• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second harmonic generation from precise diamond blade diced ridge waveguides

    2022-09-24 08:00:14HuiXu徐慧ZiqiLi李子琦ChiPang逄馳RangLi李讓GenglinLi李庚霖ShAkhmadalievShengqiangZhou周生強(qiáng)QingmingLu路慶明YuechenJia賈曰辰andFengChen陳峰
    Chinese Physics B 2022年9期
    關(guān)鍵詞:陳峰李子

    Hui Xu(徐慧) Ziqi Li(李子琦) Chi Pang(逄馳) Rang Li(李讓) Genglin Li(李庚霖) Sh. AkhmadalievShengqiang Zhou(周生強(qiáng)) Qingming Lu(路慶明) Yuechen Jia(賈曰辰) and Feng Chen(陳峰)

    1School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    2Division of Physics and Applied Physics,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore 637371,Singapore

    3Institute of Ion Beam and Materials Research,Helmholtz-Zentrum Dresden-Rossendorf,Dresden 01314,Germany

    4School of Chemistry and Chemical Engineering,Shandong University,Jinan 250100,China

    Keywords: optical waveguides,Nd:GdCOB crystal,second harmonic generation

    1. Introduction

    Optical waveguides, as one of the essential components of integrated photonics, can confine light fields in extremely small volumes.[1,2]As a result, the light intensity obtained from the waveguide volume is much higher than that in the bulk.[3-5]This feature provides meaningful advantages in nonlinear optical applications, where various nonlinear phenomena can be generated from the waveguide structure at a relatively low optical power. For example, frequency conversion processes based on waveguides feature higher conversion efficiencies and more flexible mode selection compared with those based on bulks.[4]Combining the versatility of multifunctional crystals with the compact geometries of waveguide structures, crystalline waveguides can be used to construct multifunctional optical devices with small footprints,such as on-chip lasers, compact optical modulators and nonlinear wavelength converters.[6,7]In practice,channel or ridge waveguides with light field confinement in two dimensions(2D) are preferred to one-dimensional (1D) planar waveguides due to their better optical confinement and more flexible geometry.[8]

    Ion implantation, as an important method for material modification, has been applied to a variety of crystals.[9-15]By bombarding the target crystal surface with energetic ion beams, localized lattice damage and refractive index modification appear at near-surface regions, resulting in the formation of an optical waveguide.[16-18]Up to now, this technique has been applied to the preparation of waveguides in dozens of crystalline materials.[8,16]Optical waveguides manufactured by ion implantation are generally 1D planar structures. Additional surface microfabrication is therefore needed to obtain 2D waveguide structures. Of the techniques used for surface microfabrication, femtosecond laser direct writing (FsLDW) and precise diamond blade dicing are the most common. Both techniques have been utilized to manufacture ridge waveguides based on ion-irradiated Nd:YAG planar waveguides.[19-23]However,compared with the ridge waveguides fabricated by FsLDW, those prepared by precise diamond blade dicing feature lower scattering losses and a higher optical quality owing to their smoother side walls.[19,24-26]

    Combining the lasing and luminescence characteristics of Nd3+ions with the nonlinear optical properties of a GdCa4O(BO3)3(GdCOB) matrix, it is shown that neodymium-doped GdCOB (Nd:GdCOB) has attractive optical properties as an excellent laser gain medium and an efficient self-frequency doubling(SFD)crystal.[27-31]In previous works, planar and channel waveguides have been fabricated in Nd:GdCOB crystals by ion irradiation[32]and FsLDW,[33]and second harmonic generation(SHG)has also been achieved using these waveguide structures. However, up to now,Nd:GdCOB ridge waveguides produced by ion irradiation and precise diamond dicing have not been reported.

    In this work, we demonstrate the fabrication of Nd:GdCOB ridge waveguides by combining ion beam irradiation with precise diamond blade dicing techniques. We performed SHG at 532 nm in both ridge and planar waveguides using 1064 nm pulsed fundamental waves.

