• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers

    2022-09-24 08:00:14YiLiu劉毅YuanqiGu顧源琦YuNing寧鈺PengfeiChen陳鵬飛YaoYao姚堯YajunYou游亞軍WenjunHe賀文君andXiujianChou丑修建
    Chinese Physics B 2022年9期
    關(guān)鍵詞:劉毅亞軍鵬飛

    Yi Liu(劉毅) Yuanqi Gu(顧源琦) Yu Ning(寧鈺) Pengfei Chen(陳鵬飛) Yao Yao(姚堯)Yajun You(游亞軍) Wenjun He(賀文君) and Xiujian Chou(丑修建)

    1Taiyuan University of Technology,Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,Taiyuan 030024,China

    2Taiyuan University of Technology,Institute of Optoelectronic Engineering,College of Physics and Optoelectronics,Taiyuan 030024,China

    3Strong Digital Technology Co.,Ltd. (Thinvent),Nanchang 410000,China

    4North University of China,Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education,Taiyuan 030051,China

    5North University of China,College of Mechatronics Engineering,Taiyuan 030051,China

    6North University of China,Science and Technology on Electronic Test and Measurement Laboratory,School of Instrument and Electronics,Taiyuan 030051,China

    Keywords: Brillouin scattering,surface acoustic waves,hybrid acoustic waves,optical microfiber sensing

    1. Introduction

    Stimulated Brillouin scattering(SBS)in optical fiber is a third-order nonlinear effect[1]by photon-phonon coupling.[2]In standard optical fiber, the acoustic waves involved in SBS are bulk acoustic wave(BAW),in which the pump light both excites and interacts longitudinal and shear waves,producing backward-SBS(BSBS)and forward-SBS(FSBS),[3-6]respectively. The deviations between the pump light and the scattering light are Brillouin frequency shifts (BFS). The properties of fiber materials can be adjusted by the action of external physical field (stress, temperature, etc.), leading to corresponding changes in BFS of forward and backward scattering light. SBS has been studied intensely in applications such as forward/backward Brillouin sensors[7-11]and distributed/point fiber sensing.[12-17]Qianet al.realized the sensitive enhancement of a fiber laser sensor by Brillouin slow light.[18]Liuet al.realized a triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement.[19]Desmondet al.proposed a distributed forward Brillouin sensor based on light phase recovery.[20]

    It has been proved that both photons and phonons in optical microfibers are strongly constrained and highly overlapped in space,[21,22]producing new type of BS driven by SAWs and HAWs.[23,24]Generated by the interaction between incident light and the outer surface of the optical microfibers, SAWs’travel velocity are approximately 0.87 to 0.95 times than that of the shear waves along the microfiber surface.[25]While HAWs are generated by the strong coupling of longitudinal and shear waves, and propagate at a medium speed between shear and longitudinal waves are in the microfiber. SAWs and HAWs exist in different positions of the optical microfiber,[26]and have different Brillouin spectrum characteristic.[27]The BFS and Brillouin gain are affected by the structure, material and size of the optical microfibers. The SAW and HAW BS sensing performance of microfiber is expected to break through the limitation of standard optical fiber sensing. Moreover, the SAW BS can be controlled or enhanced by smallcore and high air-filling fraction microstructured fibers[28]and the photo-elastic and moving-boundary effects,[29]and eliminated for one polarization mode at certain core ellipticities.[30]The SAW and HAW BS have been applied to characterize of subwavelength-diameter tapered silica optical fibers,[31]obtain the values of the elastic constants[32-34]and optical sensing and detection.[35-37]

    In this paper, we demonstrate the temperature and strain sensitivities of SAW and HAW BS in optical microfibers,which is potential for new-type Brillouin fiber-optic sensing applications. We numerically simulate the frequencies of SAMs and HAMs using the elastodynamic equation including the electrostrictive stress[38-40]at 1μm diameter. Furthermore, the optical/acoustic distributions at 1μm diameter and the Brillouin spectrum of SAWs/HAWs with 1-1.3μm diameters are calculated, which are basically consistent with the reported results.[23]According to the influences of temperature and strain on material properties, the temperature/strain sensitivities and sensitivity-diameter slopes of the SAMs and HAMs are demonstrated from 1 μm to 1.3 μm diameters. In addition,it is shown that SAW and HAW BS can realize temperature and strain simultaneous sensing and have excellent sensing performance.

