• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-function terahertz metasurface based on vanadium dioxide and graphene

    2022-09-24 07:59:54JiuShengLi李九生andZheWenLi黎哲文
    Chinese Physics B 2022年9期

    Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文)

    Centre for THz Research,China Jiliang University,Hangzhou 310018,China

    Keywords: metasurface,switchable terahertz absorber,electromagnetically induced transparency

    1. Introduction

    Vanadium dioxide (VO2) and graphene have attracted much attention due to their excellent external control properties. VO2can switch to different phase transition states as the temperature changes.[1,2]Moreover, the phase transition process can be accomplished by thermal,[3,4]electrical[5,6]or optical control.[7]When working at room temperature,the lattice structure of VO2is monoclinic(the insulating state).When the temperature reaches 68°C,the lattice of VO2is distorted into a tetragonal structure(the metallic state).This state is reversible,and the electromagnetic properties of VO2will change significantly during this process.[8]In the terahertz region, VO2is usually embedded in a metasurface to achieve dynamic regulation. In 2019, Liuet al.[9]proposed an adjustable absorber based on VO2. With a change in the phase transition state,the absorber is converted from low absorption to broadband high absorption. When the temperature exceeds 70°C,the absorption bandwidth reaches 2 THz. In 2020, Donget al.[10]proposed a chiral metasurface composed of hybrid gold-VO2structures, and realized the switching on or off of asymmetric transmission by adjusting the phase of VO2from the insulating state to the metallic state and vice versa. Based on the transition of VO2,Denget al.[11]investigated a switchable metamaterial. Their device behaves as a cross converter when the VO2is metallic, while it behaves as an analog with electromagnetically induced transparency when VO2is switched to the insulating state.

    Graphene is composed of carbon atoms in a planar hexagonal lattice. As a two-dimensional monolayer material,[12]a graphene surface can excite surface plasmons from the midinfrared to terahertz bands. Compared with traditional metals, graphene has fewer free charges, and its free charge concentration can be changed by chemical doping or a bias voltage. Hence, the conductivity of graphene can be manipulated by changing the chemical potential. In 2019, Xianget al.[13]investigated a tunable dual-band perfect absorber based on graphene. With an increase in the Fermi energy, the amplitude and frequency band of the absorption peak could be controlled. In 2020,Sunet al.[14]proposed a novel multifunctional device based on a hybrid metal-graphene metamaterial with electromagnetically induced transparency in the terahertz band. An ultra-broadband transmission window with a bandwidth of 1.23 THz can be obtained and the spectral extinction ratio can be tuned from 26% to 98% by changing the Fermi level of graphene. Moreover,metasurfaces based on VO2and graphene are increasingly being reported in the literature. In 2020, Zhuet al.[15]presented a switchable and tunable terahertz absorber based on the Fermi energy level of graphene and the phase transition properties of VO2.When VO2is in the insulating state,broadband absorption properties are achieved.When VO2is in the metallic state,the device acts as a tunable multi-band absorber. In 2021, Liuet al.[16]proposed a bifunctional metamaterial which can realize a dynamic switch between beam steering and broadband absorption as the phase state of the VO2changes. By changing the Fermi energy level of graphene,the incident wave is scattered in different patterns and the absorptance can also be gradually changed.

    In this paper,we design a dual-function terahertz metasurface by utilizing the dynamic properties of graphene and VO2.When the bottom VO2is in the metallic state,the metasurface can be switched between a single-band and dual-band absorber under different states of the top VO2patches (i.e., when the top VO2is in the metallic state,the designed metasurface behaves as a single-band absorber with an absorptance of 99.7%at 0.736 THz and when the top VO2is in the insulating state,the proposed metasurface acts as a dual-band absorber with an absorptance of 98.9%at 0.894 THz and 99.9%at 1.408 THz).When the bottom VO2is in the insulating state, the metasurface achieves electromagnetically induced transparency(EIT),and dynamic control of the transparency window and group delay can be manifested by changing the chemical potential of graphene. The designed metasurface shows the advantages of function switching and dynamic control.