    2. Experiments

    The 8 at.% Nd-doped GdCOB crystal used in this work was cut to satisfy type-I phase matching conditions (θ=161.5°,φ=0°)with dimensions of 11 mm×9 mm×2.2 mm.The crystal facets of 11 mm×9 mm and 11 mm×2.2 mm were well polished to an optical grade. As Fig.1(a)shows,the surface of the sample was irradiated by carbon(C5+)ions with an energy of 15 MeV at a fluence of 2×1014ions·cm-2. As a result,a planar waveguide with a thickness of~10μm(according to the microscopic image and the ion irradiation calculations,as presented in the next section)was achieved. Ion irradiation was accomplished using the 3 MV tandem accelerator at Helmholtz-Zentrum Dresden-Rossendorf,Germany. To reduce the channel effect,the incident ion beam was deviated by 7°from the normal to the sample surface. After that,based on the planar configuration,we constructed ridge waveguides using diamond blade dicing(see Fig.1(b)). During this process,several air grooves perpendicular to the crystal surface with a size of approximately 11 mm×2.2 mm were produced with the blade (DISCO Corp., P1A851 SD3000R10B10)[34]installed on a precision dicing machine(Jingchuang Advanced,AR3000). The rotation and movement velocities were set to 20000 rpm and 0.05 mm·s-1, respectively. With vertical optical confinement provided by the ion-induced change in refractive index and lateral optical confinement offered by two neighboring grooves,ridge waveguides with widths of 10μm(WG1), 20 μm (WG2), 25 μm (WG3), and 30 μm (WG4)were formed. Both irradiation and precise diamond blade dicing are high-precision and repeatable waveguide construction techniques,[35-37]so that the waveguides are constructed with good stability.

    Fig. 1. Schematic illustrations of (a) 15 MeV C5+ ion irradiation and (b)precise diamond blade dicing for Nd:GdCOB ridge waveguide fabrication.

    After fabrication, micro-Raman measurements were carried out using a spectrometer (Horiba/Jobin Yvon HR800)to investigate the microstructural modification of Nd:GdCOB crystal. With a detected range of 50 cm-1-1500 cm-1,a laser beam at 473 nm was focused on the waveguide cross sections and bulk at room temperature.

    Micro-second harmonic(μ-SH)spectroscopic analysis of the sample was performed to evaluate the nonlinear properties of the waveguides using a confocal microscopy testing platform. A laser beam(with a pulse duration of~20 ns,a pulse energy of~2 μJ and a pulse repetition rate of~5 MHz) at 1030 nm produced by a microjoule ultrafast fiber laser system (ANTAUS-10W-2u/5M) was coupled to the sample with a 100× objective [numerical aperture (NA)=0.3]. The reflected μ-SH signal was collected by the same objective, and after passing through several mirrors and lenses the signal was detected by a spectrometer.

    As shown in Fig. 2(a), we performed SHG characterization experiments based on an end-face coupling arrangement.After the 1064 nm light beam was emitted from the pulsed laser (with a pulse width of~11.05 ns, a pulse energy of~80μJ and a repetition rate of~5 kHz),its power and polarization were adjusted by a neutral density filter and a half-wave plate, respectively. A microscope objective(25×, NA=0.4)was used for optical in-coupling. The SHG and residual fundamental signal outputs from the waveguides were collected by another microscope objective. In order to detect the SHG signal, we used a spectrometer and a powermeter behind an optical low-pass filter,which has a transmittance of~98%at 532 nm and a reflectivity of>99%at 1064 nm. Figures 2(b)-2(e)present the fundamental modes along transverse magnetic(TM)and second harmonic(SH)modes along transverse electric(TE)directions in planar and WG3 ridge waveguides(all the ridge waveguides show similar modal distributions). Both fundamental and SH waves are well confined in the waveguiding regions, showing nearly single-mode profiles, which are very beneficial for SHG.

    Fig. 2. (a) The end-face coupling arrangement for SHG characterization of Nd:GdCOB waveguides. The mode field distribution of planar and WG3 ridge waveguides at 1064 nm[(b),(d)]and at 532 nm[(c),(e)](OLPF,optical low-pass filter).

