• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems

    2022-09-24 07:59:54XiaoGangWang汪小剛andHaoYuWei魏浩宇
    Chinese Physics B 2022年9期

    Xiao-Gang Wang(汪小剛) and Hao-Yu Wei(魏浩宇)

    1Department of Applied Physics,Zhejiang University of Science and Technology,Hangzhou 310023,China

    2Department of Optical Engineering,Zhejiang A&F University,Hangzhou 311300,China

    Keywords: optical encryption,nonlinear optical cryptosystem,deep learning,phase retrieval algorithm

    1. Introduction

    With the increasing demands for secured transmission and storage, information security has attracted wide attention and many optical encryption techniques have been proposed to secure information.[1,2]In 1995,Refregier and Javidi first proposed double random phase encoding(DRPE),[3]in which an image is encrypted into white noise by using two statistically independent random phase masks(RPMs)that are respectively located at the input image plane and Fourier transform domain.Inspired by the DRPE method,researchers have continuously investigated the DRPE method in different transform domains,such as Fresnel transform domain,[4]fractional Fourier transform domain,[5]and Gyrator transform domain.[6]Since the DRPE-based optical encryption has high flexibility and expansion capability, consequently, many other optical encryption methods have also been developed, which proves to be feasible and effective.[7-25]

    In recent years, the vulnerability analysis of optical encryption systems has attracted wide interest from researchers.The DRPE-based optical encryption schemes have been verified to be vulnerable to different kinds of attacks[26-29]due to its inherent properties of linearity and symmetry. It was also found that they are vulnerable to new attack methods using deep learning (DL) techniques.[30-32]In order to remove the inherent symmetry and linearity of DRPE-based cryptosystems, NOC based on phase-truncated Fourier transform (PTFT) was proposed in 2010.[33]However, the PTFTbased nonlinear cryptosystem was still demonstrated to be vulnerable to some specific attacks using iterative amplitudephase retrieval algorithm (APRA) and has the silhouette problem.[34,35]Meanwhile, several asymmetric encryption schemes based on equal modulus decomposition(EMD)have been proposed in these years,[36,37]which can resist the specific attack and eliminate the silhouette problem. However,it was reported that one can obtain precise results from EMDbased encryption system by performing an attack based on phase retrieval algorithm (PRA).[38]Recently, it has been proved that the learning-based method can also break the optical asymmetric cryptosystems based on PTFT and EMD.[39]

    To improve the security level and remove the silhouette problem,amplitude-phase retrieval algorithm(APRA)and phase retrieval algorithm (PRA) have been introduced into nonlinear optical cryptosystems (NOCs).[40,41]The results of analysis show that the APRA-based and PRA-based NOCs can provide a high robustness against various conventional attacks.However,the vulnerabilities of these two types of NOCs against DL-based attacks, to the best of our knowledge, have not been studied before. In this work, a DenseNet model for cryptanalysis is proposed to analyze the securities of the two types of NOCs in the Fourier and Fresnel domains for the first time. In this end-to-end DL-based method, the neural network model is trained by using a set of ciphertexts and the corresponding plaintexts,and the Tensorflow,a popular opensource artificial intelligence library developed by Google, is used for setting up the neural network and conducting the network training. The optimal parameters of this network are determined through a series of forward and backward passes,which minimize a loss function. Numerical experiments show that the trained DenseNet model can be used to retrieve unknown plaintexts from the given ciphertexts without using optical keys, which implies that the PRA-based NOCs cannot resist the proposed DL-based method attack.

    The rest of this paper is organized as follows. In Section 2, we first describe the basic principles of two types of NOCs. And then the DL-based model for cryptanalysis is proposed in Section 3. In Section 4, we show the results of test simulations and performance of our proposed DL-based attack method. Finally,some conclusions are drawn in Section 5.

    2. Principle and method

    2.1. Review of Fourier domain APRA-based NOC

    In this subsection, we give a brief introduction to the principle of the Fourier domain APRA-based NOC.[40]In the encryption scheme an amplitude and phase mixture retrieval of the Yang-Gu algorithm is used, hereafter referred to as amplitude-phase retrieval algorithm. The flowchart for encryption is shown in Fig. 1(a), where the encryption process is conducted in two procedures. In the first procedure, based on a mixture-type amplitude-phase retrieval,the secret imagef(x,y) is encrypted into the amplitudeg'(u,v) with a public keyP1(u,v) and a binary phase modulation exp[iπγ1(u,v)].In the second procedure, the amplitudeg'(u,v) is the input image and encrypted into ciphertextC(x',y')in the same way as another public keyP2(x',y') and binary phase modulation exp[iπγ2(x',y')]. Figure 1(b)is a flowchart illustrating thekth iteration in the first procedure of encryption process, which can be given as follows.