    2. Structure design

    Figure 1 shows a three-dimensional (3D) structure diagram of the multifunctional terahertz metasurface, which consists of a gold pattern layer, a SiO2layer, a VO2layer,graphene and a SiO2bottom spacer substrate. The gold pattern is composed of four split rings and a cross. The gap is embedded with eight VO2patches. The optimized structure parameters are as follows:P=120μm,l=20μm,a=32μm,s=8μm,w=8μm,g1=8μm,andg2=21.2μm(the symbols are defined in Fig.1). The thicknesses of the gold layer,SiO2spacer substrate, VO2film layer, graphene film layer and SiO2bottom spacer substrate are 0.5μm, 7.5μm, 1μm,0.01μm,and 3μm,respectively. Numerical simulations were performed using the finite difference frequency domain solver of CST Microwave Studio, for which the unit cell boundary conditions were set along thex-andy-directions,and the open boundary conditions were applied in thez-direction.

    3. Results analysis

    3.1. Switching between single-and dual-band absorption

    The absorptance of the proposed metasurface is written as follows:

    whereRandTrepresent reflectance and transmittance, respectively,whileS11andS21represent reflection and transmission parameters,respectively. Figure 2(a)shows the different states of the absorption curve of the top VO2patch through phase transition while the bottom VO2film is in the metallic state. When the top VO2patches are in the insulating state,the metasurface behaves as a dual-band absorber, and the absorptances at 0.894 THz and 1.408 THz are 98.9%and 99.9%,respectively. When the temperature rises to 68°C, the bottom VO2film becomes metallic, and the designed structure is converted to a single-band absorber with an absorptance of 99.7% at 0.736 THz. The impedance matching theory[20]is introduced to analyze the structure,as follows:

    whereZ1represents the equivalent surface impedance of the proposed device andZ0is the free space impedance. When the effective impedance matches the free space impedance,the relative impedanceZis close to 1, which realizes perfect absorption. The real and imaginary parts of the relative impedance of the designed metasurface are shown in Figs. 2(b) and 2(c). At 0.894 THz, the real and imaginary parts of the impedance are of 0.845 and 0.111,respectively.At 1.408 THz,the real and imaginary parts of the impedance are 1.035 and 0.034, respectively. Moreover, the real and imaginary parts of the impedance are 1.099 and-0.028, respectively,at 0.736 THz. This indicates that the designed structure has low reflectivity and high absorptance at the three frequencies. From Fig. 2(a), one can see that the perfect absorption is close to 100%. In addition, due to its symmetrical structure,the designed structure is polarization insensitive and can achieve the same absorption effect regardless of the incident waves being TE or TM.

    In order to introduce the absorption mechanism at different frequencies, figure 3 illustrates the electric field distribution at the top and bottom of the switchable absorber at different resonant frequencies. One can see from Figs.3(a)and 3(b)that pairs of induced charges gather at the top and bottom layers of the metasurface pattern,which indicates a dipole excited on the metal and VO2layer. At the same time,the direction of flow of charge in the VO2layer is opposite to that in the top metal layer. Therefore, the strong coupling between the two layers leads to magnetic resonance,and the electric and magnetic dipole resonances give rise to a perfect absorption peak at 0.736 THz. Similarly,figures 3(c)and 3(d)display that the top charges are mainly concentrated at the crossing ends,and the direction of charge flow is opposite to that of the bottom VO2layer.The absorption peak at 0.894 THz is also caused by the electric dipole resonance and magnetic dipole resonance.In Figs. 3(e) and 3(f), the result show that the positive and negative charges are mainly concentrated at the two ends of the four split rings,and four dipole-like pairs are accumulated.The electric octopoles between the top and bottom layers can be clearly observed; these are opposite to each other. Due to the strong interaction of the electric octopole mode, a fourharmonic magnetic resonance is formed.

    Fig. 2. (a) Absorption curves of VO2 in the metallic and insulating states.(b)Real and imaginary parts of the impedance of a single-band absorber. (c)Real and imaginary parts of the impedance of a dual-band absorber.