    3. Results and discussion

    The nuclear(Sn)and electronic(Se)stopping power profiles of 15 MeV C5+ions in Nd:GdOCB were calculated using the SRIM-2008(Stopping and Range of Ions in Matter 2008)code, and the results are shown in Fig. 3(a). A non-zeroSeis observed within the ion penetration range of 0μm-10μm,peaking at approximately 1.7 keV·nm-1with a depth value of~6.7 μm. In contrast, theSnvalue remains zero within the first 9 μm below the surface and reaches a maximum of 0.16 keV·nm-1around 10 μm beneath the surface. Therefore,the electronic damage is considered to be the main cause for the change in refractive index in the ion-irradiated area,whereas the nuclear damage at the end of the ion trajectory is responsible for the creation of the optical barrier. Moreover,the formation of the waveguide layer is a collective effect of bothSnandSe. The maximum modification of refractive index in the waveguide region is about 0.003 estimated by the formula

    whereΘmis the maximum incident angle at which the laser beam cannot be focused into the waveguide by the microscope objective andn=1.7184 is the refractive index of the Nd:GdCOB crystal.[32]Therefore, taking the stopping power profiles as references, we reconstructed the refractive index distribution(see Fig.3(a)). Figures 3(b)and 3(e)demonstrate the microscopic images of the planar waveguide and the WG2 ridge waveguide, respectively. The thickness of the modified layer is observed to be around 10μm,which is in fairly good agreement with the calculation performed using the SRIM-2008 code.[38]We imported the index profile into Rsoft Beam PROP 8.0[39]and simulated the near-field modal distribution.Taking a planar waveguide and WG2 ridge waveguide as examples, figures 3(c) and 3(f) display the simulated near-field distributions at 1064 nm,which are very similar to the experimental results imaged by a CCD camera in the end-face coupling setup (see Figs. 3(d) and 3(g)), suggesting the reasonability of the reconstructed refractive index profile.

    Fig.3. (a)The curves of the electronic stopping power(blue line)and the nuclear stopping power(red line)distribution,as well as the refractive index profile of the waveguide(green line),as functions of the depth. Parts(b)and(e)show microscopic images of the cross sections of planar and WG2 ridge waveguides,respectively.Experimental[(c),(f)]and simulation[(d),(g)]results of the modal profiles of planar and WG2 ridge waveguides along the TE direction at 1064 nm.

    Fig.4. Output power of(a)planar and(b)WG3 ridge waveguides as a function of all-angle 1064 nm laser transmission with a constant launched power of 17.4 mW under continuous wave configuration.

    To investigate the polarization-dependent properties of the waveguides, the all-angle optical transmission of the fabricated waveguide at 1064 nm was measured. As one can see from Fig. 4, for both planar and WG3 ridge waveguides (all the ridge waveguides show similar results), the output power reaches its maxima(0.86 mW and 0.62 mW)along TE polarization(0°and 180°)while decreasing to its minima(0.22 mW and 0.16 mW) along TM polarization (90°and 270°). However,the SHG process occurs under a TMω →TE2ωprocess in Nd:GdCOB waveguides, so the polarization-dependent effect has a negative impact on the frequency-doubled output power and conversion efficiency of SHG.

    Fig.5. Micro-Raman spectra obtained from the WG3 ridge waveguide(red dotted line)and the bulk(blue line)of the Nd:GdCOB crystal.

    Fig. 6. (a) The emitted intensity of μ-SH spectra when the laser beam (at 1030 nm) is focused at the WG3 ridge waveguide (red line), the planar waveguide (green line) and the bulk (gray line). (b) The laser spectra of the fundamental beam at 1064 nm(red line)and second harmonic generation at 532 nm(green line)in the WG3 ridge waveguide.

    Micro-Raman spectra of Nd:GdCOB at the substrate and C5+ion implantation regions are presented in Fig.5. The Raman peak number and position show no differences between the bulk and waveguide areas. However,the Raman intensity in the waveguide increases with respect to the bulk,which may be a result of the lattice expansion attributed to electronic collisions during ion irradiation.[40-42]It is also possible that C5+ion implantation has caused more point defects in the crystal,leading to a slight broadening of the Raman peak half-width.

