• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer

    2022-09-24 07:59:32XiuBinLiu劉修彬FengDongJia賈鳳東HuaiYuZhang張懷宇JiongMei梅炅WeiChenLiang梁瑋宸FeiZhou周飛YongHongYu俞永宏YaLiu劉婭JianZhang張劍FengXie謝鋒andZhiPingZhong鐘志萍
    Chinese Physics B 2022年9期
    關(guān)鍵詞:張劍

    Xiu-Bin Liu(劉修彬) Feng-Dong Jia(賈鳳東) Huai-Yu Zhang(張懷宇) Jiong Mei(梅炅)Wei-Chen Liang(梁瑋宸) Fei Zhou(周飛) Yong-Hong Yu(俞永宏) Ya Liu(劉婭)Jian Zhang(張劍) Feng Xie(謝鋒) and Zhi-Ping Zhong(鐘志萍)

    1School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    2Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3National Time Service Centre,Chinese Academy of Sciences,Xi’an 710600,China,University of Chinese Academy of Sciences,Beijing 100049,China

    4Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University,Beijing 100084,China

    5CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: quantum sensor, phase detector, Rydberg atoms, micorwave, electromagnetically induced transparency,amplitude modulation

    1. Introduction

    The Rydberg atom-based radio-frequency (RF) sensor utilizes electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting to enable an optical readout of the RF electric field.[1-4]This approach offers a direct international system of units(SI)traceable,a broad frequency range,and a self-calibrated measurement of the RF electric field.[1-6]The Rydberg atom-based RF sensor has made rapid progress in the past decade and provided new detection capabilities beyond the traditional antenna and other RF detectors.[7-15]The Rydberg atom-based RF sensor has also been used as atomic receivers to demonstrate RF communication.[16-19]

    The technique for precisely measuring the phases of RF fields is important and applied broadly in antenna metrology,radar, remote sensing, and various other fields. Simonset al.successfully converted the Rydberg atom-based sensor to a mixer and directly measured the phase of the signal RF(SIG RF)electric field.[20]The phase of the SIG RF field is downconverted directly to the phase of the intermediate frequency(IF)beat signal(on the order of kHz),which is created by the presence of a local RF(LO RF)field.[20-22]In the present Rydberg atom-based mixer schemes, the amplitude of the beat signal remains constant,and the phase of the SIG RF field can be read out by comparison with another same frequency reference waveform,[20-22]for example,combines an RF combiner or a spectrum analyzer with the mixer.

    In this study, we propose the conversion of the Rydberg atom-based mixer to an all-optical Rydberg atom-based phase detector. Through the amplitude modulation(AM)of the LO RF field with the frequency of the beat signal in the Rydberg atom-based mixer, the amplitude of the beat signal was changed and related to the phase of the SIG RF field. We present a more convenient readout for RF phase measurements after studying the relationship between the output voltage of the phase detector and the phase of the SIG RF field. Furthermore, we use the Rydberg atom-based phase detector to realize a sub-degree phase resolution.

    2. Theory

    Figure 1(a)shows the atomic energy levels applied in this study. The energy levels are87Rb,5S1/2(F=2),5P3/2(F'=3), 53D5/2(F=4) and 54P3/2(F=3) corresponding to|1〉,|2〉,|3〉,|4〉, respectively. Rydberg EIT occurs when the frequency of the weak probe field is scanned near the resonant transition of|1〉to|2〉in the presence of a strong coupling field coupled with|2〉to|3〉transition. The LO RF field resonates with the Rydberg transition|3〉and|4〉. The frequency difference between the LO RF field and SIG RF field is Δω.The electric field experienced by the atoms is defined asEatomand the low frequency termEmodis given by[20]

    whereELOandESIGare the electric field amplitudes of the LO RF and SIG RF field,respectively. Δφ=φSIG-φLOis the difference between the SIG RF field phaseφSIGand the LO RF field phaseφLO,andφLOis set to zero for simplicity.

    Fig.1. Basic principle of the Rydberg atom-based phase detector. (a)Levels scheme. (b)Block diagram of the Rydberg atom-based“phase detector”,which combines the Rydberg atom-based“mixer”with AM of the LO RF field;the phase of the SIG RF is carried in the oscillation amplitude of the transmittance of the probe laser(known as the beat signal).

