• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-mode lasing in a coupled twin circular-side-octagon microcavity

    2022-09-24 08:00:12KeYang楊珂YueDeYang楊躍德JinLongXiao肖金龍andYongZhenHuang黃永箴
    Chinese Physics B 2022年9期

    Ke Yang(楊珂) Yue-De Yang(楊躍德) Jin-Long Xiao(肖金龍) and Yong-Zhen Huang(黃永箴)

    1State Key Laboratory of Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: semiconductor lasers,whispering-gallery mode,coupled microcavity

    1. Introduction

    Benefiting from high quality (Q) factor and small mode volume,whispering-gallery-mode(WGM)microcavities have attracted considerable interest in both fundamental physics research and practical device applications, such as microlasers and optical filters.[1-7]Among the WGM microcavities with various shapes, including microspheres,[8-11]microdisks,[12-14]microtoroids,[15,16]and microrings,[17,18]symmetric circular microresonators have been demonstrated successfully for ultralow-threshold microlasers, due to their ultrahigh quality WGMs.[19,20]However, the disadvantage of these WGM microcavity structures is their in-plane isotropy resulting in extremely low efficiency of collection in free space. In order to overcome the drawback, various WGM microcavities by carefully modifying the cavity geometries,e.g., spiral-shaped cavities, limac?on cavities, and the “Face”cavities, were demonstrated experimentally for directional emission.[21-23]

    Besides circular resonators cavity with smooth boundaries, regular polygonal WGM microcavities have also been extensively investigated for decades due to their special mode properties.[24-29]Since circular sides as concave reflectors enhance the mode confinement and deformed microcavities have different mode structures, various circular-side polygonal microcavities have been widely studied.[30,31]Circularside square microcavity was designed for single-mode lasing and dual-mode lasing.[32]Various WG-like modes excited in hexagonal microcavities with different corner curvatures were analyzed in detail revealing the limit of theQfactor of the quasi-WGM.[33,34]Circular-side hexagonal microlasers were proposed and demonstrated for enhancing the modeQfactor and realizing single-mode operation.[35]The sensitivity to feedback level of circular-side hexagonal microlaser was numerically simulated, which owns a smaller internal cavity round-trip time compared with distributed feedback laser(DFB) laser.[36]Two different modes excited in an octagonal toroidal microcavity were analyzed,[37]and stable optical coupling in octagonal silica toroid microcavity was experimentally demonstrated.[38]

    However, the integrated circular-side-octagon microcavities have rarely been studied. Previously, we proposed a twin circular-side-octagon microcavity(TCOM)laser with octagon’s flat-sideaof 15 μm and deformation degree (curvature)ofM=1.5,and investigated numerically and experimentally the lasing mode control from multiple coupled modes to a single global mode.[39]In this paper, we propose variablecurvature coupled TCOM lasers to comprehensively investigate the different curvatures on modeQfactor and lasing characteristics. Although the change of the curvature appears to be straightforward,it is of great significance to design the appropriate modeQfactors as well as the numbers and interval of lasing modes. The wavelength intervals and the number of the lasing modes for the TCOM lasers are experimentally demonstrated by controlling the curvature of the circular sides,which is consistent with the results of numerical simulations.Finally,lasing performances for the microlasers are characterized and compared.

    2. Mode characteristics analysis

    Figure 1(a) shows the two-dimensional (2D) structure schematic of a TCOM composed of two identical circularside octagon microcavities(COMs). Figure 1(b)illustrates the schematic diagram of two adjacent sides of a COM, whose geometry is decided by octagon’s flat-sideaand deformation degree (curvature)M=D/f, whereDis the midpointto-midpoint distance, andfis the focal length along the line connecting the midpoints of adjacent sides satisfyingf=Rcosθ/2, withRandθrepresenting the radius of the circular side and the incident angle of the light ray propagating along the line connecting the midpoints of adjacent sides, respectively. The characteristics of the transverse-electric (TE)modes for the TCOMs are numerically investigated based on the two-dimensional (2D) finite element method (FEM)(COMSOL Multiphysics) by solving Maxwell’s equations,due to TE-dominant gain of the compressively stressed multiple quantum wells (MQW) epitaxial wafer used in the experiment. The time dependence of exp(-iωt) is used in the numerical simulation. The microcavity with a refractive index of 3.2 is laterally confined by bisbenzocyclobutene(BCB)layer with a refractive index of 1.54. We set a perfect matched layer(PML)absorbing boundary with a width of 1μm for terminating the simulation window, and the maximum grid size is taken to one-sixth of the mode wavelength (1550 nm) to ensure the accuracy of the computation. The modeQfactors can be calculated throughQ=Re(ω)/|2Im(ω)|, whereωis calculated complex mode frequency.