    (i) In thekth iteration, the plaintextf(x,y) is multiplied by phase function exp[iαk(x,y)], and is then Fourier transformed to the output plane,the complex amplitude function in the output plane can be expressed as

    where the functionP?1(u,v)denotes the complex conjugate of the public keyP1(u,v),andP1(u,v)represents the public random phase keys,which are fixed in the encryption process.

    (iii) Functiongk(u,v) is multiplied by the public keyP1(u,v) and is then inverse Fourier transformed to the input plane, the complex function in the input plane can be expressed as

    where IFT denotes the inverse Fourier transform.The functionIk+1(x,y)exp[iαk+1(x,y)] is the result of the Fourier transform of the functiongk(u,v)P1(u,v), whereIk+1(x,y) and exp[iαk+1(x,y)] represent amplitude and phase function respectively. Note that phase part exp[iαk+1(x,y)] is reserved and used to replace exp[iαk(x,y)]exp[iαk(x,y)]in the next iteration while the amplitude partIk+1(x,y)is discarded.

    (iv) The convergence of the iteration process is determined by the correlation coefficient (CC) value between

    f(x,y)andIk+1(x,y).

    Fig.1. Flowcharts of(a)encryption process and(b)the k-th iteration in the first procedure of encryption process,with PR denoting operation of phase reservation.

    The final retrieved amplitudeg(u,v) contains both positive and negative elements, therefore a binary modulation exp[iπγ1(u,v)] is introduced, and the private modulationγ1(u,v)is given by the following equation:

    where (x',y') is the coordinate in the spatial domain,G'(x',y') is the result of the Fourier transform of functiong'(u,v)exp[iβ(u,v)].C(x',y')represents the amplitude function that contains both positive and negative elements,The binary modulationγ2(x',y') is generated simultaneously to obtain the ciphertextC'(x',y'). For simplicity,we omit the subscripts denoting the iteration number in each procedure for the unknown quantities. As a result, the decryption keys can be given as follows:[40]

    In this previously proposed asymmetric cryptosystem based on APRA,two RPMsP1,P2serve as the public encryption keys while the decryption keysD1andD2are generated by using the public encryption keys. It is alleged that one cannot retrieve the secret image only by using the public keys and the cryptosystem cannot be cracked by using the traditional attack methods.[40]

    2.2. Review of Fresnel domain PRA-based NOC

    Based on a Gerchberg-Saxton (GS) PRA and DPRE,Rajput and Nishchal proposed a Fresnel domain PRA-based NOC,which could provide a high level of robustness against known-plaintext, chosen-plaintext, and special attacks.[41]Figure 2 displays a flowchart showing the steps of the encryption process. The ciphertext can be obtained by employing the GS PRA twice.

    Fig.2. Flowchart of PRA-based encryption scheme,with PT denoting operation of phase truncation.

    (i)In the first level of encryption, the original amplitude imagef(x,y)multiplied by an RPM,exp[iαn(x,y)],is used as the input ofnth iteration,where the output of the first level is given by

    3. DenseNet architecture designed for cryptanalysis

    The main objective of the NOCs is to break the linearity of conventional systems,where the encryption method and keys are necessary for the recipient to perform the decryption.In those NOCs, the encryption keys are randomly generated by the computer, and the encryption keys,i.e.P1,P2,A1, andA2,are fixed once generated in the iterations. When those encryption keys are used for encrypting different plaintexts, do the NOCs remain unbreakable? In this case, we noticed that the correspondence between cyphertext and plaintext is oneto-one and the encryption keys are the same. Now,a question arises. Can we construct an iteration procedure to asymmetrically map the plaintexts into ciphertexts? Or is it possible to detect the relationships between cyphertext and plaintext by using a series of available “plaintext-ciphertext” pairs? The answer is yes. Since the encryption keys used for encrypting different plaintexts are the same,what we can infer is that the relationship between different ciphertexts is existent. For simplicity, the relationship between the plaintext and the cyphertext in NOCs is described as

    where F[·] denotes the encryption algorithm that transforms the plaintext in the input plane into the cyphertext in the output plane.For convenience,we use the same notation,i.e.F[·],for the two different NOCs. The reconstruction process can be given by whereR[·]represents the mapping of the ciphertextsIinto the plaintextsO.