    We also studied the relationship between absorption and the terahertz wave angle. Figures 4(a) and 4(d) show the absorption spectra with different polarization angles for singleband and dual-band absorbers with vertically incident terahertz waves. When the polarization angle changes from 0°to 90°,the terahertz absorption spectra reveal polarizationinsensitive characteristics,caused by the symmetry of the structure. Figures 4(b)and 4(c)show the absorption spectra of the single-band absorbers with the angle of incidence changing under TE and TM modes. For the TE mode, the angle of incidence varies from 0°to 60°, and the absorptance remains above 0.8. The peak absorption rate decreases with increasing angle of incidence. That is to say, the direction of the electric field changes with the angle of incidence, which results in a decrease in the intensity of electric resonance. For the TM mode,the electric field does not change direction. In this case, when the angle of incidence is 70°, the absorption peak also maintains a high absorption rate above 0.9. It is worth noting that when the angle of incidence is above 40°,some undesirable absorption peaks appear in the absorption spectrum. This is because with an increase in the angle of incidence some parasitic resonances in the metasurface increase sharply. Figures 4(e)and 4(f)display the absorption spectra of the dual-band absorber with change in the angle of incidence for TE and TM modes. For the TE mode, when the angle of incidence varies from 0°to 40°,the two absorption peaks are above 0.8. In particular, the first absorption peak can remain at 0.9 when the angle of incidence reaches 70°. For the TM mode,when the angle of incidence is 60°,the two absorption peaks remain above 0.9. Similarly, absorption peaks caused by high resonance modes can be observed in the TM mode.This confirms that when the designed metasurface is used as switchable absorber it is insensitive to the polarization angle and can still maintain high absorption under a large angle of incidence.

    Fig.3.Electric field distribution:at the top layer at 0.736 THz(a),0.894 THz(c)and 1.408 THz(e)and at the bottom layer at 0.736 THz(b), 0.894 THz(d)and 1.408 THz(f).

    Fig.4. Absorption spectra of single-band(a)-(c)and dual-band(d)-(f)absorbers with different polarization angles and incident angles.

    3.2. Dynamic control of electromagnetically induced transparency

    When both the bottom and top VO2patches are in an insulating state,the metasurface converts from terahertz absorption to EIT. Figure 5 depicts the transmission curves of the split rings, cross and their combination under normally incident terahertz waves when the electrochemical potentialμcof the graphene layer is set to 0 eV.It can be concluded that the resonant peak at 1.04 THz is generated by the cross while the resonant peak at 1.58 THz is generated by the four split rings.Therefore, the bright mode induced by the four split rings and the bright mode induced by the cross produce destructive interference between adjacent resonators, which induces a transparent window in the opaque band. In order to clarify the physical mechanism of EIT,figure 6 shows the electric field distribution of the metasurface. At 1.04 THz,the cross is strongly excited by the incident terahertz wave while the four split rings are weakly excited. However, the electric field is mainly concentrated in four split rings at 1.58 THz. At a frequency of 1.24 THz,the cross and four split rings are excited at the same time,and the destructive interference caused by the hybrid coupling of the two bright modes inhibits the radiation loss and allows transmission of the incident wave.

    Fig.5. Transmission curves of the split rings,cross and their combination.

    wherem1(m2), ˙x1(˙x2), ¨x1(¨x2),ω1(ω2),γ1(γ2),andg1(g2)are the effective mass,the first derivative of displacement,the second derivative of displacement, resonance frequency, loss factor and the coupling strength of the two particles with the incident terahertz wave, respectively.κrepresents the coupling coefficient between the two particles. The following equations can be derived from formulae(10)and(11):

    whereKis a coefficient of proportionality. The real part of the effective susceptibility represents the dispersion characteristics and the imaginary part represents the absorption of the proposed metasurface. Figure 7 demonstrates the simulation curve and parameter fitting of the designed metasurface.The fitting parameters areA=0.59,B=0.72,κ=0.65 THz,γ1=1.05 rad·ps-1andγ2=1.45 rad·ps-1. It can be observed that the calculation and simulation curves show good agreement.

