds from 50 m to 200 m with a 5 m interval. Figure 15 shows the number of waveguide normal modes at different seawater depths calculated by using NM and PM.NM has the problem of missing root when the depths of seawater are 120 m,185 m and 200 m,but by using PM can obtain right results. The normal mode eigenvalues at the depth of 120 m,185 m and 200 m are calculated by using NM and PM,which are provided in Table 4. The results prove the advantage of PM.

    Fig. 15. Number of waveguide normal modes at different seawater depths are calculated by using NM and PM.

    Table 4. Eigenvalues at different seawater depths.

    4. Conclusion and perspectives

    The split-step Pad′e PE model provides a method for calculating wave modes that expands the application of PE models. Numerical experiments on three typical ocean waveguides test the effectiveness and accuracy of PM, although some small errors exist.Compared with the shallow-water and deep-water waveguides,the complex bottom of the multilayerbottom waveguide causes a larger difference between NM and PM. Increased attention is necessary to determine which method is more accurate. Meanwhile, the angle limitation of Pad′e approximation is verified by the results of different orders of Pad′e coefficient in PM and the problem of missing root is also solved by PM.In the future,an elastic PM will be proposed and a smooth wave mode method based on PM will be presented for fluctuating ocean waveguides.

    Acknowledgement

    Project supported by Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20200330).