    As is well known,the machine learning algorithms prove to be able to yield high-quality solutions in several computer imaging problems during the past few years. Owing to their nonlinear characteristics, it is reasonable to use deep neural networks to estimate the relationship described by Eqs. (21)and (22). In our proposed method, the proposed DenseNet is designed to achieve the approximate equivalent models of NOCs by using a number of“plaintext-ciphertext”pairs.

    Figure 3(a)show the proposed DenseNet architecture for cryptanalysis. It adopts encoder-decoder framework[42]and can be described as follows.

    The inputs fed to the designed DenseNet model are ciphertexts with a size of 64×64 pixels. Each ciphertext firstly passes through a standard convolutional layer with 24 filter kernels with a size of 3×3, and is then successively decimated by six “Denseblock+AveragePooling” blocks, which serve as an encoder to extract the feature maps from the input ciphertexts. Each denseblock consists of four composite convolution layers,and each layer connects to every other layers within the same block in a feed-forward fashion.[43]Each composite convolutional layer is comprised of three consecutive operations: batch normalization (BN), rectified linear unit (ReLU) and convolution with small filters (size of 3×3);“AveragePooling”denotes 2×2 average pooling layer with stride 2, which is used for downsampling. After transmitting through another dense block, the data pass through six “Upsampling+Denseblock” blocks. Upsampling represents up-convolutional layer, which serves as a decoder to perform pixel-wise regression. Finally, the feature maps pass onto a standard convolutional layer,of which the filter size is 1×1, and the estimate of the plaintext is then produced. In this method, the skip connections are used to pass the highfrequency information learned in the initial layers down the network toward the output reconstruction.[44]

    In this method, L2 regularization with weight decay of 0.001 is applied to all convolutional filters. The same regularization is also used in batch normalization. A small dropout rate of 0.05 is set to prevent overfitting. Owing to the GPU memory constraints, our DenseNet model is trained by using the Adam optimizer with a mini-batch size of 2. The training process starts with an initial learning rate of 0.001 and drops it by a factor of 2 after every 50 epochs. The neural network is trained for 300 epochs with the training samples being shuffled at each epoch. In this approach,mean square error(MSE)is used to monitor the network performance and can be defined as

    wherenrepresents the pixel number of the input ciphertext,Yidenotes the ground truth data,i.e.the plaintext, and ?Yiis the output prediction,respectively.

    Fig.3. Designed DenseNet architecture,indicating(a)training process and(b)testing process of the DenseNet model.

    4. Numerical experiments and discussion

    Numerical experiments have been performed to verify the feasibility of the proposed DL-based attack method. In the Fresnel domain nonlinear cryptosystem,the wavelength of laser light isλ=632.8 nm and the two diffraction distances are set to bez1=0.1 m,andz2=0.2 m. In the iteration processes of the two different types of NOCs based on the APRA and PRA,the correlation coefficient(CC)is employed to evaluate the difference between the original input image and its estimates.The CC thresholds for the iteration processes are both set to be 0.98.The experiments are carried out on a database of 10000 grayscale images with a size of 64×64 pixels, which are selected from the Fashion-MNIST datasets randomly.[45]The chosen 9000 images are used as the training data and the rest 1000 images as the testing data.

    The proposed DL-based algorithm is implemented on a GeForce GTX1650 GPU by Tensorflow 1.2, a deep learning framework. A learning rate constant ofη= 0.001 is used for the learning of neural network and the number of training epochs is set to be 300. The execution time for the training of DenseNet model for each NOC is about 24.0 h. The MSE curves versus the epoch of the two DenseNets respectively corresponding to the two types of NOCs are shown in Fig. 4, where the MSEs of two networks drop to 0.01 after 300 epochs.

    Fig.4. MSE curves in training processes for(a)APRA-based NOC and(b)PRA-based NOC.

    To verify the effectiveness of the designed DenseNet model,test sets are fed into each of the pre-trained DenseNets for ARPA-based and PRA-based NOCs. The reconstruction results using the proposed DenseNets are illustrated in Figs. 5(I) and 5(II) separately, where the input testing data,ground truth and the results derived from pre-trained DenseNet are respectively shown in Figs.5(a)-5(c).As can be seen from Fig.5(c),all the retrieved images can be recognized by visual inspection. The average CC values of the retrieved images in Figs. 5(I) and 5(II) are 0.9702 and 0.9675, respectively. The successful decryption of the encrypted images without knowing the correct keys proves the good performance of our proposed DL-based method.