    Fig.6. Electric field distribution of the proposed metasurface: (a)1.04 THz,(b)1.24 THz,(c)1.58 THz.

    Fig.7. Comparison of the calculated and simulated curves.

    Fig.8. Transmission curve(a)and group delay(b)of the designed metasurface for a graphene layer under different chemical potentials.

    In order to realize dynamic control of the EIT phenomenon, the transmission curves of the graphene layer under different chemical potentials were calculated,as shown in Fig. 8(a). When the chemical potential of the graphene layer is 0 eV,the transmission amplitude of the designed structure is 82% at 0.24 THz. As the chemical potential of the graphene layer gradually increases from 0 eV to 0.5 eV, the transmission amplitude of the EIT peak decreases from 82% to 39%.As an important phenomenon accompanying the EIT effect,a slow light is produced by the strong dispersion of the EIT window. The group delay(τg=-dφ/dω)is introduced to analyze the slow light capability of the designed metasurface. In this formula,φandωrepresent the phase shift and angular frequency, respectively, of the transmission spectrum. Since the transparent window is adjustable, active control of the group delay can also be achieved by changing the chemical potential of the graphene layer, as depicted in Fig.8(b). When the chemical potential of the graphene layer is set as 0 eV, the maximum positive group delay is 1.83 ps at the transparent window. With an increase in the chemical potential, the device gradually loses the slow light effect, showing that active control group delay can be realized by changing the chemical potential of graphene. This has great significance for the design of slow light equipment.

    4. Conclusion

    In this paper,a dual-function terahertz metasurface based on VO2and graphene is proposed. It is composed of a gold layer embedded with VO2patches,a SiO2layer,a VO2layer,a graphene layer and a SiO2spacer substrate.When the top VO2patches and bottom VO2are in the metallic state,the designed metasurface can be used as a single-band absorber with a terahertz absorptance of 99.7%at 0.736 THz. When the top VO2patches are in the insulating state and the bottom VO2is in the metallic state,the designed metasurface behaves as a dualband absorber, and the absorptance rates at 0.894 THz and 1.408 THz are 98.9% and 99.9%, respectively. The absorber is insensitive to polarization and maintains perfect absorption under large angles of incidence. When the bottom VO2layer is in the insulating state, the designed metasurface achieves electromagnetically induced transparency. When the chemical potential of graphene is varied from 0 eV to 0.5 eV, the transparent window can be dynamically regulated. Changing the chemical potential of the graphene layer can also realize active control of group delay. In summary,the designed terahertz device shows good prospects for application in tunable terahertz optoelectronic systems.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61871355 and 61831012),the Talent Project of Zhejiang Provincial Department of Science and Technology(Grant No.2018R52043),Zhejiang Key Research and Development Project of China (Grant Nos. 2021C03153 and 2022C03166),and Research Funds for the Provincial Universities of Zhejiang(Grant No.2020YW20).