    2. Theoretical analysis

    2.1. Elastodynamic equation including electrostrictive stress

    Electrostriction of an acoustic phonon is obtained from the interaction of two incident photons satisfying the previous phase-matching conditions. The exact contribution from each mechanism can be calculated by the elastodynamic equation including the electrostrictive stress to more accurately study and calculate the frequency and displacement distributions of the acoustic wave in optical microfibers. The elastodynamic equation can be written as

    withci jklis the isotropic elastic matrix,χkli j=εimεjnpklmn,χkli jis the fourth-order polarization tensor,ε0andεijare the vacuum dielectric constant and the dielectric tensor of the medium, respectively.pklmnis the fourth-order photoelastic tensor,EkE?lis the dyadic vector of the electric field. The phonon lifetime takes into account the elastic losses assuming a complex elastic tensor whose imaginary part is a constant viscosity tensor times frequency. This loss model is compatible with the usual assumption that theQ×f=5 THz is a constant for a given material, withQthe quality factor andfthe acoustic frequency.

    The Brillouin gain factor and the backward Brillouin gain of acoustic mode can be written as[41]

    2.2. Temperature and strain sensing principles

    The temperature changes will affect the fiber’s four main material properties (refractive index, density, Poisson’s ratio and Young’s modulus) to influence the BFS (i.e., acoustic mode frequency). The effects of temperature and strain on material properties are[41]

    withn0= 1.444,ρ0= 2203 kg/m3,γ0= 0.17,E0=72.553 GPa are the initial refractive index, density, Poisson’s ratio and Young’s modulus of fused silica at 27°C.ΔTis the temperature change value.

    While the strain will induce elastic anisotropy in optical microfibers. The effective elastic tensor can be written as[42]

    withλ=16 GPa andμ=31 GPa are the Lam′e constants of fused silica and°denotes the Hadamard product. ˉεzzis the tensile strain.

    3. Results and discussion

    3.1. SAW and HAW BS in optical microfibers

    The cylindrical waveguide with 1μm diameter is numerically simulated based on a finite-element method.[43]The solid core made of silica is surrounded by air (n=1). With this size, the influence of radiation pressure is almost negligible in principle.[44]The optical power density of the fundamental guided optical mode in the silica bridge forλ=1550 nm is displayed in Fig. 1(a). The calculated effective refractive index is 1.1715. It can be indicated that a small part of the energy of the optical wave will leak out of the optical fiber from an evanescent field,but most of the energy of the optical wave is trapped in the optical fiber.

    The Brillouin spectra of SAWs and HAWs are significantly changed because their propagation speeds are different from that of BAWs. The BFSs of SAWs and HAWs are~6 GHz and~9 GHz, respectively. In addition, the SAWs are extremely sensitive to the fiber surface change, and the HAWs will produce multi-peak Brillouin scattering structures due to the different coupling ratios of longitudinal and shear waves. We numerically simulate the frequencies of SAMs at 5.34 GHz(SAM1)and 5.67 GHz(SAM2),HAMs at 8.48 GHz(HAM1) and 9.16 GHz (HAM2) with 1 μm fiber diameter,which are basically consistent with the reported results.[23]Every normalized acoustic mode displacement and density distribution are shown in Figs.1(b)-1(i),respectively.It can be seen the acoustic mode energy density of the SAWs is limited to the air-silica interface of the optical microfiber,causing mechanical ripples of several picometers. Inside of the microfiber,the acoustic mode density gradually decreases with the distance from the surface. The acoustic mode energy density of the HAWs is still confined in the center of the optical microfiber.

    Fig. 2. (a) Numerical simulation of the Brillouin spectra with optical microfiber diameter varying from 1μm to 1.3μm. (b)The acoustic frequency and Brillouin gain as a function of microfiber diameter.

    Figure 2(a) shows the numerical simulation of the Brillouin spectra with an optical microfiber diameter varying from 1 μm to 1.3 μm. The frequency of SAM1 increases from 5.3452 GHz to 5.5321 GHz and the Brillouin gain decreases from 7.2324 W-1·m-1to 6.2128 W-1·m-1. In contrast, we noticed that SAM2 has a greater frequency variation than SAM1 in Fig. 2(b). The frequency of SAM2 increases from 5.6710 GHz to 6.0858 GHz while the Brillouin gain decreases from 2.9372 W-1·m-1to 4.3159 W-1·m-1.The Brillouin gains of SAMs gradually decrease with diameter increasing, caused by strong effect of the decreased microfibers diameter on the acousto-optic interaction. The frequency of HAM1 decreases from 8.4820 GHz to 7.8046 GHz and the Brillouin gain increases from 9.9569 W-1·m-1to 37.6959 W-1·m-1, while the frequency of HAM2 increases from 9.1623 GHz to 9.5497 GHz and the Brillouin gain decreases from 9.8159 W-1·m-1to 9.5659 W-1·m-1. The phase-matching condition leads to the differences of Brillouin spectra of acoustic frequencies under different diameters. The different trends of two HAMs with diameters result from the different coupling ratios of longitudinal and shear waves under the boundary conditions of the waveguide,causing changes in group sound velocity and BFS. Compared with the Brillouin gain of 0.4 W-1·m-1in single-mode fiber,microfiber sensing has higher signal-to-noise ratio.