    Fig.5. Images retrieved from test data. (I)APRA-based NOC.(II)PRA-based NOC.(a)Testing ciphertext,(b)ground truth,and(c)retrieved images by trained DenseNet.

    To further verify the effectiveness of the proposed method for different databases,500 images are then randomly selected for predicting from MNIST database. Figure 6 shows the unknown plaintext images retrieved by utilizing the proposed DenseNet model, which has been pre-trained on the MNIST database. The ciphertext images, ground truth, retrieved images are shown in Figs.6(a)-6(c),respectively. Likewise,the encrypted images can be retrieved with high quality. The average CC values of the retrieved images in Figs.6(I)and 6(II)are 0.9819 and 0.9535,respectively.

    Fig.6. Predicted results of MNIST database. (I)APRA-based NOC.(II)PRA-based NOC.(a)Ciphertext images,(b)plaintext images,and(c)retrieved images by using pre-trained DenseNet.

    To demonstrate the robustness of the attack method based on the DenseNet,we investigate the influence of occlusion on the performance of the system. The simulation results are shown in Fig. 7, where panels (I) and (II) represent the test results corresponding to the APRA-based NOC and the PRAbased NOC, respectively. Figure 7(a) shows the ciphertext with 5%occlusion,and the plaintexts retrieved by pre-trained DenseNet model are shown in Fig.7(b). The average CC values of retrieved images are 0.9342 and 0.8942 with respect to APRA-based NOC and PRA-based NOC, respectively. Figure 7(c) is the ciphertext with 10% occlusion, and the plaintexts attacked by DenseNet are shown in Fig.7(b),the average CC values of the retrieved images corresponding to the two types of NOCs are 0.8423 and 0.8179,respectively. It can be found that the secret images can still be recovered and recognized when there are few data lost in the ciphertext.

    Furthermore, we investigate the effect of noise pollution on the decryption. The zero-mean Gaussian noise is added into the ciphertexts and observe their retrieved images. The simulation results are shown in Fig. 8, where panels (I) and(II)represent the results from the attack on APRA-based NOC and PRA-based NOC,respectively. Figure 8(a)shows ciphertexts polluted by Gaussian noise with standard deviation of 0.01,and the derived images are shown in Fig.8(b),where the corresponding average CC values of the two sets are 0.9423 and 0.9156. The ciphertexts polluted by Gaussian noise with a standard deviation of 0.02 are shown in Fig. 8(c), and the two sets of retrieved images are shown in Fig. 8(d), with the average CC values being 0.8953 and 0.8625,respectively,which demonstrates the good performance against the Gaussian noise.

    Compared with conventional Unet and convolution neural network(CNN),the proposed DenseNet has more direct connections between layers, strengthening feature propagation,encouraging feature reuse and substantially reducing the number of parameters. The previously proposed neural networks(CNN and Resnet)[20-22]have been further used to attack the two types of NOCs. However, the results obtained under the same training conditions,i.e.,the same quantity of data,training time and epoch,are not satisfactory. The results are given in Fig.9,which shows the better performance of our proposed neural network.

    Fig.8. Robustness test of DenseNet on Gaussian noise with respect to(I)APRA-based NOC and(II)PRA-based NOC,showing(a)ciphertexts with 0.01 variance Gaussian, (b)retrieved images from panel(a), (c)ciphertexts with 0.02 variance Gaussian, and(d)retrieved images from panel(c).

    Fig.9. Attack results of NOCs using different neural networks. (I)APRA-based NOC and(II)PRA-based NOC,showing(a)decrypted images using DenseNet,(b)retrieved image by using CNN,and(c)retrieved images using Resnet.

    The simulation results show that it is possible for us to estimate the relationship between the outputs and inputs by learning models designed for cryptoanalysis. The proposed DenseNet can be considered as a black box,which can achieve the approximate equivalent models of NOCs by using a series of “plaintext-ciphertext” pairs without additional conditions.The unknown plaintexts can be retrieved by using the trained DenseNet model without decryption keys and complex phase retrieval algorithms.