    The RF field causes AT splitting of the EIT signal,and the transmittance of the probe lightTpis proportional to the amplitude of the RF field within a certain range.[23]For a weak SIG RF field,whereESIG?ELO,Eq.(1)can be written as[20]

    It can be seen that we can directly extractφSIGthroughABeatin the experiment.WhenELOis modulated,only the amplitude of the beat signal is affected,and the phase information of the SIG RF field is completely inherited.It can be seen from Eq.(3)that in addition toφSIG,all ofDAM,φAM,ELOandESIGwill affect the amplitude of the beat signal. Therefore, these quantities should remain stable and this is relatively easy to realize in practical applications. For example,ESIGcan be attenuated to a fixed value and then sent to the atomic sensor.Consequently, the relationship betweenφSIGand output voltage of the phase detector can be obtained. Thus, our method is to directly compare the reference phase withφSIGinside the atomic mixer. It avoids the perturbation that may be encountered in the transmission process of the beat signal to the RF combiner in the traditional phase detector scheme.

    3. Experimental setup

    Figure 2 schematically shows the experimental setup,which is based on the Rydberg atomic sensor and mixer. A weak probe light withλp=780 nm was generated using an external cavity semiconductor laser(DL100,Toptica),and the frequency was locked on the resonance transition of|1〉to|2〉using the Zeeman modulation saturated absorption spectrum(SAS).[24]A relatively stronger coupling light withλc=480 nm was generated using a frequency-doubled diode laser(TA-SHG-Pro,Toptica),and the frequency was locked on the resonance transition of|2〉to|3〉using the Zeeman modulation Rydberg EIT spectrum.[25]The linewidths of all the lasers were estimated to be less than 500 kHz using the linewidth of the Rydberg EIT with 494 kHz in cold atom samples.[25]The minimum Allen varianceσ(τ)laserof lasers was approximately 7.3×10-11at 8 s for laser stabilization.[26]The probe light was focused to an 800μm 1/e2diameter using an achromatic lens with powerIp=25 μW. The coupling light with powerIc=30 mW was focused to a 900 μm 1/e2diameter.The probe light and coupling light were both linearly polarized and were counter-propagating in the Rb cell. Then, the intensity of the probe beam passing through the cell was detected using a photodiode (PD) and sent to the lock-in amplifier(LI5640, NF Corporation), and finally recorded by the oscilloscope.

    Fig.2.Schematic of the experimental setup for the Rydberg atom-based phase detector. PD denotes the photodetector, purple lines denote the rubidium clock synchronization signals, orange line denotes the reference signal of the lock-in amplifier,and the red dotted line denotes the signal received by the PD and the output of the lock-in amplifier. OSC denotes the oscilloscope.

    Here, we used two signal generators to produce the two microwave fields. The first signal generator (8340 B,Keysight Technologies)was used to generate the LO RF field at 14.233 GHz to drive the Rydberg transition|3〉to|4〉. The second signal generator (E8257 D, Keysight Technologies)was used to apply the SIG RF field at 14.233 GHz-Δω(where Δωcan vary from 1 kHz to 100 kHz). The outputs of the two signal generators were connected to two separate horn antennas(LB-62-10-C-SF)that radiate the microwaves toward the cylinder Rb cell(diameter 25 mm and length 75 mm),and the antennas were placed far away from the Rb cell to satisfy the far-field condition. The two signal generators were triggered by the same GPS (Global Positioning System)-tamed 10 MHz Rb clock (FS725, Stanford) to keep the frequency drift of both signal generators to a very low level. The tested minimum Allen varianceσ(τ)clockof the 10 MHz Rb clock was 1.44×10-14after being tamed for 24 h by the GPS.The frequency drifts of the two microwaves were 10-2Hz within 2 h(compared with 1 Hz frequency drifts after being triggered by the Rb clock inside the signal generator within 2 h),which was sufficiently stable for our experiments.[23]The polarizations of the two microwave electric fields were the same as those of the probe and coupling beams and propagated in a vertical direction to the two laser beams.