    欧美黄色淫秽网站| 女性被躁到高潮视频| 美女国产高潮福利片在线看| 欧美最黄视频在线播放免费| 久久午夜综合久久蜜桃| 免费观看精品视频网站| 日本成人三级电影网站| 免费看日本二区| 天堂√8在线中文| 脱女人内裤的视频| 亚洲第一av免费看| 色老头精品视频在线观看| 亚洲在线自拍视频| 中出人妻视频一区二区| 免费看日本二区| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 色在线成人网| 一个人免费在线观看的高清视频| 麻豆成人午夜福利视频| 中文在线观看免费www的网站 | 日韩欧美国产一区二区入口| 99在线人妻在线中文字幕| 日本 欧美在线| av片东京热男人的天堂| 久久 成人 亚洲| 亚洲人成网站在线播放欧美日韩| 午夜福利欧美成人| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 99久久综合精品五月天人人| 欧美在线一区亚洲| 午夜激情av网站| www.熟女人妻精品国产| 欧美成人性av电影在线观看| 欧美国产精品va在线观看不卡| 国产97色在线日韩免费| 美女高潮喷水抽搐中文字幕| 欧美三级亚洲精品| 夜夜躁狠狠躁天天躁| 99国产精品一区二区蜜桃av| 一本久久中文字幕| 久久热在线av| 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 久久香蕉激情| 级片在线观看| 欧美中文日本在线观看视频| 亚洲七黄色美女视频| 亚洲 欧美一区二区三区| 久久久久久大精品| 久久欧美精品欧美久久欧美| 国产亚洲欧美精品永久| 国产熟女午夜一区二区三区| 欧美黑人巨大hd| 亚洲av电影在线进入| 91九色精品人成在线观看| 日本五十路高清| 欧美久久黑人一区二区| 欧美激情高清一区二区三区| 老熟妇仑乱视频hdxx| 欧美精品亚洲一区二区| 久久久久国产精品人妻aⅴ院| 欧美最黄视频在线播放免费| 又黄又粗又硬又大视频| 久久狼人影院| 亚洲精华国产精华精| 亚洲成人久久爱视频| 少妇的丰满在线观看| 在线播放国产精品三级| 国产麻豆成人av免费视频| 母亲3免费完整高清在线观看| 亚洲av成人av| 男人舔奶头视频| 很黄的视频免费| 久久香蕉国产精品| 男女午夜视频在线观看| 国产熟女xx| 50天的宝宝边吃奶边哭怎么回事| 高清在线国产一区| 中文字幕最新亚洲高清| 成人18禁在线播放| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 精品第一国产精品| 久久草成人影院| 久久精品91无色码中文字幕| 一二三四社区在线视频社区8| 一区二区日韩欧美中文字幕| 国产精品久久久人人做人人爽| 两个人免费观看高清视频| 精品人妻1区二区| www国产在线视频色| 亚洲精华国产精华精| 亚洲,欧美精品.| 国产精品影院久久| 白带黄色成豆腐渣| 色老头精品视频在线观看| 中文字幕精品免费在线观看视频| 亚洲国产日韩欧美精品在线观看 | 国产亚洲精品第一综合不卡| 午夜福利在线在线| 亚洲成a人片在线一区二区| 19禁男女啪啪无遮挡网站| 久久国产乱子伦精品免费另类| 女同久久另类99精品国产91| 欧美性长视频在线观看| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 可以在线观看毛片的网站| 女警被强在线播放| 变态另类丝袜制服| 日韩免费av在线播放| 色哟哟哟哟哟哟| 日韩精品中文字幕看吧| 欧美不卡视频在线免费观看 | 久久久久久国产a免费观看| 黑丝袜美女国产一区| 亚洲精品美女久久av网站| 韩国av一区二区三区四区| 首页视频小说图片口味搜索| 99久久无色码亚洲精品果冻| 欧美日韩中文字幕国产精品一区二区三区| 国产私拍福利视频在线观看| 国产真实乱freesex| 国产精品野战在线观看| 777久久人妻少妇嫩草av网站| 美女国产高潮福利片在线看| 无人区码免费观看不卡| 欧美性猛交╳xxx乱大交人| 美女大奶头视频| 国产高清视频在线播放一区| 中文资源天堂在线| 日日摸夜夜添夜夜添小说| 男男h啪啪无遮挡| 国产亚洲精品综合一区在线观看 | 午夜a级毛片| 欧美激情久久久久久爽电影| 国产亚洲精品一区二区www| 黄片播放在线免费| 日本三级黄在线观看| 国产精品野战在线观看| 看免费av毛片| 97人妻精品一区二区三区麻豆 | 啦啦啦韩国在线观看视频| 国产爱豆传媒在线观看 | 亚洲五月婷婷丁香| svipshipincom国产片| 欧美最黄视频在线播放免费| 精品久久久久久久久久免费视频| 免费搜索国产男女视频| 他把我摸到了高潮在线观看| 又紧又爽又黄一区二区| 在线十欧美十亚洲十日本专区| 两个人看的免费小视频| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 一进一出抽搐gif免费好疼| 97碰自拍视频| 久久国产精品男人的天堂亚洲| 