    Theμ-SH responses of the ridge and planar waveguides,as well as the bulk area, were investigated, as shown in Fig. 6(a). From the SH intensity profiles, the intensity distributions for the bulk,planar and ridge waveguides have similar shapes,with their peaks at the same position.However,the SH signal in the WG3 ridge waveguide(all the ridge waveguides show similar results) is enhanced significantly, at around ten times greater than that in the bulk. It is evident that the nonlinear properties of the Nd:GdCOB crystal are well retained and further greatly enhanced in the waveguide. As shown in Fig. 6(b), the spectra measured by the pulsed laser pump of the fundamental(at 1064 nm)and SH(at 532 nm)waves from the WG3 ridge waveguide clearly depict the nonlinear process of SHG in Nd:GdCOB waveguides. The 1064 nm fundamental and SH waves are determined to be TM-and TE-polarized,respectively. This verifies that the SHG process occurs under the TMω →TE2ωprocess,which is in good accordance with the phase matching configuration of the bulk.

    Figure 7 illustrates the second harmonic powers (average power)and the conversion efficiencies as functions of the 1064 nm fundamental pump power for planar and WG4 ridge waveguides (WG4 has the best frequency doubling performance of any of the ridge waveguides)under the pulsed configuration. The measured data points are marked with solid circles (blue for the SH powers and red for the conversion efficiencies). For the planar waveguide, the maximum average power output of the SH light is~1.04 mW with a pump power of~112 mW, resulting in a conversion efficiency ofη ≈8.32 %·W-1. The maximum average output power of the SH light for the WG4 ridge waveguide is~2.80 mW,which is around two times larger than that of the planar waveguide. The conversion efficiency reaches a maximum value of~22.36 %·W-1, leading to a significantly enhanced performance. An annealing treatment at 260°C for about 30 min was carried out in order to observe the changes in related nonlinear properties. However,this thermal operation has a negligible influence on the SHG performance of the waveguides.The data on maximum SHG output power (Pmax), the conversion efficiency (ηmax) and the propagation losses (α) for all ridge waveguides are summarized in Table 1, and the related properties of the planar waveguide are also included for reference. With an increase in the width of the ridge waveguide,the corresponding maximum SHG power and conversion efficiency will be enhanced. The similar dependence of the SHG properties on the ridge width can also be found in previously reported KTiOPO4ridge waveguides.[26]Furthermore,ridge waveguides show better performance than planar waveguides in frequency doubling, mainly due to the more compact structure of ridge waveguides, which leads to a stronger light intensity confined in a limited volume. The propagation losses of the ridge waveguides decrease with increase in ridge width. All ridge waveguides have higher propagation losses than planar waveguide,mainly due to the relatively high waveguide side-wall roughness caused by the dicing process.By optimizing the dicing parameters, such as the blade type and its rotation velocity,the roughness of the waveguide sidewall can be lowered,thereby reducing the propagation loss of the fabricated ridge waveguide.[43]In addition, reduction of the waveguide side-wall roughness can be also realized using ion beam milling.[44]The frequency doubling efficiency will be improved if waveguide losses are optimized, and a selffrequency-doubling effect can be expected.

    Table 1. The maximum output SH powers(Pmax),the maximum conversion efficiencies(ηmax)and propagation losses(α)of the Nd:GdCOB planar and ridge waveguides.

    Fig.7. Second harmonic power and the corresponding conversion efficiency as functions of the fundamental pump power in(a)planar and(b)WG4 ridge waveguides.

    4. Conclusion

    We have fabricated ridge waveguides in Nd:GdCOB crystals through a combination of carbon ion irradiation and precise diamond blade dicing. Based on an end-face coupling setup,the optical waveguiding properties of both Nd:GdCOB ridge waveguides and planar waveguide were experimentally investigated. The simulated modal profiles agree well with the measurements, suggesting the rationality of the constructed index profile based on stopping powers. From the micro-Raman spectrum, lattice expansion occurs during carbon ion implantation with more point defects.Throughμ-SH analysis,the nonlinear properties of the Nd:GdCOB crystal have been found to be fully preserved and greatly enhanced within the waveguides. SHG at 532 nm based on type I phase matching has been observed under a 1064 nm pulsed laser configuration. The maximum SH power of~2.80 mW was obtained in the WG4 ridge waveguide, and the corresponding conversion efficiency was~22.36 %·W-1. For planar waveguide,the maximum SH power was~1.04 mW with a conversion efficiency of 8.32%·W-1.Our work demonstrates that carbon ion irradiation combined with precise diamond blade dicing can be used to fabricate efficient nonlinear waveguides, providing potential applications in integrated photonics.

    Acknowledgments

    The authors thank Dr Y.Cheng for waveguide fabrication and Professor H.Yu forμ-SH analysis.