    3.2. Temperature and strain sensitivities

    The temperature and strain sensitivities of optical microfibers can be calculated by the variation of BFS with temperature and strain. Due to the polymer cladding,the maximal tensile strain in standard optical fibers is limited to 2%,but naturally the elasticity of silica glass allows going up to 6%.[45]Using Eqs.(3)and(4),the BFS of 1μm diameter optical fiber can be calculated at different temperatures and strains (compared with 0°C and no strain),as shown in Figs.3(a)and 3(b),respectively.It can be found that the BFS of SAMs and HAM2 are almost linear with temperature and strain. The SAM1 and SAM2 have the comparative temperature and strain coefficients with 0.458 MHz/°C(0.432 MHz/°C)and 65.94 MHz/%(73.02 MHz/%). The temperature and strain coefficients of HAM2 are 0.928 MHz/°C and 264.53 MHz/%. The BFS of HAW1 is linear 0.660 MHz/°C with temperature, but nonlinear with strain because of strain-induced elastic anisotropy.The strain sensitivity decreases with the increase of strain,ranging from 82.54 MHz/%to 109.50 MHz/%.

    Fig.3. (a)The temperature and(b)strain sensitivities of each acoustic wave mode are considered as a function of 1μm diameter optical fibers.

    3.3. Temperature and strain sensitivities under different fiber diameters

    The Brillouin resonances have high sensitivity to the geometric parameters of microfibers.[46]The temperature and strain sensitivities of each acoustic mode with a diameter varying from 1 μm to 1.3 μm as shown in Figs. 4(a) and 4(c),respectively. For unit consistency, write the strain sensitivity of 100 MHz/% as 0.01 MHz/με. The insets show the acoustic mode density distribution at 1 μm, 1.16 μm, and 1.3 μm diameters, respectively. In order to study the relationship between temperature/strain sensitivities and diameter change,we plot the temperature/strain sensitivity-diameter slope of each acoustic mode with a fiber diameter varying from 1 μm to 1.3μm as shown in Figs.4(b)and 4(d),respectively. The temperature sensitivity-diameter slopeTd= dT/ddis the derivative of temperature sensitivity to fiber diameterd, and strain sensitivity-diameter slopeSd= dS/ddis the derivative of the strain sensitivity to the fiber diameterd.

    It can be seen in Fig. 4(a) that the temperature sensitivities of the HAMs are significantly greater than that of the SAMs. As the fiber diameter changes from 1 μm to 1.3 μm, the temperature sensitivities of the SAMs gradually increase. The maximum temperature sensitivities of SAM1 and SAM2 are 0.557 MHz/°C and 0.568 MHz/°C at 1.3μm diameter,respectively,whereas those of the HAM1 and HAM2 are 0.744 MHz/°C at 1 μm diameter and 1.082 MHz/°C at 1.14μm diameter,respectively. It can be seen in Fig.4(b)that the temperature sensitivity-diameter slopes of the SAMs both are between 0.05 MHz/°C/μm and 0.25 MHz/°C/μm with diameter, while those of the HAMs are significantly changes.For instance,the temperature sensitivity-diameter slope of the HAM2 is-1.23 MHz/°C/μm at 1.3μm diameter. This means that the change in temperature sensitivity of-1.23 MHz/°C would be corresponding to the variation of one micrometer in fiber diameter.