    5. Conclusions

    In this paper,we proposed a novel DL-based method for cryptanalysis of two types of NOCs based on DL for the first time. The designed DenseNet model is built up according to the densely connected convolutional neural network architecture and trained by a series of“ciphertext-plaintext”pairs.With pre-trained DenseNet,secret images can be successfully derived from ciphertexts without using encryption key or decryption key. The robustness of the DenseNet model against occlusion and noise pollutionis also investigated. The results of numerical experiments show that the two types of NOCs are vulnerable to our well-designed DL-based attack. It can also be seen that the performance obtained in this work is better than that obtained by the previously proposed methods.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61975185 and 61575178), the Natural Science Foundation of Zhejiang Province, China(Grant No. LY19F030004), and the Scientific Research and Development Fund of Zhejiang University of Science and Technology,China(Grant No.F701108L03).

    一区在线观看完整版| 考比视频在线观看| 不卡av一区二区三区| 精品少妇久久久久久888优播| 国产激情久久老熟女| 久久久国产一区二区| 日韩中文字幕视频在线看片| 精品一区二区三区四区五区乱码 | 欧美成狂野欧美在线观看| 交换朋友夫妻互换小说| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 无限看片的www在线观看| 日韩制服丝袜自拍偷拍| 性高湖久久久久久久久免费观看| 日韩伦理黄色片| 人人澡人人妻人| 久久人人爽人人片av| 精品人妻在线不人妻| 久久99一区二区三区| 亚洲人成电影免费在线| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 亚洲精品国产av成人精品| 王馨瑶露胸无遮挡在线观看| 日本av手机在线免费观看| 黑人猛操日本美女一级片| 大码成人一级视频| 日韩av免费高清视频| 亚洲伊人久久精品综合| 免费久久久久久久精品成人欧美视频| 免费久久久久久久精品成人欧美视频| 国产成人啪精品午夜网站| 大型av网站在线播放| 亚洲国产日韩一区二区| 啦啦啦 在线观看视频| 国产成人精品久久二区二区91| 国产女主播在线喷水免费视频网站| 亚洲色图 男人天堂 中文字幕| 桃花免费在线播放| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| 国产一级毛片在线| 午夜免费男女啪啪视频观看| 免费女性裸体啪啪无遮挡网站| 麻豆av在线久日| 丝袜人妻中文字幕| 首页视频小说图片口味搜索 | 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 看十八女毛片水多多多| 亚洲黑人精品在线| 只有这里有精品99| 亚洲国产av新网站| 欧美中文综合在线视频| av国产久精品久网站免费入址| 日韩免费高清中文字幕av| 一区二区三区激情视频| 纯流量卡能插随身wifi吗| 99久久人妻综合| 99久久人妻综合| 免费av中文字幕在线| 啦啦啦在线观看免费高清www| 日本欧美国产在线视频| 亚洲精品一二三| 这个男人来自地球电影免费观看| 精品第一国产精品| 亚洲图色成人| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| www.自偷自拍.com| 免费观看av网站的网址| 国产精品欧美亚洲77777| 欧美日韩精品网址| 尾随美女入室| 婷婷色综合大香蕉| 色播在线永久视频| 亚洲国产看品久久| 一级,二级,三级黄色视频| 亚洲人成电影免费在线| 成年美女黄网站色视频大全免费| 超碰成人久久| 久久精品亚洲熟妇少妇任你| 久久久久久人人人人人| 精品人妻1区二区| 精品国产超薄肉色丝袜足j| 韩国高清视频一区二区三区| 夜夜骑夜夜射夜夜干| 黄色视频在线播放观看不卡| 老司机深夜福利视频在线观看 | xxx大片免费视频| a级片在线免费高清观看视频| 老汉色av国产亚洲站长工具| 久久精品人人爽人人爽视色| 视频区欧美日本亚洲| 国产精品.