    Project supported by the Taishan Scholars Youth Expert Program of Shandong Province and the Qilu Young Scholar Program of Shandong University,China.

    猜你喜歡
    陳峰李子
    陳峰:求真務(wù)實(shí),以勇于創(chuàng)新鑄就科學(xué)品質(zhì)
    泳池惡作劇青春抱恙:隱身女神讓愛(ài)“雄起”
    Entanglement witnesses of four-qubit tripartite separable quantum states*
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    單身吧
    桃之夭夭B(2019年10期)2019-12-14 14:06:42
    我的糊涂媽媽
    無(wú)解≠增根
    久久国产精品人妻蜜桃| 中文字幕av在线有码专区| 757午夜福利合集在线观看| 色哟哟哟哟哟哟| 午夜a级毛片| 91av网站免费观看| 国产成人欧美在线观看| 亚洲av片天天在线观看| 老熟妇仑乱视频hdxx| 国产精品一及| 欧美成人性av电影在线观看| www.精华液| 免费看光身美女| 婷婷精品国产亚洲av在线| 九色成人免费人妻av| 国产成人影院久久av| 国产久久久一区二区三区| 成人永久免费在线观看视频| 97碰自拍视频| 嫩草影院精品99| 久久午夜亚洲精品久久| 啦啦啦韩国在线观看视频| 成人特级黄色片久久久久久久| 国产蜜桃级精品一区二区三区| 岛国在线免费视频观看| 狂野欧美激情性xxxx| 黑人操中国人逼视频| 91字幕亚洲| 免费高清视频大片| 最近最新免费中文字幕在线| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 免费搜索国产男女视频| 伦理电影免费视频| 999久久久精品免费观看国产| 1024香蕉在线观看| 好男人在线观看高清免费视频| 久久午夜综合久久蜜桃| 人妻夜夜爽99麻豆av| 国产高清视频在线观看网站| bbb黄色大片| 日日摸夜夜添夜夜添小说| 三级国产精品欧美在线观看 | 国产精品电影一区二区三区| 国产午夜福利久久久久久| 久久精品国产亚洲av香蕉五月| 欧美成人性av电影在线观看| av黄色大香蕉| 精品一区二区三区视频在线观看免费| 亚洲国产欧美人成| 成年免费大片在线观看| 成人国产综合亚洲| 久久精品国产清高在天天线| 麻豆国产av国片精品| 亚洲在线观看片| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| 亚洲人成电影免费在线| 韩国av一区二区三区四区| 午夜免费成人在线视频| av视频在线观看入口| 精品午夜福利视频在线观看一区| 亚洲专区国产一区二区| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 男女那种视频在线观看| 18禁观看日本| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 免费无遮挡裸体视频| 精品国产三级普通话版| 嫁个100分男人电影在线观看| 两个人看的免费小视频| 国产乱人视频| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 黄色日韩在线| 哪里可以看免费的av片| 国产亚洲欧美98| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 国产真实乱freesex| 国产激情欧美一区二区| 亚洲欧美日韩无卡精品| 18美女黄网站色大片免费观看| 国产人伦9x9x在线观看| 男人舔女人的私密视频| 我要搜黄色片| 国产久久久一区二区三区| 国产视频一区二区在线看| 18禁国产床啪视频网站| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 日本黄色片子视频| h日本视频在线播放| 国产私拍福利视频在线观看| 国产美女午夜福利| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 成人av在线播放网站| 中文字幕av在线有码专区| 色在线成人网| 国产精品 国内视频| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 在线看三级毛片| 亚洲专区字幕在线| 久久亚洲精品不卡| 成人性生交大片免费视频hd| 黑人操中国人逼视频| 美女免费视频网站| 毛片女人毛片| 中文资源天堂在线| 国产免费av片在线观看野外av| 日韩高清综合在线| 色综合婷婷激情| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 午夜精品一区二区三区免费看| 嫩草影视91久久| 国产精品女同一区二区软件 | 88av欧美| 国产淫片久久久久久久久 | 亚洲成a人片在线一区二区| 亚洲最大成人中文| 亚洲av成人av| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久久黄片| 