    It can be seen in Fig.4(c)that the strain sensitivity of the HAM2 is 0.0289 MHz/μεat 1.1μm diameter,which is significantly greater than those of the SAMs and HAM1.As the fiber diameter changes from 1 μm to 1.3 μm, the strain sensitivities of SAMs increase gradually,and the maximum values are 0.008 MHz/μεand 0.0078 MHz/με, respectively. Whereas the strain sensitivity of HAM1 decreases with the increase of diameter. The green areas show the variation of strain sensitivity in the tensile strain of 1%-5%. Figure 4(d)shows the strain sensitivity-diameter slope of the SAMs are both between 1×10-4MHz/με/μm and 5×10-4MHz/με/μm, which is a small fluctuation compared to that of HAMs. For instance,the maximum strain sensitivity-diameter slope of the HAM2 is-0.0096 MHz/με/μm at 1.3μm diameter. The green areas indicate that the strain sensitivity of HAM1 tends to increase uniformly with diameter under 1%-5%tensile strain.

    Fig.4. (a)The temperature sensitivity and(b)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter.(c)The strain sensitivity and(d)sensitivity-diameters of each acoustic wave mode are considered as a function of the fiber diameter. The insets in(a),(c)show the acoustic mode density distribution at 1μm,1.16μm,and 1.3μm diameters,respectively. The gray areas in(b),(d)highlight the temperature/strain sensitivity-diameter slope 0.05 MHz/°C/μm-0.25 MHz/°C/μm and 1×10-4 MHz/με/μm-5×10-4 MHz/με/μm,respectively.

    3.4. SAW and HAW BS sensing performance

    Four acoustic modes excited at 1 μm diameter optical fiber are linearly related to strain and temperature, and their temperature and strain sensitivities are different. Therefore,the relationship between BFS and temperature/strain sensitivity is established by selecting any two acoustic modes, as shown below to realize simultaneous sensing of temperature and strain:

    withva0andvb0are any two of the acoustic mode frequencies at a temperature of 27°C and no strain, respectively.CTaandCTbare the temperature sensitivities ofva0andvb0.CεaandCεbare the strain sensitivities ofva0andvb0.

    In addition to improving the sensing sensitivities of temperature and strain,reducing the temperature and strain errors will also improve the multi-parameter sensing performance.The measurement errors of temperature and strain are due to the inaccurate determination of acoustic mode frequencies,which ignores the errors within the transfer matrix. Assume that the maximum measurement errors of acoustic mode frequencyδva=va-va0andδvb=vb-vb0are equal, denoted byδv=0.1 MHz.[47]Theδvwill be transferred to the temperature errorδTand strain errorδε, with transfer temperature coefficientβTand strain coefficientβε, which may be expressed as[48]

    withΔ=CTaCεb-CTbCεanot equal to zero.

    Through the above research, it is found that all the four acoustic modes in optical microfibers can realize multiparameter sensing. Temperature and strain errors were calculated by selecting two acoustic modes for comparison, as shown in Table 1. It can be seen the simultaneous sensing of SAW and HAW BS can achieve small temperature and strain errors. In particular, the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations are as low as 0.47°C and 21.58με,and 0.30°C-0.43°C and 15.09με-19.80με,respectively.

    Table 1. Temperature and strain errors calculated by SAMs and HAMs.

    Since the change of fiber diameter will affect the temperature and strain sensitivity of each acoustic mode,the temperature and strain errors of SAM1-HAM2 and HAM1-HAM2 combinations under different diameters are different,as shown in Fig. 5. The minimum errors of SAM1-HAM2 combination are 0.47°C and 20.96 μεat 1.06 μm, respectively. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47με-16.25μεat 1.08μm,respectively.Then their temperature and strain error coefficients increase with the diameter increasing,and the increase amplitude of SAM1-HAM2 combination was greater than that of HAM1-HAM2 combination.

    Table 2 lists the temperature and strain errors based on SBS in different optical fibers. By comparison, the errors of multi-parameter sensing using acoustic modes in optical microfibers are smaller. In addition,when using microfiber sensing,the light field constraint ability is strong,the bending loss is low, and the bending radius can reach micron level, which can realize the manufacture of highly compact photon sensor.Microfiber has a large tensile strain of up to 6%,which is suitable for large strain sensing. And when Brillouin scattering is used in microfiber, it has large Brillouin gain, high signal-tonoise ratio and is easy to detect.

    Table 2. The temperature and strain errors based on SBS in different optical fibers.

    Fig.5. The temperature(a)and strain(b)errors of SAM2-HAM2 and HAM1-HAM2 acoustic mode combinations are considered as a function of the fiber diameter.