    Fig.1. Schematic diagram of(a)the TCOMs and(b)two adjacent circular-sides of a COM.(c)Microscopic image of the fabricated TCOM lasers with a=15μm and M=0.5. (d)Magnetic field(|Hz|)distributions of the four-bounce modes(Fn)at M=2,where n indicates the order of the mode.

    To systematically investigate the effects of different curvatures on the mode characteristics for TCOMs witha=15 μm, we first consider the influence of the curvature to cavity B by setting cavity A as a loss cavity with the imaginary part of the refractive index(ΔIm(nA))of 2×10-3. The high-Qmode patterns for TCOMs with different curvatures are four-bounce modes, which are the fundamental (zeroth-),first-,second-,third-,fourth-,and fifth-order marked byF,F1,F2,F3,F4,andF5,etc.,respectively. Figure 1(d)illustrates the corresponding magnetic field amplitude distributions for the four-bounce modes of TCOM atM=2, which are similar to that at other deformation degrees. The four-bounce modes are formed by the total reflection of the light ray through four reflection points. Figures 2(a)-2(f) show the simulation results of modeQfactors versus mode wavelengths atMof 0,0.5,1,1.5, and 2 for TCOMs, respectively. The longitudinal mode intervals for four-bounce modes decrease with the increase ofM,owing to the increasing optical paths,i.e.,the longitudinal mode intervals atMof 0,0.5,1,1.5,and 2 are 7.35,7.27,7.21,7.17,and 7.08 nm,respectively.

    As shown in Fig. 2(a), the modeQfactors are 2.0×104and 1.9×104forFmodes ofM=0 at wavelengths of 1548.42 and 1555.77 nm, respectively. The wavelengths forF1mode are found at 1554.68 nm with the modeQfactor of 3.6×103,and the wavelength interval betweenF1mode andFmode at 1555.77 nm is 1.09 nm. ForM=0.5, the wavelengths ofFmodes are 1548.92 and 1556.19 nm,with corresponding modeQfactors both around 1.5×107in Fig. 2(b). ModeQfactors ofF1andF2modes at the wavelengths of 1552.85 and 1549.50 nm are 6.4×105and 5.0×104,respectively,and the wavelength intervals betweenF0mode at 1556.19 nm andF1,F2modes are 3.34 and 6.69 nm, respectively. AtM=1, we findFmodes at 1549.67 and 1556.88 nm with corresponding modeQfactors of 2.3×104and 2.2×104in Fig.2(c).ModeQfactors of modesF1andF2at the wavelengths of 1552.04 and 1554.41 nm are 8.9×103and 4.9×103,respectively,with the wavelength intervals betweenF0mode at 1549.67 nm andF1,F2modes are 2.37 and 4.74 nm,respectively. Figure 2(d)depicts that theF,F1,F2,F3,andF4modes have modeQfactors in the order of 108,107,106,105,and 104atM=1.5,with the corresponding wavelengths of 1550.33 (1557.50), 1551.57,1552.78, 1554.00, and 1555.23 nm, respectively. The wavelength intervals betweenF0mode at 1550.33 nm andF1,F2,F3,F4modes are 1.24, 2.45, 3.67, and 4.90 nm, respectively.AtM=2,Fmodes are found at 1550.93 and 1558.01 nm with corresponding modeQfactors of 1.1×108and 7.2×107, as indicated in Figs. 2(e).F1,F2,F3,F4, andF5modes are at the wavelengths of 1550.97, 1551.02, 1551.08, 1551.13, and 1554.18 nm corresponding to the wavelength intervals of adjacent modes of 0.05, 0.06, 0.05, and 0.05 nm, as shown in Fig. 2(f), as well as the enlarged view of Fig. 2(e) around 1551.0 nm. Actually, the TCOM withM=0 has no deformation,which means that there is no light convergence effect of the circular side. Compared with the TCOMs atMof 0,the TCOMs atMof 0.5,1,1.5,and 2 have enhanced modeQfactors,owing to the light confinement effect of the concave mirrors. The ray dynamics of TCOM withM=1 is chaotic,and the regular islands in the phase space are destroyed.[31]The destruction of regular island results in degradation of mode quality factors and dispersed mode field distributions. Therefore,the modeQfactors for the case ofM=1 are much smaller than those withMof 0.5,1.5,and 2.

    Fig. 2. Mode Q factors versus the variation of mode wavelengths for the TCOMs with a=15 μm: (a) M=0, (b) M=0.5, (c) M=1, (d)M=1.5,and(e)-(f)M=2 by FEM,respectively. (f)The enlarged view of the mode Q factors versus wavelength around 1551 nm at M=2.

    Fig. 3. Mode wavelengths and Q factors for the global modes versus M. The solid and hollow symbols correspond to mode wavelengths and Q factors, respectively. The inset is the magnetic field distribution for the global mode of TCOM at M=0.5. The circle and triangle stand for different longitudinal modes of the global modes.