少妇的丰满在线观看| 老司机在亚洲福利影院| 麻豆国产97在线/欧美| 色视频www国产| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 国产97色在线日韩免费| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| www国产在线视频色| 变态另类成人亚洲欧美熟女| 90打野战视频偷拍视频| 国产激情久久老熟女| 国产午夜福利久久久久久| 亚洲av日韩精品久久久久久密| 很黄的视频免费| www日本在线高清视频| 久久久成人免费电影| 香蕉国产在线看| 亚洲中文日韩欧美视频| 国产精品av视频在线免费观看| 禁无遮挡网站| 特级一级黄色大片| АⅤ资源中文在线天堂| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| cao死你这个sao货| 美女被艹到高潮喷水动态| 久久久国产欧美日韩av| 免费观看的影片在线观看| 99国产精品99久久久久| 九九久久精品国产亚洲av麻豆 | 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 一卡2卡三卡四卡精品乱码亚洲| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 成人鲁丝片一二三区免费| 亚洲专区国产一区二区| 国产精品女同一区二区软件 | 最近视频中文字幕2019在线8| 精品日产1卡2卡| 亚洲熟女毛片儿| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 12—13女人毛片做爰片一| 免费观看人在逋| 制服人妻中文乱码| 亚洲自拍偷在线| 又大又爽又粗| 搞女人的毛片| 国产精品九九99| 最新在线观看一区二区三区| 身体一侧抽搐| 免费搜索国产男女视频| 中文资源天堂在线| 亚洲精品美女久久av网站| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 成人午夜高清在线视频| 亚洲成av人片在线播放无| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 黄色成人免费大全| 在线观看美女被高潮喷水网站 | 久久久色成人| 婷婷亚洲欧美| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 亚洲av第一区精品v没综合| 亚洲在线观看片| 成人三级黄色视频| 可以在线观看的亚洲视频| 亚洲午夜精品一区,二区,三区| 变态另类丝袜制服| 国产 一区 欧美 日韩| 国产精品影院久久| 欧美成人一区二区免费高清观看 | 天天躁日日操中文字幕| 在线观看舔阴道视频| 午夜免费观看网址| 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 观看美女的网站| 精品一区二区三区av网在线观看| 九九久久精品国产亚洲av麻豆 | 12—13女人毛片做爰片一| 国产高清有码在线观看视频| 怎么达到女性高潮| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 不卡一级毛片| 久久精品91无色码中文字幕| 亚洲国产日韩欧美精品在线观看 | 午夜免费激情av| 无限看片的www在线观看| 亚洲av美国av| 日本在线视频免费播放| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 人妻丰满熟妇av一区二区三区| 精华霜和精华液先用哪个| 亚洲人成电影免费在线| 午夜福利在线观看免费完整高清在 | 国产精品国产高清国产av| 99在线人妻在线中文字幕| 老司机福利观看| 成人国产一区最新在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 成人性生交大片免费视频hd| 999久久久精品免费观看国产| 久久久久久久精品吃奶| 超碰成人久久| 国产精品av久久久久免费| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 中文亚洲av片在线观看爽| 日本免费a在线| 啦啦啦韩国在线观看视频| 国产蜜桃级精品一区二区三区| 成年免费大片在线观看| 神马国产精品三级电影在线观看| 别揉我奶头~嗯~啊~动态视频| 黄色日韩在线| 久久亚洲真实| 亚洲av成人一区二区三| 五月玫瑰六月丁香| 国产aⅴ精品一区二区三区波| 少妇人妻一区二区三区视频| 精品无人区乱码1区二区| 国产午夜福利久久久久久| 国产精品久久久久久人妻精品电影| 国产激情偷乱视频一区二区| 亚洲av美国av| 国产久久久一区二区三区| 色在线成人网| 成年免费大片在线观看| 精品人妻1区二区| 一本一本综合久久| 成年女人看的毛片在线观看| www.www免费av| 亚洲最大成人中文| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 国产主播在线观看一区二区| 美女扒开内裤让男人捅视频| 美女大奶头视频| 国产麻豆成人av免费视频| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 