    4. Conclusion

    In conclusion, the temperature and strain sensitivities of SAW/HAW BS in optical microfibers with 1 μm-1.3 μm diameters are reported. It is found that the temperature and strain sensitivities of HAMs are as high as 1.082 MHz/°C and 0.0289 MHz/μεrespectively, which are significantly greater than those of the SAMs (0.568 MHz/°C and 0.0109 MHz/με). Such results show that HAW BS is more suitable for high temperature and strain resolutions in microfiber sensing application.[53]Whereas, the temperature and strain sensitivity-diameter slopes of the SAMs range from 0.05 MHz/°C/μm to 0.25 MHz/°C/μm and 0.0001 MHz/με/μm to 0.0005 MHz/με/μm with diameter, which is much smaller than the value about-1.23 MHz/°C/μm and-0.0096 MHz/με/μm of the HAMs at 1.3μm diameter. It suggests that the temperature and strain sensitivities of the SAMs are approximately the same with the slightly non-uniform diameter, indicating that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. In addition,the applications of SAW and HAW BS in simultaneous sensing are analyzed.The combinations of SAM1-HAM2 and HAM1-HAM2 can obtain small temperature and strain errors. The minimum errors of HAM1-HAM2 combination are 0.30°C-0.34°C and 14.47 με-16.25 με, respectively. These results indicate that microfibers have great potential in point and distributed fiber sensing.

    Acknowledgments

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167),the National Natural Science Foundation of China(Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China(Grant No.201903D121124),and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112).