久久久| 国产精品一区二区在线观看99| 天天躁夜夜躁狠狠久久av| 最黄视频免费看| 国产精品 欧美亚洲| 精品国产国语对白av| 成年人午夜在线观看视频| 婷婷成人精品国产| av线在线观看网站| 欧美激情 高清一区二区三区| 国产伦人伦偷精品视频| 一区二区av电影网| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 国产在线观看jvid| 国产在线免费精品| 如日韩欧美国产精品一区二区三区| 色婷婷av一区二区三区视频| 多毛熟女@视频| a 毛片基地| 自线自在国产av| 亚洲av电影在线进入| 99香蕉大伊视频| 日韩大片免费观看网站| 啦啦啦在线免费观看视频4| 韩国高清视频一区二区三区| 亚洲国产精品999| 天天操日日干夜夜撸| 精品欧美一区二区三区在线| 亚洲色图综合在线观看| 精品国产超薄肉色丝袜足j| 亚洲伊人色综图| 91麻豆精品激情在线观看国产 | 午夜福利影视在线免费观看| 少妇粗大呻吟视频| 老熟女久久久| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| av一本久久久久| 高潮久久久久久久久久久不卡| 手机成人av网站| 亚洲成人免费av在线播放| 亚洲av美国av| 免费女性裸体啪啪无遮挡网站| 交换朋友夫妻互换小说| 欧美精品av麻豆av| 又黄又粗又硬又大视频| 久久精品久久久久久久性| 精品亚洲成a人片在线观看| 啦啦啦 在线观看视频| 嫁个100分男人电影在线观看 | 午夜福利视频在线观看免费| 欧美激情 高清一区二区三区| 亚洲av国产av综合av卡| 久久久久精品国产欧美久久久 | 免费高清在线观看视频在线观看| 爱豆传媒免费全集在线观看| 久久热在线av| 美女国产高潮福利片在线看| 无遮挡黄片免费观看| 久久久欧美国产精品| 午夜老司机福利片| 精品第一国产精品| 99热全是精品| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 国产激情久久老熟女| 免费在线观看视频国产中文字幕亚洲 | 精品国产乱码久久久久久男人| 色精品久久人妻99蜜桃| 国产成人免费观看mmmm| 亚洲精品国产色婷婷电影| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 国产精品久久久人人做人人爽| 日本黄色日本黄色录像| 欧美xxⅹ黑人| 成人黄色视频免费在线看| 2018国产大陆天天弄谢| 咕卡用的链子| 午夜福利一区二区在线看| 日本午夜av视频| 人妻人人澡人人爽人人| 亚洲男人天堂网一区| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 最近中文字幕2019免费版| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 国产又色又爽无遮挡免| 亚洲成国产人片在线观看| 亚洲精品第二区| 视频区欧美日本亚洲| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看| 91九色精品人成在线观看| 国产欧美日韩一区二区三 | 成年女人毛片免费观看观看9 | 国产精品久久久久久人妻精品电影 | 亚洲一区二区三区欧美精品| 夫妻午夜视频| av一本久久久久| 久久天躁狠狠躁夜夜2o2o | 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产中文字幕在线视频| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 午夜福利,免费看| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 老司机影院成人| 18禁国产床啪视频网站| 制服诱惑二区| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 男人添女人高潮全过程视频| 国产亚洲精品久久久久5区| 日韩大片免费观看网站| 丝袜脚勾引网站| 午夜福利乱码中文字幕| 国产伦人伦偷精品视频| 国产男人的电影天堂91| 精品国产国语对白av| 自线自在国产av| 色94色欧美一区二区| 欧美日韩一级在线毛片| 91老司机精品| 亚洲国产欧美日韩在线播放| 亚洲男人天堂网一区| 免费高清在线观看视频在线观看| 日韩av免费高清视频| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 国产极品粉嫩免费观看在线| 久久青草综合色| 蜜桃国产av成人99| 热99久久久久精品小说推荐| 亚洲国产欧美一区二区综合| 少妇人妻 视频| 黄色怎么调成土黄色| 两个人看的免费小视频| 在线观看免费高清a一片| 中文乱码字字幕精品一区二区三区| 国产亚洲一区二区精品| 日韩电影二区| 91精品三级在线观看| 在线看a的网站| 中文字幕色久视频| 高清不卡的av网站| 国产精品一区二区精品视频观看| 无遮挡黄片免费观看| 欧美日韩综合久久久久久| 99热国产这里只有精品6| xxxhd国产人妻xxx| 少妇粗大呻吟视频| 免费观看av网站的网址| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| 国产精品九九99| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 好男人视频免费观看在线| 