欧美一级a爱片免费观看看| 久久这里只有精品中国| 美女扒开内裤让男人捅视频| 色噜噜av男人的天堂激情| 欧美色欧美亚洲另类二区| 日韩免费av在线播放| 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 一级毛片精品| 日韩三级视频一区二区三区| 日日夜夜操网爽| 亚洲av美国av| 精品一区二区三区av网在线观看| 88av欧美| 人妻丰满熟妇av一区二区三区| 久久天堂一区二区三区四区| 日韩欧美国产在线观看| 日韩 欧美 亚洲 中文字幕| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站 | 最好的美女福利视频网| 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 国产真实乱freesex| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 搞女人的毛片| 国产高清有码在线观看视频| 色老头精品视频在线观看| 国产伦人伦偷精品视频| 免费看光身美女| 国产精品av久久久久免费| 少妇的逼水好多| www.999成人在线观看| 国产高清videossex| 热99在线观看视频| 亚洲第一电影网av| 免费av毛片视频| 精品日产1卡2卡| 一级a爱片免费观看的视频| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 亚洲五月婷婷丁香| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 欧美成人性av电影在线观看| 老熟妇乱子伦视频在线观看| 亚洲五月天丁香| 亚洲最大成人中文| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| 免费搜索国产男女视频| 黄色成人免费大全| 性色avwww在线观看| 久久国产精品影院| 午夜福利在线观看吧| 成年版毛片免费区| 在线观看午夜福利视频| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 999久久久国产精品视频| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看 | 国产伦在线观看视频一区| 久久久精品欧美日韩精品| 亚洲国产欧美网| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 久久久久久久午夜电影| 国产熟女xx| 黄色视频,在线免费观看| 欧美日本视频| 欧美日韩乱码在线| 757午夜福利合集在线观看| av视频在线观看入口| 日韩精品中文字幕看吧| 欧美黑人巨大hd| 国产成+人综合+亚洲专区| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 一二三四社区在线视频社区8| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 成人精品一区二区免费| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 看黄色毛片网站| 中文字幕熟女人妻在线| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 99国产精品一区二区三区| 少妇裸体淫交视频免费看高清| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久毛片微露脸| 欧美日本视频| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 欧美黑人巨大hd| 又紧又爽又黄一区二区| 亚洲色图 男人天堂 中文字幕| 成人av一区二区三区在线看| 在线看三级毛片| 亚洲国产精品sss在线观看| 久久草成人影院| avwww免费| 国产av一区在线观看免费| 国产精品一及| 国产激情欧美一区二区| 亚洲九九香蕉| 成年版毛片免费区| 美女cb高潮喷水在线观看 | 国产成人欧美在线观看| 日本 av在线| 国产人伦9x9x在线观看| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 51午夜福利影视在线观看| 成人国产综合亚洲| 桃红色精品国产亚洲av| 日韩免费av在线播放| 久久久久性生活片| 色噜噜av男人的天堂激情| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 国产黄色小视频在线观看| 色老头精品视频在线观看| 亚洲精华国产精华精| 动漫黄色视频在线观看| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 国产高清videossex| 天堂动漫精品| 亚洲国产欧美网| 国产伦人伦偷精品视频| 麻豆成人av在线观看| tocl精华| 欧美又色又爽又黄视频| 久久久久国产一级毛片高清牌| av欧美777| 日本一本二区三区精品| 久久精品综合一区二区三区| 国产精品99久久久久久久久| 