    Next, we describe the conversion of the Rydberg atombased mixer to a phase detector. A function generator generated a sinusoidal signal with the same frequency as the beat signal to modulate the amplitude of the LO RF field. The amplitude and phase of the modulation signal can both be controlled. In addition,the output signal of the function generator was also sent to the lock-in amplifier as a reference signal to demodulate the amplitude of the beat signal and then recorded by the oscilloscope. Another function generator applied a triangular wave signal or a transistor-transistor logic(TTL)signal to trigger a phase shifter to change the phase of the SIG RF fieldφSIG. Specifically,when the voltage of the triangular wave or the TTL signal changes from-0.5 V to 0.5 V,φSIGcan change linearly within the set range.

    4. Results and discussion

    First,we discuss the effect ofELOandESIGonTp. Then,we describe the influence of the amplitude modulation of the LO RF field on the performance of the phase detector,including the phaseφAMand depthDAMof the amplitude modulation of the LO RF field. Furthermore, we study phase resolution capability of the phase detector.

    We briefly discuss the relationship between the transmittance of the probe lightTpand the RF electric field amplitude experienced by the atomsELO(orESIG)when the probe light and the coupling light are locked at the EIT resonance frequency. The results show thatTpandELO(orESIG) satisfy a monotonic proportional relationship when 0.8 mV/cm≤ELO(orESIG)≤20 mV/cm. WhenELO(orESIG) is less than 0.8 mV/cm or greater than 20 mV/cm,Tpwill not change significantly withELO(orESIG). Therefore, in the following experiments, we will study and optimize the performance of phase detector by choosingELOandESIGin the range of 0.8-20 mV/cm.

    To study the relationship betweenφAMandφSIGunder LO RF field amplitude modulation,we used a phase shifter to changeφSIGcontinuously over 4πand setφLO=0 for simplicity. The data were obtained with a beat frequency Δω=1 kHz. The black, blue, and red solid lines in Fig. 3 represent the experimental results withφAM= 0,π/4, andπ, respectively.The dotted lines represent the corresponding theoretical calculation results in Eq. (5). Therefore, for the convenience of comparison,a coefficient calibration was performed on the theoretical calculation results. As shown in Fig.3,it is found that the amplitude of the beat signalABeatandφSIGshow a monotonic relationship. Furthermore,the output amplitude of the beat signal andφSIGshow a approximate linearity from 0 toπ/2 whenφAM=π/4,while the traditional commercial phase detector can realize the linear region of 2π. Therefore,φSIGcan be directly converted into a voltage signal, and then the Rydberg atom-based mixer can act as a phase detector. From Fig.3,we can also find that if we changeφAM,the amplitude of the beat signal will be only related to the difference betweenφSIGandφAM. For example, when the amplitude of the beat signal is the positive largest, the difference betweenφSIGandφAMis alwayskπ,k=0,±2,±4,...,as shown in Fig.3. This is also consistent with Eq. (5). Therefore, from this method,we can clearly know that even ifφAMchanges,φSIGcan also be deduced from the amplitude of the beat signalABeat. The calculation result of Eq. (5) is in agreement with the experimental results. The slight difference may owe to the oversimplification of Eq.(5), for example,Tpis not strictly linear withELOorESIG. However,this does not affect the use of the phase detector because the output of the phase detector can be calibrated before the application. The results in Fig.3 can be repeated when Δωvaries from 1 kHz to 100 kHz, where the upper limit of 100 kHz is limited by the bandwidth of the lock-in amplifier. At 100 kHz, the signal is still clear, which shows that the applicable frequency range of this method is very large.

    Next,we study the influence of the amplitude modulation depth of the local RF fieldDAMon the output signal of the phase detector,and the results are given in Fig.4. The results show that when ΔφSIGis fixed at 10°and Δω=100 kHz,the change in the phase detector output is proportional to the modulation depthDAMwithin 10%-90%. WhenDAMis less than 10%, the signal cannot be demodulated, and the error of the system at eachDAMis very small. The results show that the output of the phase detector is proportional toDAM,and it has a wide range ofDAMand high repeatability and stability. The red dotted line was calculated using Eq.(3)with the same parameters as in the experiment and was qualitatively consistent with the experimental results. Noted that the theoretical calculation was normalized to facilitate comparison with the experimental results.Although the phase detector can work in a wide range ofDAM, in order for both to satisfyELO?ESIGandELO×DAM≈ESIGat the same time,we chooseDAM=20%in the following experiments.