    欧美一级a爱片免费观看看| 色播亚洲综合网| 在线观看午夜福利视频| 一级av片app| 亚洲国产色片| 热99re8久久精品国产| 美女高潮的动态| 天堂影院成人在线观看| 又黄又爽又刺激的免费视频.| 久久久久久久亚洲中文字幕| 午夜视频国产福利| 三级国产精品欧美在线观看| 久久精品影院6| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 嫩草影视91久久| 亚洲国产欧洲综合997久久,| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 三级国产精品欧美在线观看| 亚洲av日韩精品久久久久久密| 国产精华一区二区三区| 真实男女啪啪啪动态图| 999久久久精品免费观看国产| 黄色女人牲交| 91久久精品国产一区二区成人| 欧美在线一区亚洲| 色av中文字幕| 日韩欧美在线乱码| 日韩精品中文字幕看吧| 变态另类成人亚洲欧美熟女| 亚洲专区中文字幕在线| 国内精品美女久久久久久| 在线观看免费视频日本深夜| 深夜a级毛片| 99热网站在线观看| 久久久精品欧美日韩精品| 久久久久国内视频| 美女高潮的动态| 最近中文字幕高清免费大全6 | 高清日韩中文字幕在线| 91在线精品国自产拍蜜月| 国产淫片久久久久久久久| 免费看av在线观看网站| 窝窝影院91人妻| 少妇熟女aⅴ在线视频| 亚洲专区国产一区二区| 色在线成人网| 国产精品日韩av在线免费观看| 日韩av在线大香蕉| 久久久久性生活片| 99久久成人亚洲精品观看| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av在线| 精品国产三级普通话版| 女生性感内裤真人,穿戴方法视频| 美女xxoo啪啪120秒动态图| 在线观看午夜福利视频| 极品教师在线视频| 在线国产一区二区在线| 国产精品综合久久久久久久免费| 一进一出好大好爽视频| 日韩欧美三级三区| 午夜亚洲福利在线播放| 美女高潮的动态| 男女那种视频在线观看| 亚洲成人免费电影在线观看| 国产av在哪里看| 露出奶头的视频| 国产精品久久久久久av不卡| bbb黄色大片| 九九爱精品视频在线观看| 国产色爽女视频免费观看| 成人欧美大片| 精品久久久久久久久久免费视频| 在线播放无遮挡| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单| 久久亚洲精品不卡| 亚洲无线在线观看| 好男人在线观看高清免费视频| 内地一区二区视频在线| 国产精品野战在线观看| 国产探花极品一区二区| av福利片在线观看| 国产极品精品免费视频能看的| 欧美日本亚洲视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 成人午夜高清在线视频| 色av中文字幕| 天堂av国产一区二区熟女人妻| 国产精品1区2区在线观看.| 亚洲精品一区av在线观看| 久久久久久大精品| 亚洲第一电影网av| 亚洲经典国产精华液单| 不卡视频在线观看欧美| 日韩人妻高清精品专区| avwww免费| 嫩草影院精品99| 99riav亚洲国产免费| 女人被狂操c到高潮| av专区在线播放| 尾随美女入室| av在线观看视频网站免费| 日本五十路高清| 他把我摸到了高潮在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 亚洲综合色惰| 男人的好看免费观看在线视频| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| 午夜免费成人在线视频| 精品乱码久久久久久99久播| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线| 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 18禁在线播放成人免费| 亚洲av不卡在线观看| 国产乱人伦免费视频| 99久久中文字幕三级久久日本| 久久午夜福利片| 国产综合懂色| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 免费黄网站久久成人精品| 精品不卡国产一区二区三区| 久久精品影院6| 美女 人体艺术 gogo| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 日本与韩国留学比较| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 亚洲欧美清纯卡通| 国产av麻豆久久久久久久| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 给我免费播放毛片高清在线观看| 亚洲无线观看免费| 久久久久久久久大av| 亚洲最大成人手机在线| 在线国产一区二区在线| 国产免费av片在线观看野外av| 日本一二三区视频观看| 亚洲精华国产精华液的使用体验 | 亚洲成人久久性| 露出奶头的视频| 特大巨黑吊av在线直播| 日本黄大片高清| 久久久精品欧美日韩精品| 极品教师在线视频| 悠悠久久av| 国产精品女同一区二区软件 | 99热网站在线观看| 欧美丝袜亚洲另类 | a在线观看视频网站| 亚洲三级黄色毛片| 午夜福利欧美成人| 日本一二三区视频观看| 欧美激情国产日韩精品一区| 精品午夜福利在线看| aaaaa片日本免费| 看免费成人av毛片| 亚洲精品粉嫩美女一区| 内地一区二区视频在线| 精品人妻1区二区| 毛片一级片免费看久久久久 | 久久精品久久久久久噜噜老黄 | 国产三级中文精品| 噜噜噜噜噜久久久久久91| 干丝袜人妻中文字幕| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 一级黄片播放器| 精品久久久久久久人妻蜜臀av| 欧美三级亚洲精品| 九色成人免费人妻av| 久久久国产成人精品二区| 成年版毛片免费区| 露出奶头的视频| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 亚洲avbb在线观看| 97碰自拍视频| 亚洲va在线va天堂va国产| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 国产乱人伦免费视频| 