    猜你喜歡
    劉毅亞軍鵬飛
    姜亞軍治療焦慮性失眠經(jīng)驗
    吳亞軍:白手起家的女首富
    時代郵刊(2019年24期)2020-01-02 11:04:52
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(2019年9期)2019-10-12 06:33:44
    給自己留一條路
    河北省沙河市第二小學(xué) 劉毅可
    雙11商戰(zhàn),永久、鳳凰奪冠亞軍
    中國自行車(2017年1期)2017-04-16 02:53:45
    A Precritical Analysis of the PoemThe Passionate Shepherd to His Love by Marlowe
    99国产极品粉嫩在线观看| 最近在线观看免费完整版| 美女高潮的动态| 国产在线精品亚洲第一网站| 国产免费男女视频| 91久久精品电影网| 变态另类丝袜制服| 亚洲国产色片| 日日摸夜夜添夜夜添小说| 99视频精品全部免费 在线| 午夜福利欧美成人| 夜夜爽天天搞| 国产久久久一区二区三区| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 欧美日韩中文字幕国产精品一区二区三区| 日韩有码中文字幕| 窝窝影院91人妻| 免费av不卡在线播放| 中文字幕人成人乱码亚洲影| 一个人观看的视频www高清免费观看| 国内精品久久久久久久电影| 久久久精品大字幕| 夜夜看夜夜爽夜夜摸| 国产免费av片在线观看野外av| 岛国在线免费视频观看| 一级av片app| netflix在线观看网站| 国产爱豆传媒在线观看| 国产精品爽爽va在线观看网站| 欧美日韩福利视频一区二区| 欧美最黄视频在线播放免费| 日韩免费av在线播放| www.999成人在线观看| 男人的好看免费观看在线视频| 中文字幕免费在线视频6| 可以在线观看毛片的网站| 天天一区二区日本电影三级| 亚洲av五月六月丁香网| 九九在线视频观看精品| 国产高清视频在线播放一区| 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 琪琪午夜伦伦电影理论片6080| 成人午夜高清在线视频| 国产亚洲av嫩草精品影院| 三级毛片av免费| 国产精品久久电影中文字幕| 窝窝影院91人妻| 一本综合久久免费| 亚洲精品在线美女| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | 精品一区二区三区视频在线观看免费| 嫩草影视91久久| 色在线成人网| 国产精品,欧美在线| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩卡通动漫| 国产精品嫩草影院av在线观看 | 久久午夜亚洲精品久久| 蜜桃亚洲精品一区二区三区| 看片在线看免费视频| 又紧又爽又黄一区二区| 久久久久久久久久黄片| 精品人妻熟女av久视频| 欧美激情国产日韩精品一区| 日韩欧美精品v在线| 欧美一区二区亚洲| 亚洲男人的天堂狠狠| 国产精品国产高清国产av| 久久精品久久久久久噜噜老黄 | 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| 深夜精品福利| 99热6这里只有精品| 9191精品国产免费久久| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 91麻豆av在线| 国产亚洲精品久久久久久毛片| 一进一出好大好爽视频| 简卡轻食公司| 欧美乱色亚洲激情| 91麻豆精品激情在线观看国产| 午夜免费激情av| 亚洲在线自拍视频| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 一进一出抽搐动态| 久久精品国产亚洲av涩爱 | 日韩大尺度精品在线看网址| av天堂在线播放| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 久久精品影院6| 熟女人妻精品中文字幕| 国产免费男女视频| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 日日夜夜操网爽| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 亚洲第一电影网av| 久久久久久九九精品二区国产| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 麻豆成人av在线观看| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| 特级一级黄色大片| 国产精品一及| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 欧美黄色片欧美黄色片| 99热这里只有是精品在线观看 | 男插女下体视频免费在线播放| 免费在线观看日本一区| 成人三级黄色视频| 啪啪无遮挡十八禁网站| 免费人成在线观看视频色| 久久欧美精品欧美久久欧美| 毛片一级片免费看久久久久 | 日韩欧美在线乱码| avwww免费| 日韩欧美精品免费久久 | 免费看美女性在线毛片视频| 高清在线国产一区| 精品人妻偷拍中文字幕| 啪啪无遮挡十八禁网站| 国产精品电影一区二区三区| 欧美bdsm另类| 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 日韩欧美精品免费久久 | 日本a在线网址| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 最近中文字幕高清免费大全6 | 天堂av国产一区二区熟女人妻| 国产野战对白在线观看| 高清毛片免费观看视频网站| 色5月婷婷丁香| 日韩中字成人| 国产成人影院久久av| 99久久精品一区二区三区| 国产男靠女视频免费网站| 啪啪无遮挡十八禁网站| 看片在线看免费视频| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 色吧在线观看| 久久草成人影院| 精品不卡国产一区二区三区| 精品久久国产蜜桃| 99热这里只有精品一区| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 成人一区二区视频在线观看| 午夜福利欧美成人| 三级毛片av免费| 最好的美女福利视频网| 国产亚洲av嫩草精品影院| 18+在线观看网站| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 免费观看的影片在线观看| 久久久久久久久中文| 久久精品国产自在天天线| 亚洲成av人片免费观看| 日韩国内少妇激情av| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 99视频精品全部免费 在线| 亚洲av日韩精品久久久久久密| 中出人妻视频一区二区| 91字幕亚洲| 