    As both microcavities are at ΔIm(nA)=ΔIm(nB)=0,we can find a global mode with the mode pattern of an 8-shaped pattern with modeQfactor around the order of 104or 105in the variable-curvature TCOMs,in addition to traditional fourbounce modes. Meanwhile,the magnetic field distributions of the four-bounce modes are the same as those at ΔIm(nA)=0 and ΔIm(nB)=2×10-3and are nearly zero overlap between the modes confined in the cavities A and B. Figure 3 shows the mode wavelengths andQfactors versusMfor the global modes. The magnetic field distribution for the global mode of TCOM atM=0.5 is shown in the inset of Fig.3. The global mode is formed by the total reflection of the light ray through six reflection points in the whole coupled cavity. The longitudinal mode intervals for the global modes atMof 0,0.5,1,1.5,and 2 are about 3.7,3.6,3.6,3.6,and 3.6 nm,respectively.The longitudinal-mode wavelength intervals for the global modes at differentMare half of that of four-bounce modes,because the optical path of the global mode is twice the interval of fourbounce modes. We can conclude that global mode with modeQfactor around the order of 104or 105distributing throughout coupled microcavity is insensitive to curvature compared to the four-bounce mode.

    3. Device fabrication and lasing characteristics

    The TCOM lasers witha=15 μm andM=0, 0.5, 1,1.5,and 2 are fabricated on an AlGaInAs/InP epitaxial MQW wafer with a photoluminance wavelength of about 1517 nm,with similar fabrication processes as in Ref. [40]. The active region of the laser wafer consists of six pairs of compressively strained multiple quantum wells, with 6-nm-thick quantum wells and 9-nm-thick barrier layers. Use plasma-enhanced chemical vapor deposition (PECVD) to deposit a SiO2layer,and standard contacting photolithography and inductively coupled plasma(ICP)etching techniques are employed to the coupled cavity with a deep etching depth of about 4 μm. After the BCB planarization, a 4 μm wide isolation trench is accomplished by ICP etching the p-InGaAs ohmic contact layer off between both microcavities to guarantee mutual electrical isolation. A Ti/Pt/Au p-electrode pad is deposited by e-beam evaporation, then an Au/Ge/Ni n-electrode pad is deposited by magnetron sputtering. The microscope image of the fabricated TCOM laser withaof 15μm andMof 0.5 is illustrated in Fig. 1(c). The devices are mounted on an AlN sub-mount for testing with a temperature of 291 K controlled by a thermoelectric cooler(TEC).

    Fig.4. Output optical powers collected by an multi-mode fiber(MMF)versus the injection current for(a)COM-A and(b)B lasers at M of 0,0.5,1,1.5,and 2,respectively.

    Both COM lasers of the TCOM laser can work at the free-running with injection currents applied to the two cavities separately. The MMF coupled powers as functions of the injection current are measured and plotted in Figs. 4(a) and 4(b)for COM-A and COM-B lasers atMof 0,0.5,1,1.5,and 2, respectively. As shown in Fig. 4(a), the threshold currents are 34, 31, 25, 22, and 20 mA atMof 0, 0.5, 1, 1.5, and 2 for COM-A laser, with the corresponding maximum output powers 80, 100, 98, 137, and 131 μW, respectively. We can obtain that the power trend of COM-B laser is similar to that of COM-A laser, but there are differences between them in Fig. 4(b). The deviation in the fabrication process leads to slightly different cavity shapes and surface roughness between COMs,though both COMs are designed to be identical and fabricated together. The powers oscillate as the current increases,due to the mode hopping caused by thermal effect and multi-longitudinal and multi-transverse mode emission.