    Fig. 3. Examples of the Rydberg atom-based phase detector; experimental parameters: ELO = 10.14 mV/cm, ESIG = 2.75 mV/cm,Δω =1 kHz, and the modulation depth DAM is 20%; assuming that φLO=0. The black,blue,and red solid lines represent the experimental results with φAM=0,π/4,and π,respectively;each curve corresponds to 32 averages to improve the signal-to-noise ratio. The dotted lines represent the corresponding theoretical calculation results in Eq. (5).Theoretical calculation amplitude is normalized to facilitate the comparison with the experimental results.

    Fig. 4. Relationship between the beat frequency oscillation amplitude and the modulation depth DAM,where ΔφSIG=10°. Black solid circles denote the experimental results with parameters ELO =10.14 mV/cm,ESIG =2.75 mV/cm, and Δω =100 kHz; red dotted line is calculated using Eq.(3). The theoretical calculation is normalized to facilitate the comparison with the experimental results, and the calculation parameters are the same as the experimental parameters.

    Finally, we demonstrate the phase resolution capability of the Rydberg atom-based phase detector by changing the phase difference of the SIG RF field ΔφSIGand measuring the output voltage of the phase detector. Based on Eq. (3),ABeatis most sensitive toφSIGwhenDAM×ELO≈ESIG, therefore we choose the experimental parameters:ELO=10.14 mV/cm,ESIG=2.75 mV/cm, and the modulation depthDAM=20%.In the meantime,φAMwas set toπ/4 to obtain the maximum slope ofABeattoφSIGnearφSIG=0 as shown in Fig. 3. The data obtained with the beat frequency Δω=1 kHz and averaged over 128 sets of data to enhance the signal-to-noise ratio(SNR) of the readout. Figure 5(a) shows the output voltage of the corresponding phase detector when ΔφSIGis taken as 12°, 10°, 8°, 5°, 2°, and 1°, respectively. It can be seen that the phase detector still has a good readout when ΔφSIGis set to 1°. Figure 5(b)shows the corresponding analysis results in Fig. 5(a). The horizontal axis represents ΔφSIG, and the vertical axis corresponds to the amplitude of output signal of the phase detector. The black hollow circles are the experimental results corresponding to Fig. 5(a), and the red solid line is the result of a linear fitting that crosses the 0 points. After analyzing the average value and error of the corresponding phase detector output voltage at high level and low level in the experiment,the achievable phase resolution is 0.6°,while Ref.[13]obtained a resolution of 0.8°using the superheterodyne method,and a traditional commercial phase detector can achieve the phase resolution of about 1°.[27]

    Fig. 5. Relationship between the beat frequency oscillation amplitude and the set phase difference. (a)Phase control and reaction of the Rydberg atombased phase detector. Black solid line is the control voltage of the phase shifter;-0.5-0.5 V corresponds to the set phase difference. Red line,green line, blue line, cyan line, magenta line and dark yellow line represent the output voltage of the corresponding phase detector when ΔφSIG is 12°, 10°,8°, 5°, 2° and 1°, respectively. Each curve corresponds to 128 averages to enhance SNR.By setting ΔφSIG,φSIG can jump back and forth with the value of ΔφSIG. Specifically, 0.5 V phase control corresponds to φSIG =ΔφSIG/2,and -0.5 V phase control corresponds to φSIG =-ΔφSIG/2; phase difference between the amplitude modulation of the local field and the phase of the local field is fixed to π/4; experimental parameters: ELO =10.14 mV/cm,ESIG =2.75 mV/cm, Δω =1 kHz, and the modulation depth DAM =20%.(b)Relationship between the beat frequency oscillation amplitude and the set phase difference. Black hollow circle denotes the experimental result corresponding to(a);red solid line denotes a linear fitting that crosses the 0 points.The experimental data are not collected in the same day,so the data of Figs.3 and 5 cannot be directly compared.