国产成人福利小说| 久久精品国产鲁丝片午夜精品 | 国产v大片淫在线免费观看| 一区二区三区激情视频| av视频在线观看入口| 国内精品久久久久精免费| 日本与韩国留学比较| 午夜免费激情av| 日韩欧美在线乱码| 88av欧美| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看| 国产高清视频在线观看网站| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 岛国在线免费视频观看| netflix在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 麻豆成人av在线观看| 欧美一区二区国产精品久久精品| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区 | 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 日本一二三区视频观看| 日韩在线高清观看一区二区三区 | 国产人妻一区二区三区在| 欧美绝顶高潮抽搐喷水| 日本免费一区二区三区高清不卡| 免费观看人在逋| 久久久久久久亚洲中文字幕| 国产高清激情床上av| 狂野欧美白嫩少妇大欣赏| 国产高清不卡午夜福利| av在线天堂中文字幕| 国产综合懂色| 国产伦精品一区二区三区视频9| 在线免费观看不下载黄p国产 | 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 午夜免费男女啪啪视频观看 | www.www免费av| 亚洲无线观看免费| 亚洲无线在线观看| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 成年免费大片在线观看| 91久久精品电影网| 欧美黑人巨大hd| 国产av麻豆久久久久久久| 22中文网久久字幕| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看 | 精品免费久久久久久久清纯| 亚洲人成网站在线播| 欧美三级亚洲精品| 精品久久久久久久末码| 国产色婷婷99| 国产三级在线视频| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 亚洲av成人av| 高清在线国产一区| 少妇丰满av| x7x7x7水蜜桃| 欧美日韩黄片免| 99久久无色码亚洲精品果冻| 日韩在线高清观看一区二区三区 | 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 国产欧美日韩精品一区二区| 欧美黑人欧美精品刺激| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 很黄的视频免费| 欧美日韩黄片免| 久久午夜福利片| 亚洲va日本ⅴa欧美va伊人久久| 有码 亚洲区| 久久国产精品人妻蜜桃| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 深夜a级毛片| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 欧美激情在线99| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 亚洲天堂国产精品一区在线| 他把我摸到了高潮在线观看| 在线播放国产精品三级| www.色视频.com| 成熟少妇高潮喷水视频| eeuss影院久久| 97超级碰碰碰精品色视频在线观看| 国产免费一级a男人的天堂| 亚洲性夜色夜夜综合| 女的被弄到高潮叫床怎么办 | 亚洲美女搞黄在线观看 | 69人妻影院| 国产精品人妻久久久久久| 天堂动漫精品| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 日本黄色片子视频| 国产av麻豆久久久久久久| 精品国产三级普通话版| 九九爱精品视频在线观看| 成人三级黄色视频| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 久久99热6这里只有精品| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 赤兔流量卡办理| 床上黄色一级片| 黄色欧美视频在线观看| 亚洲av美国av| 淫妇啪啪啪对白视频| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久 | 日韩欧美在线乱码| 舔av片在线| 可以在线观看毛片的网站| 久久这里只有精品中国| 别揉我奶头 嗯啊视频| 一区福利在线观看| 精品99又大又爽又粗少妇毛片 | 国产成人a区在线观看| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 日韩欧美精品v在线| xxxwww97欧美| av天堂在线播放| 韩国av在线不卡| 日日啪夜夜撸| 国产69精品久久久久777片| 久久精品人妻少妇| 精品人妻熟女av久视频| 97碰自拍视频| 桃色一区二区三区在线观看| 91av网一区二区| 免费在线观看成人毛片| av在线观看视频网站免费| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 国产亚洲91精品色在线| 国产av一区在线观看免费| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 高清在线国产一区| 深夜精品福利| 99久久精品一区二区三区| 色哟哟·www| 日韩一区二区视频免费看| 天堂动漫精品| 赤兔流量卡办理| 国产一区二区三区在线臀色熟女| 尾随美女入室| 免费观看人在逋| 免费看光身美女| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 波多野结衣巨乳人妻| 久久久久久大精品| 熟妇人妻久久中文字幕3abv| 亚洲av熟女| 精品福利观看| 桃红色精品国产亚洲av| 精品一区二区三区人妻视频| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区 | 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| 