国产高清有码在线观看视频| 看片在线看免费视频| 一区福利在线观看| 日本黄色片子视频| 国产精品一区二区性色av| 日本免费a在线| 午夜久久久久精精品| 成人国产一区最新在线观看| 青草久久国产| 一个人看的www免费观看视频| 亚洲av成人av| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 欧美zozozo另类| 怎么达到女性高潮| 日韩中字成人| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 俄罗斯特黄特色一大片| 99热这里只有精品一区| 在线观看66精品国产| 亚洲真实伦在线观看| 在线免费观看的www视频| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片免费观看| 精品人妻一区二区三区麻豆 | 嫩草影院新地址| 日本黄色片子视频| 日本熟妇午夜| 国产野战对白在线观看| 国产精品女同一区二区软件 | 亚洲不卡免费看| 欧美激情久久久久久爽电影| 国产一区二区在线观看日韩| 男女之事视频高清在线观看| 日韩欧美在线二视频| 99视频精品全部免费 在线| 亚洲18禁久久av| 精品熟女少妇八av免费久了| 看片在线看免费视频| 最好的美女福利视频网| 国产成人aa在线观看| 成人国产综合亚洲| 国产亚洲欧美在线一区二区| 高清在线国产一区| 免费看a级黄色片| 国产亚洲精品久久久com| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久大精品| 成人美女网站在线观看视频| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app | 欧美一区二区国产精品久久精品| 高清在线国产一区| 男人舔女人下体高潮全视频| 国产成人欧美在线观看| 此物有八面人人有两片| 男插女下体视频免费在线播放| 99国产精品一区二区三区| 十八禁网站免费在线| 亚洲人成网站在线播| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 9191精品国产免费久久| 国产精品日韩av在线免费观看| 亚洲美女搞黄在线观看 | ponron亚洲| 中国美女看黄片| 日日摸夜夜添夜夜添av毛片 | 男插女下体视频免费在线播放| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 欧美日韩国产亚洲二区| 亚洲专区国产一区二区| 久久国产乱子免费精品| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 99久久精品热视频| 午夜免费激情av| 免费一级毛片在线播放高清视频| 日韩欧美国产一区二区入口| 制服丝袜大香蕉在线| 国产成人啪精品午夜网站| 一区二区三区激情视频| 色哟哟·www| 国产视频内射| 日本熟妇午夜| 免费av毛片视频| 亚洲欧美日韩高清专用| 91在线观看av| avwww免费| 国产精品嫩草影院av在线观看 | 国产精品野战在线观看| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 亚洲电影在线观看av| 一个人观看的视频www高清免费观看| 久久久久免费精品人妻一区二区| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 亚洲熟妇熟女久久| 午夜精品一区二区三区免费看| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| 日韩欧美 国产精品| 在线观看午夜福利视频| 精品福利观看| 国产精品久久久久久人妻精品电影| 搡老熟女国产l中国老女人| 麻豆国产97在线/欧美| 日韩欧美国产在线观看| 国产精品一及| 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 女人被狂操c到高潮| 波多野结衣高清无吗| 国产真实乱freesex| 九九在线视频观看精品| 十八禁人妻一区二区| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 免费人成在线观看视频色| 在线免费观看的www视频| 国产成人啪精品午夜网站| 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 大型黄色视频在线免费观看| 亚洲最大成人手机在线| 国产极品精品免费视频能看的| 国产aⅴ精品一区二区三区波| 国产高清激情床上av| 成人鲁丝片一二三区免费| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 亚洲欧美清纯卡通| 日本黄色视频三级网站网址| 亚洲成av人片免费观看| 999久久久精品免费观看国产| 久久久久国内视频| 在线a可以看的网站| 夜夜爽天天搞| av天堂中文字幕网| 色播亚洲综合网| 亚洲国产精品合色在线| 色播亚洲综合网| 中文资源天堂在线| 极品教师在线免费播放| 久久久久免费精品人妻一区二区| 超碰av人人做人人爽久久| 中文字幕av在线有码专区| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 美女高潮喷水抽搐中文字幕| 国产色爽女视频免费观看| 国产精品一及| 国产成人a区在线观看| 他把我摸到了高潮在线观看| 老女人水多毛片| 亚洲综合色惰| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产中年淑女户外野战色| 老熟妇仑乱视频hdxx| 久久久色成人| 精品人妻偷拍中文字幕| 国产中年淑女户外野战色| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 国产爱豆传媒在线观看| 99热6这里只有精品| 日韩精品青青久久久久久| 成人av在线播放网站| 国产高清视频在线播放一区| 无人区码免费观看不卡| 国产野战对白在线观看| 精品午夜福利视频在线观看一区| 最新中文字幕久久久久| 高清在线国产一区| 在线免费观看的www视频| 国产色爽女视频免费观看| 99热只有精品国产| 成人美女网站在线观看视频| 有码 亚洲区| 国产精品野战在线观看| 乱人视频在线观看| 日本熟妇午夜| 精品久久久久久久末码| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 永久网站在线| 麻豆成人午夜福利视频| 国产精品影院久久| 成年女人毛片免费观看观看9| 91av网一区二区| 成人亚洲精品av一区二区| 少妇丰满av| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| 国产黄片美女视频| 青草久久国产| 好男人电影高清在线观看| 在线免费观看不下载黄p国产 | 亚洲av一区综合| 国产精品亚洲美女久久久| 性色av乱码一区二区三区2| 