    5. Conclusion

    We have converted the Rydberg atom-based mixer to an all-optical Rydberg atom-based phase detector by the amplitude modulation of the LO RF field; that is, the phase of the SIG RF field can be directly converted into a voltage signal.The amplitude of the beat signalABeatand the phase of the SIG RF fieldφSIGshow a monotonic relaionship when the amplitude of the local RF field is modulated by the frequency of the beat signal. The output voltage of the phase detector andφSIGshow a linear relationship within the range of 0-π/2 of the SIG RF field phase whenφAMis set with a difference ofπ/4 from the phase of the local RF field. A sub-degree phase resolution is also achieved by optimizing the experimental conditions according to a simple theoretical model. Because the Rydberg atom-based phase detector is an optical readout,it is better than the traditional phase detector in noise suppression.This work will expand and contribute to the development of RF measurement devices based on Rydberg atoms.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304900 and 2017YFA0402300), the Beijing Natural Science Foundation (Grant No. 1212014), the National Natural Science Foundation of China (Grant Nos. 11604334, 11604177,and U2031125), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201807), the Fundamental Research Funds for the Central Universities,and Youth Innovation Promotion Association CAS.

    猜你喜歡
    張劍
    你隱身相助我傾家來救:大愛奔騰何論前塵舊怨
    電子書
    文學(xué)的社會(huì)功用與中西文學(xué)關(guān)系研究:張劍教授訪談錄
    在芭蕾舞臺上遇見自己
    紫光閣(2016年12期)2016-12-15 11:53:02
    瀟灑才年輕
    意林(2016年8期)2016-05-03 13:21:34
    張劍
    汽車生活(2015年12期)2015-12-22 17:27:47
    戀戀風(fēng)塵在年少
    一樁離婚案
    小小說月刊(2015年9期)2015-05-14 14:55:32
    FLEXURAL CAPACITY OF RC BEAM STRENGTHENED WITH PRESTRESSED C/AFRP SHEETS
    體育法學(xué)專家出任足管中心主任 張劍:“劍”鋒何指?
    一区二区日韩欧美中文字幕| 精品午夜福利视频在线观看一区| 在线国产一区二区在线| 18禁观看日本| 国产午夜精品久久久久久| 中国美女看黄片| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 国产成人av教育| 亚洲在线自拍视频| 少妇粗大呻吟视频| 淫秽高清视频在线观看| 国产熟女午夜一区二区三区| 亚洲情色 制服丝袜| 少妇 在线观看| 日韩 欧美 亚洲 中文字幕| 五月开心婷婷网| 午夜精品在线福利| 久久人人爽av亚洲精品天堂| 亚洲成人久久性| 亚洲精品一二三| 母亲3免费完整高清在线观看| 久久久久国产一级毛片高清牌| 精品卡一卡二卡四卡免费| 国产高清视频在线播放一区| videosex国产| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 999久久久精品免费观看国产| 欧美午夜高清在线| 久久午夜亚洲精品久久| 亚洲精品av麻豆狂野| 亚洲精品在线美女| 在线天堂中文资源库| 真人一进一出gif抽搐免费| 国产一区二区激情短视频| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 亚洲三区欧美一区| 久久天堂一区二区三区四区| a在线观看视频网站| 亚洲精品粉嫩美女一区| 亚洲精华国产精华精| 一级片'在线观看视频| 欧美乱色亚洲激情| 国产精品久久久av美女十八| 亚洲七黄色美女视频| 久久草成人影院| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 9热在线视频观看99| 美女午夜性视频免费| 亚洲av第一区精品v没综合| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 国产精品免费一区二区三区在线| 国产色视频综合| av天堂久久9| 亚洲专区国产一区二区| 午夜免费观看网址| 国产熟女午夜一区二区三区| 美女福利国产在线| 亚洲欧美日韩无卡精品| 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| www.