97人妻精品一区二区三区麻豆 | 正在播放国产对白刺激| bbb黄色大片| 搡老妇女老女人老熟妇| 丝袜美腿诱惑在线| 日韩三级视频一区二区三区| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 国产免费av片在线观看野外av| 日日干狠狠操夜夜爽| 青草久久国产| 日本a在线网址| 午夜福利在线在线| 不卡av一区二区三区| 美女国产高潮福利片在线看| 美女国产高潮福利片在线看| 欧美性长视频在线观看| 色综合亚洲欧美另类图片| 久久九九热精品免费| 窝窝影院91人妻| 悠悠久久av| 国产又爽黄色视频| 精品一区二区三区视频在线观看免费| 国产97色在线日韩免费| 中文字幕另类日韩欧美亚洲嫩草| 淫秽高清视频在线观看| 露出奶头的视频| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 国产成人欧美| 国产精品精品国产色婷婷| 夜夜爽天天搞| 真人一进一出gif抽搐免费| 可以在线观看的亚洲视频| 婷婷丁香在线五月| 亚洲av电影不卡..在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲狠狠婷婷综合久久图片| 欧美黄色片欧美黄色片| www.999成人在线观看| 岛国视频午夜一区免费看| 露出奶头的视频| 成熟少妇高潮喷水视频| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3 | 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 欧美成人午夜精品| 亚洲国产毛片av蜜桃av| 97碰自拍视频| 色综合婷婷激情| 黄色毛片三级朝国网站| 婷婷丁香在线五月| 日韩欧美在线二视频| 精品第一国产精品| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三 | 午夜久久久在线观看| 热re99久久国产66热| 婷婷亚洲欧美| 日日摸夜夜添夜夜添小说| 色精品久久人妻99蜜桃| 在线天堂中文资源库| 亚洲精品国产精品久久久不卡| 51午夜福利影视在线观看| 99精品久久久久人妻精品| 脱女人内裤的视频| 村上凉子中文字幕在线| 久久久国产成人免费| 久久精品国产综合久久久| avwww免费| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 国产精品日韩av在线免费观看| 国产国语露脸激情在线看| 一级毛片精品| 欧美性长视频在线观看| 成人一区二区视频在线观看| 精品卡一卡二卡四卡免费| 757午夜福利合集在线观看| 久久人人精品亚洲av| 亚洲熟妇熟女久久| 香蕉国产在线看| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 国产精华一区二区三区| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 妹子高潮喷水视频| 一二三四在线观看免费中文在| 国产av在哪里看| 久久人妻福利社区极品人妻图片| 性欧美人与动物交配| 欧美国产精品va在线观看不卡| 99re在线观看精品视频| 亚洲成国产人片在线观看| 久久午夜综合久久蜜桃| 一区福利在线观看| 久久久久国产一级毛片高清牌| 午夜视频精品福利| 欧美乱妇无乱码| 亚洲色图av天堂| 黄色视频,在线免费观看| 夜夜躁狠狠躁天天躁| 美女免费视频网站| 女人被狂操c到高潮| 国内少妇人妻偷人精品xxx网站 | 1024香蕉在线观看| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 一本一本综合久久| 一级a爱视频在线免费观看| 淫秽高清视频在线观看| 黄色毛片三级朝国网站| 日韩三级视频一区二区三区| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆 | 国产99白浆流出| 夜夜爽天天搞| 欧美性长视频在线观看| 国产三级黄色录像| 亚洲精品av麻豆狂野| 亚洲第一青青草原| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 老汉色∧v一级毛片| 一边摸一边抽搐一进一小说| 国产精品免费视频内射| 亚洲精华国产精华精| 99国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 日本一本二区三区精品| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 久久狼人影院| 精品国产国语对白av| 久久婷婷人人爽人人干人人爱| 久久草成人影院| av天堂在线播放| av福利片在线| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 