    The lasing spectra of COM-A laser forM=0,0.5,1,1.5,and 2 are measured by an optical spectrum analyzer with a resolution of 0.02 nm using MMF,as illustrated in Figs.5(a)-5(f),respectively. The fundamental,first-,second-,third-,and fourth-order four-bounce modes are marked by circle, triangle, square, rhombus, and pentagram symbols, respectively.The longitudinal mode intervals atM=0, 0.5, 1, 1.5, and 2 are 6.4, 6.4, 6.4, 6.1, and 6.0 nm, respectively. ForM=0,0.5, 1, 1.5, and 2, the lasing spectra of COM-A laser exhibit multi-longitudinal-mode and multi-transverse-mode emission,due to the effect of light confinement of the concave mirrors.AtM=0 andI=55 mA, multi-longitudinal-mode lasing is observed,and the fundamental and the first-order four-bounce transverse modes are found at 1525.16 and 1524.25 nm, respectively, with corresponding transverse mode interval Δλ01of 0.91 nm in Fig. 5(a). Both transverse mode intervals and longitudinal mode intervals are smaller than the simulation values since the refractive index is fixed at 3.2 and the dispersion of the material is not considered in the simulation.AtM= 0.5 andI= 50 mA, three-transverse-mode lasing for the fundamental, first-, second-order four-bounce modes is observed at 1535.73, 1532.94, and 1530.05 nm, with corresponding transverse mode intervals Δλ01and Δλ02of 2.79 and 5.68 nm, respectively, as shown in Fig. 5(b). AtM=1 andI=55 mA, three-transverse-mode operation for the fundamental,first-,second-order four-bounce modes are obtained at 1530.32, 1532.46, and 1534.70 nm, with transverse mode intervals Δλ01and Δλ02of 2.24 and 4.38 nm in Fig.5(c), respectively. AtM=1.5 andI=55 mA,four-transverse-mode emission for the fundamental, first-, second-, third-, fourthorder four-bounce mode is achieved at 1519.32, 1520.47,1521.65, 1522.84, and 1524.02 nm, with Δλ01, Δλ02, Δλ03,and Δλ04of 1.15, 2.33, 3.52, and 4.70 nm, respectively, as shown in Fig.5(d). AtM=2 andI=50 mA,four-transversemode emission is realized at 1521.40, 1521.64, 1521.92, and 1522.10 nm, with the corresponding wavelength intervals of the adjacent transverse modes being 0.24,0.52,and 0.70 nm,respectively, as illustrated in Figs. 5(e) and 5(f). The difference between the experimental results and simulation ones is large because the mode wavelength intervals are so small that the mode competition among transverse modes with large overlap regions is intense. Therefore,it is hard to distinguish the specific mode order of the lasing modes. The experimental results show that the relative positions and the numbers of the lasing modes are consistent with the simulation results in Figs.2(a)-2(f). The variable curvature provides space for diverse high-Qlasing modes and mode control of the lasers.Furthermore, such multi-mode TCOM lasers may be promising for the bandwidth enhancement of chaotic lasers in the future.

    Single-mode lasing is achieved in variable-curvature TCOM lasers with the injection currents applied to the two microcavities simultaneously. We have demonstrated and revealed that the global mode distributed in the whole cavity consumes a large number of injected carriers and suppresses the lasing of four-bounce modes.[39]The detailed lasing spectra of the single-mode lasing are illustrated in Figs.6(a)-6(e)for the TCOMs atMof,0.5,1,1.5,and 2.AsIa=554 mA andIb=45 mA,single-mode emission for TCOMs ofM=0 with the side mode suppression ratio(SMSR)of 30 dB is achieved at 1543.9 nm in Fig. 6(a). For TCOMs ofM=0.5, singlemode operation occurs at 1574.6 nm with the SMSR up to 32 dB atIa=50 mA andIb=63 mA,as shown in Fig.6(b).For TCOMs ofM=1, the SMSR of 32 dB of single-mode lasing is realized at 1562.4 nm atIa=62 mA andIb=64 mA in Fig. 6(c). AtIa=55 mA andIb=76 mA, single-mode emission for TCOMs ofM=1.5 with the SMSR of 31 dB is achieved at 1567.8 nm as shown in Fig.6(d). AtIa=60 mA andIb=61 mA,the SMSR of 36 dB of single-mode emission for TCOMs ofM=2 is realized at 1547.7 nm as illustrated in Fig.6(e).

    Finally,we investigate the linewidth characteristics of the TCOM lasers witha=15μm andM=2. The short-delayed self-heterodyne interferometer (SDSHI) technique has been demonstrated to be a good and mature method to obtain the accurate value for the laser linewidth.[41-44]Figure 7(a)illustrates the detailed spectra for COM-A laser atIa=61 mA after erbium-doped fiber amplifier(EDFA)and bandwidth pass filter(BPF),and the wavelengths of four lasing modes are found to be 1529.9, 1530.3, 1530.5, and 1530.6 nm. Figure 7(b)shows the beating spectra obtained by filtering out the four lasing modes through BPF.Modes 1,2,and 4 have obvious intensity peaks with mode 3 of almost no peak,the resolution bandwidth(RBW)of 3 MHz, and the video bandwidth(VBW)of 10 kHz.The full widths at half-maximum(FWHMs)of modes 1,2,and 4 are obtained by Lorentz curve fitting as 79.9,78.4,and 44.2 MHz,corresponding lasing linewidths of 40.0,39.2,and 22.1 MHz, respectively. Therefore, a higher intensity of the lasing mode means higher power and a corresponding narrower linewidth.

    Fig.5. Lasing spectra for COM-A laser with(a)M=0 at 55 mA,(b)M=0.5 at 50 mA,(c)M=1 at 55 mA,(d)M=1.5 at 55 mA,and(e)-(f)M=2 at 50 mA.(f)The enlarged view of lasing spectra around 1551 nm at M=2. The fundamental,first-,second-,third-,and fourth-order four-bounce modes are marked by circle, triangle, square, rhombus, and pentagram symbols, respectively, and the solid and hollow symbols correspond to different longitudinal modes.