在线观看一区二区三区激情| 国产黄频视频在线观看| 亚洲av片天天在线观看| 亚洲精品久久成人aⅴ小说| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 免费少妇av软件| 国产福利在线免费观看视频| 在线观看国产h片| 欧美 日韩 精品 国产| a级片在线免费高清观看视频| 亚洲国产精品一区二区三区在线| 国产片内射在线| 久久久久久久国产电影| 天天添夜夜摸| 各种免费的搞黄视频| 一本久久精品| 久久久国产欧美日韩av| 国产成人精品在线电影| 亚洲成色77777| 日韩制服骚丝袜av| 夜夜骑夜夜射夜夜干| 久久国产精品男人的天堂亚洲| 你懂的网址亚洲精品在线观看| 18禁黄网站禁片午夜丰满| 亚洲欧美一区二区三区久久| 日本91视频免费播放| 精品熟女少妇八av免费久了| 午夜两性在线视频| 久久精品成人免费网站| 一级黄色大片毛片| 丰满少妇做爰视频| 精品少妇黑人巨大在线播放| 黄色a级毛片大全视频| 一区福利在线观看| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 亚洲av日韩精品久久久久久密 | 国产伦人伦偷精品视频| 亚洲av成人精品一二三区| 看免费av毛片| 国产高清视频在线播放一区 | 久久久久精品人妻al黑| 18禁黄网站禁片午夜丰满| 麻豆乱淫一区二区| 18在线观看网站| 女性被躁到高潮视频| 大陆偷拍与自拍| 丁香六月欧美| 五月开心婷婷网| 黄色怎么调成土黄色| 国产一卡二卡三卡精品| 亚洲精品国产色婷婷电影| 成年动漫av网址| 在线av久久热| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索 | 国产成人欧美在线观看 | 亚洲第一av免费看| 大香蕉久久成人网| 丰满少妇做爰视频| 日韩欧美一区视频在线观看| 国产精品国产三级专区第一集| 欧美少妇被猛烈插入视频| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 在线 av 中文字幕| 满18在线观看网站| 手机成人av网站| 国产免费福利视频在线观看| 99国产精品一区二区三区| 精品国产一区二区三区久久久樱花| 精品高清国产在线一区| 亚洲人成77777在线视频| 亚洲色图综合在线观看| 女人久久www免费人成看片| 午夜免费鲁丝| www.av在线官网国产| 精品少妇久久久久久888优播| 免费在线观看完整版高清| 久久ye,这里只有精品| 一区福利在线观看| 精品一区在线观看国产| 国产伦理片在线播放av一区| 久久影院123| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 亚洲av国产av综合av卡| 日韩中文字幕欧美一区二区 | av线在线观看网站| 桃花免费在线播放| 搡老岳熟女国产| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 少妇精品久久久久久久| 久久久国产一区二区| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9 | 久久这里只有精品19| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 亚洲av电影在线进入| 亚洲伊人久久精品综合| 一本久久精品| 久久精品aⅴ一区二区三区四区| 老司机影院毛片| av又黄又爽大尺度在线免费看| 热re99久久精品国产66热6| 成年美女黄网站色视频大全免费| 欧美国产精品一级二级三级| 亚洲 国产 在线| 免费观看av网站的网址| 久久热在线av| 亚洲成人免费av在线播放| 亚洲人成电影观看| 亚洲成人手机| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 下体分泌物呈黄色| 人妻一区二区av| 国产成人av教育| 手机成人av网站| 国产精品.久久久| 高清av免费在线| 国产亚洲av高清不卡| 视频区欧美日本亚洲| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| videosex国产| 精品国产国语对白av| 香蕉丝袜av| 超碰成人久久| 1024视频免费在线观看| 亚洲精品中文字幕在线视频| 精品国产一区二区久久| 午夜影院在线不卡| 男女国产视频网站| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 一级毛片我不卡| 性色av乱码一区二区三区2| 久久久久网色| 十八禁人妻一区二区| 激情视频va一区二区三区| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| av片东京热男人的天堂| 日韩电影二区| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密 | 宅男免费午夜| 看免费av毛片| 叶爱在线成人免费视频播放| 午夜激情av网站| 只有这里有精品99| 国产爽快片一区二区三区| 性少妇av在线| 国产真人三级小视频在线观看| 多毛熟女@视频| 久久av网站| 久久精品久久精品一区二区三区| 精品久久久久久久毛片微露脸 | 黄网站色视频无遮挡免费观看| 亚洲美女黄色视频免费看| 午夜视频精品福利| 十分钟在线观看高清视频www| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| 成人国产一区最新在线观看 | 狂野欧美激情性bbbbbb| 51午夜福利影视在线观看| 午夜91福利影院| 热99久久久久精品小说推荐| 成人国产av品久久久| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 精品一品国产午夜福利视频| 久久久精品94久久精品| 黄片小视频在线播放| 日日爽夜夜爽网站| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区蜜桃| 18禁裸乳无遮挡动漫免费视频| 午夜福利乱码中文字幕| 午夜免费鲁丝| 国产熟女欧美一区二区| 亚洲欧美一区二区三区国产| 国产精品一国产av| videos熟女内射| www.