亚洲熟女毛片儿| a级毛片在线看网站| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 国产亚洲欧美98| 天天一区二区日本电影三级| 国产不卡一卡二| 国产色视频综合| av电影中文网址| 91麻豆精品激情在线观看国产| 女警被强在线播放| 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| 99riav亚洲国产免费| 日日夜夜操网爽| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 两个人免费观看高清视频| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| www国产在线视频色| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| av天堂在线播放| 国产成人一区二区三区免费视频网站| 欧美又色又爽又黄视频| 99久久精品国产亚洲精品| 此物有八面人人有两片| 国产日本99.免费观看| 91字幕亚洲| 国产真实乱freesex| 亚洲精品国产区一区二| 国产真实乱freesex| 麻豆久久精品国产亚洲av| 亚洲成av人片免费观看| 12—13女人毛片做爰片一| 国产av又大| 国产99白浆流出| 国产精华一区二区三区| 国产成人欧美| 国产国语露脸激情在线看| 午夜福利高清视频| 国产成人一区二区三区免费视频网站| 午夜免费成人在线视频| 性欧美人与动物交配| 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 好男人电影高清在线观看| 操出白浆在线播放| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 午夜影院日韩av| 两人在一起打扑克的视频| av天堂在线播放| aaaaa片日本免费| av中文乱码字幕在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 欧美中文日本在线观看视频| 久久狼人影院| 色尼玛亚洲综合影院| 在线永久观看黄色视频| 久久久久久久久免费视频了| 黄色视频不卡| 精品国产国语对白av| 听说在线观看完整版免费高清| 91在线观看av| 久久精品国产亚洲av高清一级| www日本在线高清视频| 成人午夜高清在线视频 | 99riav亚洲国产免费| 亚洲熟女毛片儿| 给我免费播放毛片高清在线观看| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 99精品久久久久人妻精品| 日韩免费av在线播放| 国产成人av教育| 午夜福利在线在线| 可以免费在线观看a视频的电影网站| 亚洲美女黄片视频| 女人被狂操c到高潮| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播 | 在线看三级毛片| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 久久精品91蜜桃| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 亚洲精品国产区一区二| 非洲黑人性xxxx精品又粗又长| 日韩欧美国产一区二区入口| 久久草成人影院| avwww免费| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 国产激情偷乱视频一区二区| 免费观看人在逋| 曰老女人黄片| 亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 成人三级黄色视频| www.熟女人妻精品国产| 天堂√8在线中文| 精品高清国产在线一区| 亚洲欧美一区二区三区黑人| 欧美不卡视频在线免费观看 | 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 久久 成人 亚洲| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 男女视频在线观看网站免费 | 欧美黑人欧美精品刺激| 人人妻人人看人人澡| 免费观看人在逋| 成年版毛片免费区| 久久午夜亚洲精品久久| av天堂在线播放| 精品欧美一区二区三区在线| 1024香蕉在线观看| 国产1区2区3区精品| 亚洲狠狠婷婷综合久久图片| 亚洲一区中文字幕在线| 91国产中文字幕| 91字幕亚洲| 少妇的丰满在线观看| 久久狼人影院| 欧美久久黑人一区二区| 露出奶头的视频| 天天一区二区日本电影三级| 国产成人影院久久av| 成人欧美大片| 亚洲性夜色夜夜综合| 女性被躁到高潮视频| 99riav亚洲国产免费| 一进一出抽搐gif免费好疼| aaaaa片日本免费| 午夜福利欧美成人| 精品一区二区三区av网在线观看| 亚洲成av片中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 