    Fig.6. Detailed lasing spectra characteristics for the TCOMs with M=0,0.5,1,1.5,and 2 at(a)Ia=55 mA and Ib=45 mA,(b)Ia=50 mA and Ib=63 mA,(c)Ia=62 mA and Ib=64 mA,(d)Ia=55 mA and Ib=76 mA,and(e)Ia=60 mA and Ib=61 mA,respectively.

    Fig. 7. (a) Optical spectra after amplifier and filter and (b) beating signals for four lasing modes of the COM-A laser with a=15 μm and M=2 at Ia =61 mA.(c)Linewidths and SMSR as functions of Ib at Ia =60 mA.(d)The normalized RF spectrum(circles)and Lorentzian fitting(line)to the measurement data at Ia=60 mA and Ib=61 mA.

    The linewidths and the SMSRs versusIbare illustrated in Fig. 7(c) measured by a delay fbier length (L) of 500 m at fxiedIa=60 mA, with the TEC temperature of 286 K. The dominant lasing mode redshifts with SMSRs over 30 dB from 1547.7 to 1550.3 nm, asIbincreases from 31 to 86 mA. AsIbincreases from 31 to 61 mA, the linewidth decreases from 10.6 to 6.7 MHz, with the SMSR growing from 31 to 36 dB.WhenIbincreases from 61 to 86 mA,the linewidth increases from 6.7 to 10.5 MHz, and SMSR varies from 36 to 30 dB.The linewidths less than 11 MHz can be obtained withIbincreasing from 31 to 86 mA. In general, the linewidth is inversely correlated to SMSR, as higher SMSR means higher lasing mode power and lower noise from other modes.[45]Figure 7(d) illustrates the normalized radio frequency (RF) signal of the lasing mode, accompanied by the Lorentz fit curve shown by the red solid line, with the FWHM of 13.4 MHz and linewidth of 6.7 MHz. The linewidth of the single-lasing mode for the TCOM laser is small, compared to the normal microlasers of 20-50 MHz.[45,46]

    4. Conclusion

    In summary, we have proposed and demonstrated variable-curvature TCOM lasers for manipulating the lasing mode. The simulation results show that the passive TCOM has two types of modes: four-bounce and global modes; and modeQfactor,mode number,and wavelength intervals of different transverse modes of four-bounce mode can be manipulated by adjusting the curvature. Curvature affects slightly the modeQfactor of the stable global mode in variable-curvature TCOMs, with values of 104or 105. At current injection into single microcavity, two-mode, three-mode, three-mode, fivemode,and four-mode lasing are experimentally achieved with deformation from 0 to 2, matching well with the numerical simulation. Stable single mode of the global mode lasing with SMSRs of 30, 32, 32, 31, and 36 dB is realized at the deformation of 0, 0.5, 1, 1.5, and 2, respectively. In addition,the linewidth of 6.7 MHz for the single-lasing mode is measured with the deformation of 2. We believe that the proposed variable-curvature TCOM lasers suitable for planar integration have significant potential as a compact light source for photonic integrated circuits based on the manipulation of modeQfactor and lasing characteristic.

    Acknowledgements

    Project supported by the Strategic Priority Research Program, Chinese Academy of Sciences (Grant No. XDB43000000), the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJSSW-JSC002), and the National Natural Science Foundation of China(Grant Nos.61874113,61875188,and 61935018).