欧美xxxx黑人xx丫x性爽| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 亚洲欧美日韩无卡精品| av黄色大香蕉| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 成人午夜高清在线视频| 精品国产亚洲在线| 免费在线观看成人毛片| 久久亚洲精品不卡| 看免费av毛片| 国内毛片毛片毛片毛片毛片| 免费av不卡在线播放| 毛片女人毛片| av中文乱码字幕在线| 91麻豆av在线| 在线免费观看的www视频| 国产精品野战在线观看| 一夜夜www| 国产视频一区二区在线看| 成人性生交大片免费视频hd| 日韩欧美精品v在线| 午夜免费观看网址| 看片在线看免费视频| 99国产综合亚洲精品| 白带黄色成豆腐渣| 男人和女人高潮做爰伦理| 精品人妻1区二区| 熟女少妇亚洲综合色aaa.| 亚洲av免费在线观看| 一级毛片高清免费大全| 亚洲精品中文字幕一二三四区| av福利片在线观看| 女警被强在线播放| 色噜噜av男人的天堂激情| 黑人欧美特级aaaaaa片| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 18美女黄网站色大片免费观看| 悠悠久久av| 成年免费大片在线观看| 1024香蕉在线观看| 9191精品国产免费久久| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 人妻久久中文字幕网| 88av欧美| 无限看片的www在线观看| 久久久久国内视频| 日韩精品青青久久久久久| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| netflix在线观看网站| 久久亚洲真实| 999久久久国产精品视频| 亚洲欧美精品综合久久99| 日韩欧美三级三区| 中文资源天堂在线| 99riav亚洲国产免费| 久久精品人妻少妇| 亚洲精品乱码久久久v下载方式 | x7x7x7水蜜桃| 国产高清激情床上av| 最近最新中文字幕大全电影3| 精品久久久久久久毛片微露脸| 国产黄片美女视频| 亚洲人与动物交配视频| 色噜噜av男人的天堂激情| 国内精品久久久久精免费| 日本免费a在线| 亚洲 欧美 日韩 在线 免费| 亚洲一区高清亚洲精品| 亚洲av免费在线观看| 一本综合久久免费| 桃红色精品国产亚洲av| 村上凉子中文字幕在线| 久久午夜综合久久蜜桃| 叶爱在线成人免费视频播放| 国产精品久久久久久久电影 | 欧美乱色亚洲激情| 男插女下体视频免费在线播放| 国产男靠女视频免费网站| www.熟女人妻精品国产| 综合色av麻豆| 国产亚洲av高清不卡| 在线看三级毛片| 亚洲激情在线av| 欧美日本视频| 国产亚洲av嫩草精品影院| 亚洲真实伦在线观看| 中文在线观看免费www的网站| 亚洲av电影在线进入| 又紧又爽又黄一区二区| e午夜精品久久久久久久| 宅男免费午夜| 国产精品99久久久久久久久| 后天国语完整版免费观看| 精华霜和精华液先用哪个| 中文字幕久久专区| 国产成人精品久久二区二区91| 每晚都被弄得嗷嗷叫到高潮| 美女扒开内裤让男人捅视频| 视频区欧美日本亚洲| 婷婷精品国产亚洲av| 午夜激情福利司机影院| 亚洲激情在线av| 一本综合久久免费| 后天国语完整版免费观看| 99re在线观看精品视频| 国产激情偷乱视频一区二区| 最近最新免费中文字幕在线| 日本五十路高清| 黑人欧美特级aaaaaa片| 91在线精品国自产拍蜜月 | 国产精品爽爽va在线观看网站| 久久国产精品影院| 最新在线观看一区二区三区| 国产精品一区二区三区四区久久| 国产精品乱码一区二三区的特点| 真人一进一出gif抽搐免费| 国产不卡一卡二| 天堂av国产一区二区熟女人妻| 啪啪无遮挡十八禁网站| 欧美又色又爽又黄视频| 男女那种视频在线观看| 成人午夜高清在线视频| 又粗又爽又猛毛片免费看| 亚洲第一电影网av| 香蕉丝袜av| 午夜福利在线观看免费完整高清在 | av视频在线观看入口| 18禁观看日本| 一本精品99久久精品77| 观看美女的网站| 一区二区三区高清视频在线| 亚洲男人的天堂狠狠| 久久久久久久午夜电影| 亚洲熟女毛片儿| 久久久久国产一级毛片高清牌| 亚洲精品国产精品久久久不卡| 亚洲av五月六月丁香网| 国产日本99.免费观看| 国产高清视频在线观看网站| 成年版毛片免费区| 两人在一起打扑克的视频| www.999成人在线观看| 成年版毛片免费区| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 免费无遮挡裸体视频| av片东京热男人的天堂| 深夜精品福利| 精品福利观看| 欧美3d第一页| 国产一区二区激情短视频| 三级男女做爰猛烈吃奶摸视频| 最新在线观看一区二区三区| 99在线人妻在线中文字幕| 在线a可以看的网站| www国产在线视频色| 琪琪午夜伦伦电影理论片6080| 夜夜看夜夜爽夜夜摸| 色av中文字幕| 国产91精品成人一区二区三区| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 亚洲国产精品久久男人天堂| 国产极品精品免费视频能看的| 一级作爱视频免费观看| 久久精品人妻少妇| 校园春色视频在线观看|