自偷自拍.com| 香蕉丝袜av| 欧美中文日本在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放 | 欧美亚洲日本最大视频资源| videosex国产| 人妻久久中文字幕网| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影 | 亚洲精品av麻豆狂野| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲高清精品| 日本精品一区二区三区蜜桃| 亚洲av熟女| 国产成人欧美在线观看| 欧美最黄视频在线播放免费 | 久久久久久久精品吃奶| 国产成人av激情在线播放| 每晚都被弄得嗷嗷叫到高潮| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 深夜精品福利| 日本wwww免费看| 亚洲av片天天在线观看| 国产在线观看jvid| 大香蕉久久成人网| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 在线av久久热| 欧美日韩精品网址| 亚洲国产毛片av蜜桃av| 免费少妇av软件| 中文字幕高清在线视频| 99国产精品一区二区三区| 久久精品国产综合久久久| 亚洲国产欧美网| 老熟妇乱子伦视频在线观看| 亚洲熟女毛片儿| 日韩精品青青久久久久久| 成人三级黄色视频| 男人舔女人下体高潮全视频| 久久天堂一区二区三区四区| 19禁男女啪啪无遮挡网站| cao死你这个sao货| 性少妇av在线| 伦理电影免费视频| √禁漫天堂资源中文www| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡 | 日本a在线网址| 老司机午夜福利在线观看视频| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 色婷婷久久久亚洲欧美| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 麻豆av在线久日| 日韩欧美在线二视频| 曰老女人黄片| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 美女扒开内裤让男人捅视频| 免费日韩欧美在线观看| 午夜免费成人在线视频| 成在线人永久免费视频| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 91成人精品电影| 欧美日韩乱码在线| 亚洲欧美精品综合久久99| 精品卡一卡二卡四卡免费| 99国产精品一区二区三区| 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 国产极品粉嫩免费观看在线| 久久久久久久久免费视频了| 亚洲欧美激情在线| 长腿黑丝高跟| 18禁裸乳无遮挡免费网站照片 | 国产精品国产高清国产av| 亚洲成人免费av在线播放| 成在线人永久免费视频| av片东京热男人的天堂| 又黄又粗又硬又大视频| 国产深夜福利视频在线观看| 一区二区日韩欧美中文字幕| а√天堂www在线а√下载| 高清毛片免费观看视频网站 | 看黄色毛片网站| 国产视频一区二区在线看| 99久久久亚洲精品蜜臀av| 两个人免费观看高清视频| 免费高清在线观看日韩| 男人的好看免费观看在线视频 | 黄色成人免费大全| 国产在线观看jvid| 欧美色视频一区免费| av电影中文网址| 80岁老熟妇乱子伦牲交| aaaaa片日本免费| 欧美精品亚洲一区二区| 淫秽高清视频在线观看| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| tocl精华| 欧美国产精品va在线观看不卡| 88av欧美| 老司机福利观看| 精品一区二区三区视频在线观看免费 | 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 午夜福利,免费看| aaaaa片日本免费| 亚洲五月色婷婷综合| 亚洲中文av在线| 亚洲欧美精品综合久久99| 国产99白浆流出| 免费高清在线观看日韩| 国产区一区二久久| 丰满迷人的少妇在线观看| 大香蕉久久成人网| 国产极品粉嫩免费观看在线| 一级毛片高清免费大全| 97碰自拍视频| 日韩人妻精品一区2区三区| 99国产精品99久久久久| 久久精品国产清高在天天线| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 老鸭窝网址在线观看| 久久 成人 亚洲| 欧美黑人精品巨大| 女人精品久久久久毛片| 三上悠亚av全集在线观看| cao死你这个sao货| av电影中文网址| 国产成年人精品一区二区 | 日韩免费av在线播放| 啪啪无遮挡十八禁网站| 国产精品电影一区二区三区| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 丁香六月欧美| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 久久精品91蜜桃| 免费女性裸体啪啪无遮挡网站| 看免费av毛片| av欧美777| 欧美日韩一级在线毛片| 夜夜看夜夜爽夜夜摸 | 亚洲精品av麻豆狂野| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 欧美亚洲日本最大视频资源| 午夜免费激情av| 成人永久免费在线观看视频| 