    日韩强制内射视频| 精品人妻熟女毛片av久久网站| 国产午夜精品一二区理论片| 国产亚洲欧美精品永久| 精品一区在线观看国产| 亚洲情色 制服丝袜| 午夜激情av网站| 麻豆精品久久久久久蜜桃| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 欧美bdsm另类| av卡一久久| 国产无遮挡羞羞视频在线观看| 成年女人在线观看亚洲视频| 国产免费一级a男人的天堂| 日本vs欧美在线观看视频| 啦啦啦中文免费视频观看日本| 国产日韩欧美视频二区| 久久毛片免费看一区二区三区| 寂寞人妻少妇视频99o| 日本vs欧美在线观看视频| 国产成人a∨麻豆精品| 香蕉精品网在线| 亚洲不卡免费看| 国产在线一区二区三区精| 人妻制服诱惑在线中文字幕| 少妇丰满av| 亚洲精品久久午夜乱码| 日本欧美国产在线视频| 久久婷婷青草| 午夜日本视频在线| 亚洲情色 制服丝袜| 在线免费观看不下载黄p国产| 夜夜爽夜夜爽视频| a级毛片在线看网站| 大片电影免费在线观看免费| 热99国产精品久久久久久7| av在线老鸭窝| 伊人亚洲综合成人网| 久久久国产一区二区| 在现免费观看毛片| 精品一区二区三卡| 18在线观看网站| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 性色av一级| 日日摸夜夜添夜夜添av毛片| 男人操女人黄网站| 黄色毛片三级朝国网站| 久久精品国产鲁丝片午夜精品| av有码第一页| 久久久久久久久大av| 好男人视频免费观看在线| 久久久久久人妻| 九草在线视频观看| 美女国产视频在线观看| 亚洲av免费高清在线观看| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 欧美精品国产亚洲| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 永久免费av网站大全| 欧美精品国产亚洲| 一边摸一边做爽爽视频免费| 国产精品99久久久久久久久| 成人国产麻豆网| 国产成人免费无遮挡视频| 女的被弄到高潮叫床怎么办| 色网站视频免费| 国产一区二区在线观看av| 好男人视频免费观看在线| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 国语对白做爰xxxⅹ性视频网站| 极品少妇高潮喷水抽搐| 成人毛片60女人毛片免费| 久久久国产一区二区| 简卡轻食公司| 色5月婷婷丁香| 中文欧美无线码| 免费大片18禁| 国产一级毛片在线| 最近中文字幕2019免费版| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 成人影院久久| 亚洲人成网站在线播| 国产免费现黄频在线看| 99久久中文字幕三级久久日本| 高清欧美精品videossex| 少妇精品久久久久久久| 满18在线观看网站| 精品一区在线观看国产| 三上悠亚av全集在线观看| 亚洲av二区三区四区| 极品人妻少妇av视频| 最近手机中文字幕大全| 久久狼人影院| 日本av免费视频播放| 久久国产亚洲av麻豆专区| 亚洲不卡免费看| 国产有黄有色有爽视频| 制服人妻中文乱码| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 成人国语在线视频| 少妇熟女欧美另类| 亚洲在久久综合| 五月伊人婷婷丁香| 欧美 亚洲 国产 日韩一| 国产免费又黄又爽又色| 久久99一区二区三区| 日本vs欧美在线观看视频| 男女国产视频网站| 91精品伊人久久大香线蕉| 一本一本综合久久| 国产乱人偷精品视频| 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 欧美日韩综合久久久久久| 亚洲av中文av极速乱| 国产男人的电影天堂91| 国产精品一区二区在线不卡| 美女福利国产在线| 在线观看www视频免费| 国产淫语在线视频| 亚洲欧美一区二区三区黑人 | 久久精品国产a三级三级三级| www.av在线官网国产| 桃花免费在线播放| 国产综合精华液| 另类精品久久| 日韩欧美一区视频在线观看| 国产精品99久久久久久久久| 视频在线观看一区二区三区| 欧美精品国产亚洲| 视频中文字幕在线观看| 欧美精品亚洲一区二区| 精品久久久噜噜| 亚洲人成77777在线视频| 日本黄大片高清| 久久精品国产自在天天线| 嫩草影院入口| 97超碰精品成人国产| 成人黄色视频免费在线看| 嫩草影院入口| 国产精品不卡视频一区二区| 一级毛片 在线播放| 久久久久精品性色| 久久精品人人爽人人爽视色| 丰满乱子伦码专区| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 色视频在线一区二区三区| 亚洲国产精品国产精品| 国产精品成人在线| 日韩免费高清中文字幕av| 赤兔流量卡办理| 少妇被粗大猛烈的视频| a 毛片基地| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美 | 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 高清av免费在线| 久久99热6这里只有精品| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看| 97精品久久久久久久久久精品| www.av在线官网国产| 日韩三级伦理在线观看| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 国产片内射在线| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 人人澡人人妻人| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 五月伊人婷婷丁香| av国产精品久久久久影院| 97精品久久久久久久久久精品| 午夜影院在线不卡| 九九在线视频观看精品| av在线观看视频网站免费| 欧美另类一区| 亚洲婷婷狠狠爱综合网| 飞空精品影院首页| 涩涩av久久男人的天堂| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 丝袜美足系列| 亚洲无线观看免费| 中国三级夫妇交换| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 国产男女内射视频| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 