国产亚洲欧美98| 97碰自拍视频| 在线观看日韩欧美| 欧美亚洲日本最大视频资源| 俺也久久电影网| 国语自产精品视频在线第100页| 日韩欧美免费精品| 在线国产一区二区在线| 波多野结衣高清作品| 国产av一区在线观看免费| 一a级毛片在线观看| www国产在线视频色| 久久欧美精品欧美久久欧美| 久久香蕉激情| 久久婷婷成人综合色麻豆| 午夜免费激情av| 每晚都被弄得嗷嗷叫到高潮| 欧美中文日本在线观看视频| 国产91精品成人一区二区三区| 久久 成人 亚洲| 18禁美女被吸乳视频| 一边摸一边做爽爽视频免费| 久久久精品国产亚洲av高清涩受| 一区福利在线观看| 亚洲 欧美一区二区三区| 制服丝袜大香蕉在线| 亚洲五月色婷婷综合| 日韩有码中文字幕| 一a级毛片在线观看| 淫妇啪啪啪对白视频| 听说在线观看完整版免费高清| 777久久人妻少妇嫩草av网站| 99在线视频只有这里精品首页| 国产亚洲精品第一综合不卡| 天堂影院成人在线观看| 淫秽高清视频在线观看| 国产精品99久久99久久久不卡| 欧美人与性动交α欧美精品济南到| av天堂在线播放| svipshipincom国产片| 久久久水蜜桃国产精品网| 老司机深夜福利视频在线观看| 高清毛片免费观看视频网站| 午夜免费成人在线视频| 黄色丝袜av网址大全| 女性生殖器流出的白浆| 国产乱人伦免费视频| 一级作爱视频免费观看| 亚洲国产看品久久| 久久青草综合色| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 久久久久久亚洲精品国产蜜桃av| 国产精品,欧美在线| 午夜日韩欧美国产| 久久精品91无色码中文字幕| 日韩精品青青久久久久久| 法律面前人人平等表现在哪些方面| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 一级作爱视频免费观看| 国产又色又爽无遮挡免费看| 日日夜夜操网爽| 成人午夜高清在线视频 | 亚洲成a人片在线一区二区| 色综合亚洲欧美另类图片| 久久久久久久久中文| 国产精品 国内视频| 久久精品人妻少妇| 成人18禁在线播放| or卡值多少钱| 侵犯人妻中文字幕一二三四区| 久久这里只有精品19| 国产免费av片在线观看野外av| 中文字幕高清在线视频| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 俄罗斯特黄特色一大片| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 亚洲男人天堂网一区| 亚洲自偷自拍图片 自拍| 亚洲成av人片免费观看| 精华霜和精华液先用哪个| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 露出奶头的视频| 侵犯人妻中文字幕一二三四区| 免费在线观看亚洲国产| 国产精品免费一区二区三区在线| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 欧美在线黄色| 久久国产亚洲av麻豆专区| 亚洲五月天丁香| 神马国产精品三级电影在线观看 | 日本黄色视频三级网站网址| 免费看日本二区| 天堂√8在线中文| 曰老女人黄片| 久久这里只有精品19| 1024香蕉在线观看| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 男人舔女人下体高潮全视频| 一区二区三区国产精品乱码| www.www免费av| 久久国产乱子伦精品免费另类| 午夜免费鲁丝| 免费搜索国产男女视频| 神马国产精品三级电影在线观看 | 国产99白浆流出| 成人三级做爰电影| videosex国产| 日韩中文字幕欧美一区二区| 国产v大片淫在线免费观看| 19禁男女啪啪无遮挡网站| 国产精品98久久久久久宅男小说| xxxwww97欧美| 十八禁网站免费在线| 免费无遮挡裸体视频| 日韩一卡2卡3卡4卡2021年| 岛国视频午夜一区免费看| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片午夜丰满| 亚洲激情在线av| 十八禁网站免费在线| 757午夜福利合集在线观看| 18禁黄网站禁片午夜丰满| 国产一卡二卡三卡精品| 天天一区二区日本电影三级| 国产极品粉嫩免费观看在线| 91麻豆精品激情在线观看国产| 欧美绝顶高潮抽搐喷水| 操出白浆在线播放| 91麻豆精品激情在线观看国产| 欧美 亚洲 国产 日韩一| 亚洲成人久久爱视频| 1024香蕉在线观看| 亚洲最大成人中文| 国产成人一区二区三区免费视频网站| 黄片小视频在线播放| 日韩精品中文字幕看吧| 国内精品久久久久久久电影| 在线观看一区二区三区| 国产亚洲精品av在线| 国产av又大| 国产免费av片在线观看野外av| 又黄又粗又硬又大视频| 亚洲成人久久爱视频| 亚洲,欧美精品.| 手机成人av网站| 国产97色在线日韩免费|