精华液| 深夜精品福利| 一区二区三区乱码不卡18| cao死你这个sao货| 亚洲精品在线美女| 操美女的视频在线观看| h视频一区二区三区| 久久午夜综合久久蜜桃| av有码第一页| 国产老妇伦熟女老妇高清| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 国产在线视频一区二区| 国产精品免费大片| 久久国产精品人妻蜜桃| 亚洲伊人色综图| 嫁个100分男人电影在线观看 | 久久亚洲国产成人精品v| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 免费不卡黄色视频| 999久久久国产精品视频| 亚洲精品久久久久久婷婷小说| 精品高清国产在线一区| 在线天堂中文资源库| 亚洲av电影在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 日韩中文字幕视频在线看片| 亚洲视频免费观看视频| 男男h啪啪无遮挡| 国产成人精品无人区| 一区二区三区激情视频| 免费不卡黄色视频| 另类亚洲欧美激情| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 黄色 视频免费看| e午夜精品久久久久久久| 国产午夜精品一二区理论片| 久久国产亚洲av麻豆专区| 亚洲国产精品一区二区三区在线| 亚洲精品中文字幕在线视频| 中文字幕色久视频| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| 国产成人影院久久av| 男人舔女人的私密视频| 国产男女内射视频| av有码第一页| 九色亚洲精品在线播放| 国产成人av教育| 亚洲精品久久成人aⅴ小说| 国产av国产精品国产| 亚洲av日韩在线播放| 国产精品久久久久久精品古装| 99久久精品国产亚洲精品| 午夜免费男女啪啪视频观看| 王馨瑶露胸无遮挡在线观看| a级毛片在线看网站| 国产爽快片一区二区三区| 2018国产大陆天天弄谢| www.av在线官网国产| 国产片特级美女逼逼视频| 制服诱惑二区| 国产又爽黄色视频| 日日夜夜操网爽| 99国产精品一区二区蜜桃av | 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 亚洲av电影在线进入| 亚洲精品一卡2卡三卡4卡5卡 | 大片电影免费在线观看免费| 捣出白浆h1v1| 国产老妇伦熟女老妇高清| 69精品国产乱码久久久| 久久精品熟女亚洲av麻豆精品| 啦啦啦在线免费观看视频4| 纵有疾风起免费观看全集完整版| 每晚都被弄得嗷嗷叫到高潮| 一边亲一边摸免费视频| av有码第一页| 久热爱精品视频在线9| 日韩制服骚丝袜av| a级片在线免费高清观看视频| 精品久久久精品久久久| 91国产中文字幕| 精品亚洲成国产av| 我的亚洲天堂| 大话2 男鬼变身卡| 悠悠久久av| 国产激情久久老熟女| 视频区欧美日本亚洲| 一级黄色大片毛片| 国产97色在线日韩免费| www.999成人在线观看| 在线 av 中文字幕| bbb黄色大片| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 制服诱惑二区| 日韩精品免费视频一区二区三区| 国产成人a∨麻豆精品| 久久久亚洲精品成人影院| 乱人伦中国视频| 成人影院久久| 国产伦人伦偷精品视频| 晚上一个人看的免费电影| 亚洲欧洲日产国产| 成人免费观看视频高清| 一级a爱视频在线免费观看| 操美女的视频在线观看| 亚洲久久久国产精品| a级毛片黄视频| 久久久精品国产亚洲av高清涩受| 宅男免费午夜| 老司机亚洲免费影院| 操出白浆在线播放| 国产av一区二区精品久久| 一级毛片我不卡| 亚洲熟女精品中文字幕| 久久亚洲精品不卡| 亚洲国产欧美网| 久久精品成人免费网站| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| h视频一区二区三区| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 老汉色av国产亚洲站长工具| 国产av国产精品国产| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 人人妻人人澡人人看| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 脱女人内裤的视频| 人体艺术视频欧美日本| 老司机在亚洲福利影院| 制服诱惑二区| 国产一区有黄有色的免费视频| 男女高潮啪啪啪动态图| 欧美日本中文国产一区发布| 美国免费a级毛片| 国产精品久久久久久人妻精品电影 | 亚洲五月色婷婷综合| 只有这里有精品99| 伊人久久大香线蕉亚洲五|