国产免费视频播放在线视频| 中国美白少妇内射xxxbb| 日日撸夜夜添| 免费看av在线观看网站| 成人毛片60女人毛片免费| 亚洲色图综合在线观看| 国产精品人妻久久久久久| 日本wwww免费看| a 毛片基地| 久久久国产精品麻豆| 国产精品三级大全| 老女人水多毛片| 国产极品天堂在线| 一本大道久久a久久精品| 人人妻人人爽人人添夜夜欢视频| 有码 亚洲区| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 极品人妻少妇av视频| 99热这里只有是精品在线观看| 国产男女超爽视频在线观看| 亚洲,一卡二卡三卡| 成人综合一区亚洲| 国产成人91sexporn| 天堂俺去俺来也www色官网| 精品国产露脸久久av麻豆| 久久久久人妻精品一区果冻| 精品亚洲成a人片在线观看| 国产极品天堂在线| 国产精品99久久99久久久不卡 | av不卡在线播放| 九草在线视频观看| 午夜免费鲁丝| 免费看不卡的av| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站| 欧美一级a爱片免费观看看| 国产国语露脸激情在线看| 51国产日韩欧美| 色网站视频免费| 午夜免费鲁丝| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 国产综合精华液| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 日本黄大片高清| 亚洲成人手机| 免费看光身美女| 黑人猛操日本美女一级片| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久大av| 亚洲四区av| 午夜福利,免费看| 亚洲国产av影院在线观看| 下体分泌物呈黄色| 国产精品99久久久久久久久| 久久热精品热| xxxhd国产人妻xxx| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 久久久久久久久大av| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 国产一区二区三区av在线| 日本91视频免费播放| 久久99一区二区三区| 精品卡一卡二卡四卡免费| 中国美白少妇内射xxxbb| 国产亚洲欧美精品永久| 免费少妇av软件| 日本wwww免费看| 三级国产精品片| 久久久久久久久久久免费av| 最新中文字幕久久久久| 最后的刺客免费高清国语| 亚洲精品中文字幕在线视频| 熟妇人妻不卡中文字幕| 亚洲成色77777| 一级毛片 在线播放| 午夜福利影视在线免费观看| 精品亚洲成国产av| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 七月丁香在线播放| 欧美成人午夜免费资源| av福利片在线| 香蕉精品网在线| 只有这里有精品99| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 欧美精品人与动牲交sv欧美| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜添av毛片| 一级二级三级毛片免费看| av视频免费观看在线观看| 一级片'在线观看视频| 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 十八禁高潮呻吟视频| av福利片在线| 国产爽快片一区二区三区| 亚洲天堂av无毛| 热re99久久精品国产66热6| 亚洲精品亚洲一区二区| 在线免费观看不下载黄p国产| 人妻夜夜爽99麻豆av| 人妻人人澡人人爽人人| 日本免费在线观看一区| 午夜91福利影院| 成人免费观看视频高清| 嫩草影院入口| 国产男女超爽视频在线观看| 能在线免费看毛片的网站| 少妇高潮的动态图| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 亚洲成人手机| 99国产综合亚洲精品| 好男人视频免费观看在线| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| 成年人免费黄色播放视频| 9色porny在线观看| 精品人妻熟女毛片av久久网站| 国产精品女同一区二区软件| 国产成人一区二区在线| 黄片播放在线免费| 亚洲在久久综合| 综合色丁香网| 国产精品99久久久久久久久| av国产精品久久久久影院| 十八禁网站网址无遮挡| 国产黄片视频在线免费观看| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 国产精品.久久久| 免费观看性生交大片5| 人人妻人人爽人人添夜夜欢视频| 日本av手机在线免费观看| 午夜福利,免费看| 18禁在线播放成人免费| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 亚洲久久久国产精品| 亚洲国产精品一区三区| 99国产精品免费福利视频| 欧美性感艳星| 成年人免费黄色播放视频| 91在线精品国自产拍蜜月| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| 91精品国产国语对白视频| 国产欧美亚洲国产| 一区二区三区免费毛片| 波野结衣二区三区在线| 一本大道久久a久久精品| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 性色av一级| 成人黄色视频免费在线看| 嘟嘟电影网在线观看| 如日韩欧美国产精品一区二区三区 | 国产无遮挡羞羞视频在线观看| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 18禁裸乳无遮挡动漫免费视频| 亚洲av成人精品一区久久| 国产成人精品婷婷| 国产成人午夜福利电影在线观看| 人人澡人人妻人| 亚洲精品美女久久av网站| 高清不卡的av网站| 国产av精品麻豆| 亚洲综合精品二区| 交换朋友夫妻互换小说| a级毛色黄片| 亚洲色图 男人天堂 中文字幕 | 国产亚洲av片在线观看秒播厂| 久久久久久久久大av| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 精品一区在线观看国产| 十八禁网站网址无遮挡| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 国产精品久久久久成人av| 永久免费av网站大全| 