美女高潮到喷水免费观看| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 中文字幕人妻熟女乱码| 一区二区三区激情视频| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 久久中文看片网| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区三区视频了| 欧美在线一区亚洲| 91在线观看av| 国产亚洲欧美在线一区二区| 亚洲在线自拍视频| 国产xxxxx性猛交| 狠狠狠狠99中文字幕| 黄色片一级片一级黄色片| 男女下面插进去视频免费观看| 国产欧美日韩综合在线一区二区| 两个人看的免费小视频| 亚洲专区字幕在线| 国产亚洲精品第一综合不卡| 日韩av在线大香蕉| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| 99国产精品一区二区蜜桃av| 高清在线国产一区| 国产精品免费视频内射| 岛国视频午夜一区免费看| 麻豆国产av国片精品| 免费在线观看日本一区| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 一进一出抽搐动态| 午夜免费鲁丝| 韩国精品一区二区三区| 日韩欧美免费精品| 亚洲av成人一区二区三| 人人妻人人爽人人添夜夜欢视频| 高清av免费在线| 色综合站精品国产| 亚洲情色 制服丝袜| 亚洲国产精品999在线| 日本一区二区免费在线视频| 黄色 视频免费看| 丝袜人妻中文字幕| 日韩国内少妇激情av| 日韩三级视频一区二区三区| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 另类亚洲欧美激情| 色尼玛亚洲综合影院| 色在线成人网| 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 亚洲精品美女久久av网站| 老司机午夜福利在线观看视频| 亚洲成a人片在线一区二区| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽| 五月开心婷婷网| 国产人伦9x9x在线观看| 嫩草影视91久久| www.www免费av| 咕卡用的链子| 1024香蕉在线观看| 两人在一起打扑克的视频| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| www.精华液| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 久久人人97超碰香蕉20202| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看www视频免费| 99在线人妻在线中文字幕| 午夜老司机福利片| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国产熟女午夜一区二区三区| 好看av亚洲va欧美ⅴa在| 国产又色又爽无遮挡免费看| 国产精华一区二区三区| 91九色精品人成在线观看| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 一级a爱片免费观看的视频| www.www免费av| 一级毛片精品| 精品久久久久久,| 精品福利永久在线观看| 电影成人av| 夜夜夜夜夜久久久久| 久久人人爽av亚洲精品天堂| 一边摸一边做爽爽视频免费| 嫩草影院精品99| 日本三级黄在线观看| 天堂俺去俺来也www色官网| 午夜福利免费观看在线| 免费不卡黄色视频| 国产精品一区二区精品视频观看| 亚洲成av片中文字幕在线观看| 亚洲一区高清亚洲精品| 水蜜桃什么品种好| 天堂动漫精品| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡| 久久精品亚洲熟妇少妇任你| 国产乱人伦免费视频| 另类亚洲欧美激情| 夜夜夜夜夜久久久久| 精品国产亚洲在线| tocl精华| 美女福利国产在线| 两个人免费观看高清视频| 91成年电影在线观看| 亚洲黑人精品在线| 美女福利国产在线| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 99久久人妻综合| 99香蕉大伊视频| 美女国产高潮福利片在线看| 久久中文字幕一级| 国产成人免费无遮挡视频| 他把我摸到了高潮在线观看| 久久久久久亚洲精品国产蜜桃av| 纯流量卡能插随身wifi吗| 男女之事视频高清在线观看| 成人精品一区二区免费| 亚洲精品一二三| 亚洲精品国产一区二区精华液| 人人妻,人人澡人人爽秒播| 男人操女人黄网站| 曰老女人黄片| 国产av精品麻豆| 日韩大尺度精品在线看网址 | 午夜影院日韩av| 在线观看日韩欧美| 国产精品1区2区在线观看.| 久久中文字幕人妻熟女| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 国产一区二区在线av高清观看| 国产精品永久免费网站| 日本精品一区二区三区蜜桃| 一级毛片高清免费大全| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| 交换朋友夫妻互换小说| 亚洲 欧美 日韩 在线 免费| 69精品国产乱码久久久| 日韩欧美国产一区二区入口| 中出人妻视频一区二区| 一进一出好大好爽视频| av国产精品久久久久影院| 欧美激情极品国产一区二区三区| 久久久久久久久中文| 久久中文字幕人妻熟女| 老司机在亚洲福利影院| 中文欧美无线码| 国产精品综合久久久久久久免费 | 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 亚洲精品国产一区二区精华液| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 欧美日韩中文字幕国产精品一区二区三区 | 国产人伦9x9x在线观看| 91精品三级在线观看| 可以在线观看毛片的网站| 