88av欧美| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 日本黄大片高清| 精品人妻熟女av久视频| 国产午夜精品久久久久久一区二区三区 | 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 免费看日本二区| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲,欧美,日韩| 国产高清有码在线观看视频| 九九在线视频观看精品| 18禁裸乳无遮挡免费网站照片| 欧美日韩黄片免| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 男人狂女人下面高潮的视频| 国产高清激情床上av| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 亚洲av电影不卡..在线观看| 色5月婷婷丁香| 日日干狠狠操夜夜爽| .国产精品久久| 男人的好看免费观看在线视频| 欧美日韩黄片免| 少妇人妻精品综合一区二区 | 日日摸夜夜添夜夜添av毛片 | 999久久久精品免费观看国产| 可以在线观看的亚洲视频| av在线观看视频网站免费| 中出人妻视频一区二区| 丰满的人妻完整版| 啦啦啦观看免费观看视频高清| 国产精品爽爽va在线观看网站| 免费看光身美女| 国产精品久久视频播放| 91久久精品电影网| 久久草成人影院| 久久亚洲精品不卡| 免费在线观看日本一区| 偷拍熟女少妇极品色| 又黄又爽又免费观看的视频| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 久久草成人影院| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲最大成人av| 国产探花极品一区二区| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 久久精品国产亚洲网站| av国产免费在线观看| 韩国av在线不卡| 嫩草影视91久久| 简卡轻食公司| 午夜福利高清视频| av女优亚洲男人天堂| av.在线天堂| a在线观看视频网站| 黄色丝袜av网址大全| 亚洲成人中文字幕在线播放| 久久精品国产99精品国产亚洲性色| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 午夜福利高清视频| 国产美女午夜福利| 国产极品精品免费视频能看的| 久久久久国内视频| 国产精品亚洲一级av第二区| videossex国产| 国产高清不卡午夜福利| 性色avwww在线观看| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 欧美日韩综合久久久久久 | 色av中文字幕| 久久亚洲精品不卡| 国产在视频线在精品| 精品一区二区免费观看| 老女人水多毛片| 88av欧美| 欧美潮喷喷水| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 日韩强制内射视频| 国产精品不卡视频一区二区| 欧美日韩乱码在线| 国产熟女欧美一区二区| x7x7x7水蜜桃| 一进一出好大好爽视频| 亚洲午夜理论影院| videossex国产| 此物有八面人人有两片| 九九爱精品视频在线观看| 麻豆国产97在线/欧美| 国产毛片a区久久久久| 精品一区二区三区视频在线| eeuss影院久久| 亚洲三级黄色毛片| 久久6这里有精品| 悠悠久久av| 午夜福利成人在线免费观看| 天堂√8在线中文| 日本熟妇午夜| 好男人在线观看高清免费视频| 精品久久久久久,| av在线老鸭窝| 男女之事视频高清在线观看| 亚洲一区二区三区色噜噜| 久久精品国产99精品国产亚洲性色| 制服丝袜大香蕉在线| 全区人妻精品视频| 色视频www国产| 高清日韩中文字幕在线| 亚洲性久久影院| 禁无遮挡网站| 亚洲精品日韩av片在线观看| 亚洲人成网站高清观看| 精品免费久久久久久久清纯| 悠悠久久av| 亚洲人成网站在线播| 国产精品日韩av在线免费观看| 国产白丝娇喘喷水9色精品| 能在线免费观看的黄片| 久久婷婷人人爽人人干人人爱| 午夜免费男女啪啪视频观看 | 尤物成人国产欧美一区二区三区| 黄色视频,在线免费观看| 一区二区三区激情视频| 成年女人毛片免费观看观看9| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 午夜爱爱视频在线播放| 久久精品国产亚洲av香蕉五月| 午夜视频国产福利| 日韩高清综合在线| 午夜影院日韩av| 亚洲在线自拍视频| 69人妻影院| 在线观看av片永久免费下载| 日韩欧美在线二视频| 亚洲av日韩精品久久久久久密| 麻豆成人av在线观看| xxxwww97欧美| 波多野结衣高清作品| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 久久久久久伊人网av| 色5月婷婷丁香| 国产欧美日韩一区二区精品| 久久精品久久久久久噜噜老黄 | videossex国产| 久久人人精品亚洲av| 老师上课跳d突然被开到最大视频| 少妇裸体淫交视频免费看高清| 国产一区二区三区视频了| 如何舔出高潮| 欧美日韩中文字幕国产精品一区二区三区| 精品不卡国产一区二区三区| 欧美中文日本在线观看视频| 国产成人福利小说| av福利片在线观看| 成人二区视频| 亚洲熟妇熟女久久| 精品福利观看| 色视频www国产| 国产av不卡久久| av天堂中文字幕网| 国产69精品久久久久777片| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 干丝袜人妻中文字幕| 变态另类丝袜制服| 婷婷精品国产亚洲av| 亚洲一区高清亚洲精品| 精品久久久久久久久av| 欧美区成人在线视频| 中出人妻视频一区二区| 亚洲熟妇熟女久久| 欧美不卡视频在线免费观看| 精品无人区乱码1区二区| 国产高清视频在线观看网站| 国产黄片美女视频| 国产69精品久久久久777片| 精品久久久久久久久av| 国产高清不卡午夜福利| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄 | 国产高清视频在线播放一区|