搞女人的毛片| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 成人无遮挡网站| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 老熟妇仑乱视频hdxx| 99热6这里只有精品| 色在线成人网| 亚洲不卡免费看| 久久99热这里只有精品18| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久草成人影院| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 久久精品国产清高在天天线| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 内射极品少妇av片p| 丝袜美腿在线中文| 欧美区成人在线视频| 午夜福利视频1000在线观看| 国产高潮美女av| 亚洲人成伊人成综合网2020| 3wmmmm亚洲av在线观看| 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久,| 嫩草影院入口| 国产老妇女一区| 青草久久国产| 91字幕亚洲| 亚洲一区高清亚洲精品| 亚洲精品成人久久久久久| 日本在线视频免费播放| av欧美777| 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 久久伊人香网站| 丁香欧美五月| 欧美中文日本在线观看视频| 欧美bdsm另类| 久久草成人影院| 久久久成人免费电影| 国产在视频线在精品| 亚洲av成人av| 91在线观看av| 嫩草影院入口| 国产高潮美女av| 99热这里只有是精品50| 亚洲av美国av| 少妇的逼水好多| 一夜夜www| 又紧又爽又黄一区二区| 最近在线观看免费完整版| 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区| 国产精品免费一区二区三区在线| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 日本成人三级电影网站| 熟女人妻精品中文字幕| av国产免费在线观看| 中文在线观看免费www的网站| 免费高清视频大片| 国产免费男女视频| 亚洲五月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| 午夜日韩欧美国产| 女人十人毛片免费观看3o分钟| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 亚洲成人精品中文字幕电影| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 午夜老司机福利剧场| 在线观看av片永久免费下载| 中出人妻视频一区二区| 88av欧美| 欧美乱色亚洲激情| 日本一二三区视频观看| 97碰自拍视频| 日本三级黄在线观看| 国产高清视频在线观看网站| 国产精品亚洲美女久久久| 久久午夜福利片| 国产精品综合久久久久久久免费| h日本视频在线播放| 久久午夜亚洲精品久久| 国产真实伦视频高清在线观看 | 一个人看视频在线观看www免费| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 国产精品久久电影中文字幕| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 最近在线观看免费完整版| 久久国产乱子伦精品免费另类| 尤物成人国产欧美一区二区三区| 丰满乱子伦码专区| 国产乱人伦免费视频| 麻豆成人午夜福利视频| 国产一区二区在线观看日韩| 啦啦啦观看免费观看视频高清| 在线观看美女被高潮喷水网站 | 亚洲国产精品成人综合色| 亚洲一区二区三区色噜噜| 欧美色欧美亚洲另类二区| 一区福利在线观看| 日日摸夜夜添夜夜添小说| 久久久色成人| 五月伊人婷婷丁香| 看免费av毛片| 久久久久久久精品吃奶| 国产爱豆传媒在线观看| 亚洲人成网站在线播| 床上黄色一级片| 日韩国内少妇激情av| 成年人黄色毛片网站| 自拍偷自拍亚洲精品老妇| 一本精品99久久精品77| 丰满乱子伦码专区| 欧美最新免费一区二区三区 | 午夜福利在线观看免费完整高清在 | 午夜福利在线观看免费完整高清在 | 国内少妇人妻偷人精品xxx网站| 亚洲欧美精品综合久久99| www.色视频.com| 免费一级毛片在线播放高清视频| 毛片一级片免费看久久久久 | 精品国产三级普通话版| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| 成人av一区二区三区在线看| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 无人区码免费观看不卡| www.色视频.com| 国产亚洲精品av在线| 国模一区二区三区四区视频| 日韩欧美国产一区二区入口| 中文字幕人妻熟人妻熟丝袜美| 午夜福利免费观看在线| 黄色日韩在线| 国产日本99.免费观看| 国产精品久久久久久精品电影| 亚洲成av人片在线播放无| 色精品久久人妻99蜜桃| 亚洲真实伦在线观看| 十八禁国产超污无遮挡网站| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 天堂√8在线中文| 亚洲av五月六月丁香网| 一级黄片播放器| 色吧在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99在线视频只有这里精品首页| 国产一区二区在线观看日韩| 午夜视频国产福利| 午夜老司机福利剧场| 村上凉子中文字幕在线| 免费观看精品视频网站| 欧美成人a在线观看| 久久久久亚洲av毛片大全| 国产aⅴ精品一区二区三区波| 我要搜黄色片| 1000部很黄的大片| 色尼玛亚洲综合影院| 亚洲av电影在线进入| 全区人妻精品视频| 极品教师在线视频| 色综合站精品国产| 久久香蕉精品热| 国产精品亚洲av一区麻豆| 国产国拍精品亚洲av在线观看| 婷婷亚洲欧美| 亚洲欧美激情综合另类| 国产高清视频在线观看网站| 亚洲av五月六月丁香网| 久久久久性生活片| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看| 无人区码免费观看不卡| 99热只有精品国产| 国产精品一区二区三区四区免费观看 | 亚洲国产欧美人成| .国产精品久久| 国产麻豆成人av免费视频| 国产精品免费一区二区三区在线| 少妇熟女aⅴ在线视频| 51国产日韩欧美| 欧美bdsm另类| 国产精品不卡视频一区二区 | 美女大奶头视频| 亚洲av中文字字幕乱码综合| 久久久久九九精品影院| 国产不卡一卡二| 小蜜桃在线观看免费完整版高清| 美女cb高潮喷水在线观看| 色噜噜av男人的天堂激情| 亚洲午夜理论影院| 午夜精品在线福利| 久久精品国产亚洲av香蕉五月| 国产成+人综合+亚洲专区| 久99久视频精品免费| 丰满人妻一区二区三区视频av| 国产精品国产高清国产av| 97超级碰碰碰精品色视频在线观看|