久久久久久大精品| 色老头精品视频在线观看| 久久精品成人免费网站| 黄色 视频免费看| 很黄的视频免费| 亚洲自拍偷在线| 色综合欧美亚洲国产小说| 另类亚洲欧美激情| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 免费日韩欧美在线观看| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 色婷婷av一区二区三区视频| 一区福利在线观看| xxx96com| 久久久精品欧美日韩精品| 欧美人与性动交α欧美软件| 久久精品成人免费网站| 精品电影一区二区在线| 少妇的丰满在线观看| av视频免费观看在线观看| 午夜免费鲁丝| 国内毛片毛片毛片毛片毛片| 9热在线视频观看99| 国产精品成人在线| 精品人妻1区二区| 中出人妻视频一区二区| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟女乱码| 女人精品久久久久毛片| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 国产成+人综合+亚洲专区| 国产成人精品在线电影| 男男h啪啪无遮挡| 成在线人永久免费视频| 老司机深夜福利视频在线观看| 香蕉丝袜av| a级毛片黄视频| 欧美在线一区亚洲| 热99国产精品久久久久久7| 免费高清在线观看日韩| 日韩免费高清中文字幕av| 91av网站免费观看| 日韩精品中文字幕看吧| 亚洲国产精品一区二区三区在线| 黑人操中国人逼视频| 黄色视频,在线免费观看| 看免费av毛片| 91麻豆精品激情在线观看国产 | 在线视频色国产色| 美女 人体艺术 gogo| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美在线一区二区| 成人18禁在线播放| 日本五十路高清| 久久性视频一级片| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| 曰老女人黄片| 免费看十八禁软件| 热re99久久精品国产66热6| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 水蜜桃什么品种好| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 精品福利永久在线观看| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| 午夜91福利影院| 亚洲狠狠婷婷综合久久图片| 亚洲av成人一区二区三| videosex国产| 99国产精品99久久久久| 国产一区二区激情短视频| 成人精品一区二区免费| 91精品三级在线观看| 亚洲情色 制服丝袜| 他把我摸到了高潮在线观看| 伦理电影免费视频| 99热只有精品国产| 久久人妻av系列| 午夜福利,免费看| 精品国产乱子伦一区二区三区| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 亚洲精品国产精品久久久不卡| 国产激情欧美一区二区| 国产午夜精品久久久久久| 在线观看免费高清a一片| 五月开心婷婷网| 国产亚洲精品综合一区在线观看 | 99热国产这里只有精品6| 大型黄色视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 多毛熟女@视频| 久久精品国产清高在天天线| 级片在线观看| 午夜免费观看网址| 亚洲国产中文字幕在线视频| 99re在线观看精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 巨乳人妻的诱惑在线观看| 国产区一区二久久| 欧美日本亚洲视频在线播放| 精品欧美一区二区三区在线| 男人舔女人下体高潮全视频| 法律面前人人平等表现在哪些方面| 日本三级黄在线观看| 午夜视频精品福利| 免费在线观看黄色视频的| 亚洲专区中文字幕在线| 午夜老司机福利片| 亚洲精品一区av在线观看| 操美女的视频在线观看| 色在线成人网| 亚洲第一欧美日韩一区二区三区| 精品一区二区三卡| 欧美中文综合在线视频| 欧美老熟妇乱子伦牲交| av国产精品久久久久影院| 国产精品日韩av在线免费观看 | 99国产精品99久久久久| 亚洲九九香蕉| 激情在线观看视频在线高清| a级毛片在线看网站| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 久久久久亚洲av毛片大全| 国产亚洲欧美98| 在线观看免费视频网站a站| 9色porny在线观看| 美女高潮到喷水免费观看| 久久精品亚洲精品国产色婷小说| 日日干狠狠操夜夜爽| 亚洲熟女毛片儿| 视频区图区小说| 国产又爽黄色视频| 久久久久精品国产欧美久久久| 91精品三级在线观看| 色综合婷婷激情| 日韩免费av在线播放| av网站免费在线观看视频| 女同久久另类99精品国产91| 国产成人影院久久av| 麻豆久久精品国产亚洲av | 黑人巨大精品欧美一区二区mp4| 国产熟女午夜一区二区三区| 国产深夜福利视频在线观看| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 一级毛片女人18水好多| 天天添夜夜摸| 国产精品亚洲一级av第二区| 国产成人一区二区三区免费视频网站| av在线播放免费不卡| 亚洲在线自拍视频| 欧美日韩乱码在线| 丰满饥渴人妻一区二区三| 午夜老司机福利片| av欧美777| 一级毛片女人18水好多| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 中国美女看黄片| 身体一侧抽搐| 色婷婷av一区二区三区视频| 久久国产精品男人的天堂亚洲| 国产精品久久电影中文字幕| 另类亚洲欧美激情| 我的亚洲天堂| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 超色免费av|