最近的中文字幕免费完整| 久久久午夜欧美精品| 国产精品一二三区在线看| 男人操女人黄网站| 精品亚洲乱码少妇综合久久| 在线观看三级黄色| 少妇的逼水好多| 久久人人爽av亚洲精品天堂| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡 | av在线app专区| 亚洲一级一片aⅴ在线观看| 男人添女人高潮全过程视频| 男女国产视频网站| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 精品熟女少妇av免费看| 久久久久国产精品人妻一区二区| 国产精品无大码| 18禁观看日本| 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 91久久精品国产一区二区三区| 国产成人一区二区在线| 好男人视频免费观看在线| 永久网站在线| 麻豆精品久久久久久蜜桃| 日本午夜av视频| 亚洲精品乱码久久久v下载方式| 七月丁香在线播放| 久久久精品免费免费高清| 综合色丁香网| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 亚洲精品视频女| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| 国产亚洲av片在线观看秒播厂| 日韩av免费高清视频| 国产伦理片在线播放av一区| 精品少妇内射三级| 高清黄色对白视频在线免费看| 黑人猛操日本美女一级片| 另类精品久久| 插逼视频在线观看| 成人无遮挡网站| 色网站视频免费| 一本大道久久a久久精品| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| 777米奇影视久久| 久久国产精品男人的天堂亚洲 | 亚洲怡红院男人天堂| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| a 毛片基地| 满18在线观看网站| 高清欧美精品videossex| 国产高清不卡午夜福利| 免费观看无遮挡的男女| 欧美日本中文国产一区发布| av天堂久久9| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 男女无遮挡免费网站观看| xxx大片免费视频| 欧美精品高潮呻吟av久久| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 精品国产乱码久久久久久小说| 亚洲av综合色区一区| 如日韩欧美国产精品一区二区三区 | 女人久久www免费人成看片| 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 九九爱精品视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品人妻久久久久久| 91精品国产国语对白视频| 日本黄大片高清| 性色av一级| 久久久久久伊人网av| 另类亚洲欧美激情| 91久久精品国产一区二区成人| 中文字幕人妻丝袜制服| 性色av一级| 一级毛片 在线播放| 久久久欧美国产精品| 啦啦啦视频在线资源免费观看| 狠狠婷婷综合久久久久久88av| 国产日韩欧美视频二区| 久久久久久伊人网av| 久久毛片免费看一区二区三区| 91久久精品国产一区二区成人| 国产免费一级a男人的天堂| 亚洲精品中文字幕在线视频| 黑人高潮一二区| 中国美白少妇内射xxxbb| 成人无遮挡网站| 婷婷色麻豆天堂久久| 99热这里只有精品一区| 欧美国产精品一级二级三级| 久久久国产精品麻豆| 国产精品99久久99久久久不卡 | av专区在线播放| 国精品久久久久久国模美| 男女免费视频国产| 欧美日韩亚洲高清精品| 日韩av免费高清视频| 黄色配什么色好看| a 毛片基地| 免费播放大片免费观看视频在线观看| 秋霞伦理黄片| 国产成人a∨麻豆精品| 母亲3免费完整高清在线观看 | 欧美日韩国产mv在线观看视频| 视频在线观看一区二区三区| 亚洲国产精品国产精品| 在线观看国产h片| 人体艺术视频欧美日本| 麻豆精品久久久久久蜜桃| av免费在线看不卡| 欧美+日韩+精品| 亚洲精品国产av成人精品| 国产精品成人在线| 国产成人精品一,二区| 免费大片18禁| 男女免费视频国产| 亚洲精品国产av蜜桃| √禁漫天堂资源中文www| 国产免费现黄频在线看| 秋霞在线观看毛片| 色吧在线观看| 一个人看视频在线观看www免费| 老司机亚洲免费影院| 日本av免费视频播放| 国产免费又黄又爽又色| 亚洲欧美日韩卡通动漫| 人成视频在线观看免费观看| 高清毛片免费看| 男女高潮啪啪啪动态图| 国产精品一区二区在线观看99| 最近2019中文字幕mv第一页| 日本vs欧美在线观看视频| 国产伦理片在线播放av一区| 亚洲四区av| 国产一区二区在线观看日韩| 久久久精品免费免费高清| 成人无遮挡网站| 成人手机av| 亚洲国产毛片av蜜桃av| 亚洲,一卡二卡三卡| 久久久亚洲精品成人影院| 97在线人人人人妻| 观看美女的网站| 纵有疾风起免费观看全集完整版| 内地一区二区视频在线| 一级毛片电影观看| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| 一边亲一边摸免费视频| 久久女婷五月综合色啪小说| 国产精品一二三区在线看| 亚洲av福利一区| 岛国毛片在线播放| 狂野欧美激情性bbbbbb| 国产成人91sexporn| 少妇的逼水好多| 国精品久久久久久国模美| 免费观看在线日韩| 亚洲精品日本国产第一区| 日韩人妻高清精品专区| 丝袜脚勾引网站| 一级,二级,三级黄色视频| 日韩一区二区三区影片| 最新中文字幕久久久久| 青春草视频在线免费观看| 狂野欧美激情性xxxx在线观看| 亚洲精品美女久久av网站| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 51国产日韩欧美| 哪个播放器可以免费观看大片| 新久久久久国产一级毛片| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久久久| 亚洲,一卡二卡三卡| 免费观看在线日韩| 少妇人妻精品综合一区二区| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 国产亚洲午夜精品一区二区久久| 国产精品99久久久久久久久| av国产久精品久网站免费入址| 欧美精品一区二区大全| 亚洲精品456在线播放app| 一级毛片 在线播放| 18+在线观看网站|