• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors

    2022-09-24 07:59:30LingLiu劉玲XiaoyanWu吳小龑GuodongLiu劉國棟TigangNing寧提綱JianXu許建andHaidongYou油海東
    Chinese Physics B 2022年9期
    關(guān)鍵詞:劉玲海東

    Ling Liu(劉玲) Xiaoyan Wu(吳小龑) Guodong Liu(劉國棟) Tigang Ning(寧提綱)Jian Xu(許建) and Haidong You(油海東)

    1Key Laboratory of All Optical Network and Advanced Telecommunication Network,Ministry of Education,Institute of Lightwave Technology,Beijing Jiaotong University,Beijing 100044,China

    2Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang 621900,China

    3Key Laboratory of Science and Technology on High Energy Laser,China Academy of Engineering Physics,Mianyang 621900,China

    4Qingdao Agricultural University,Qingdao 266109,China

    Keywords: interrogation system,optical fiber sensor,optoelectronic oscillator

    1. Introduction

    Optical fiber sensors, with their advantages of light weight, compact size and immunity to electromagnetic interference,have been widely used in the diagnosis and monitoring of environmental conditions.[1-4]Among the various optical fiber sensors, the Michelson interferometer (MI), with its merits of ease of fabrication and high sensitivity, has applications in aeronautics, perimeter protection, bridge security monitoring and environmental condition monitoring.[5-8]However, MIs are conventionally interrogated by wavelength interrogation or Fourier transform, which requires an optical spectrum analyzer(OSA).[5]Therefore the interrogation resolution and speed are largely limited by the OSA;these limitations would in turn affect the performance of the sensing and measurement systems.

    An interrogation scheme enabled by electrical approaches therefore has potential in applications requiring high resolution and high-speed interrogation. Generally, electrical domain-based interrogation of a MI can be implemented using the following three approaches. The first approach is based on intensity interrogation and is achieved by monitoring the power of the electrical signal output by a photodetector(PD).This is a simple approach. However, the linear interrogation range is limited by the small linear region of the interference fringe.[9]In addition, the interrogation accuracy would suffer from power fluctuations. The second approach, phasegenerated carrier-based interrogation,is achieved by monitoring the phase difference between the two signals transmitted in the two arms of the MI.A wide linear interrogation range and real-time interrogation can be enabled. Nevertheless, additional phase modulation of the reference signal is required,[6]increasing the complexity of the interrogation system. The third approach uses microwave photonic technologies, which convert the wavelength shift in the optical domain into a frequency shift in the electrical domain. For example, MI interrogation systems based on a periodic microwave photonic filter(MPF)have been proposed for temperature measurement[7]and displacement measurement,[8]but the use of a vector network analyzer(VNA)makes the system costly.

    In this paper,we propose an interrogation system for a MI sensor. An optoelectronic oscillator (OEO), enabled by the sinusoidal nature of the MI interference fringe and a singlepassband MPF,are incorporated in the proposed interrogation system. The central frequency of the single-passband MPF,determined by the dispersive characteristics of the employed dispersive medium and the free spectral range (FSR) of the MI, mainly determine the frequency of the OEO. When the sensing arm of the MI is affected by the external physical factors to be measured,the interference fringe of the MI(i.e.,the FSR) would shift, leading to a frequency shift of the singlepassband MPF and ultimately the OEO.Such wavelength-tofrequency mapping therefore allows interrogation of the MI by tracking the frequency shift of the OEO. We also use a fiber ring resonator(FRR)for fine mode selection of the OEO,which further contributes to the stability of the OEO and the interrogation accuracy of the proposed interrogation system.Our proposed scheme brings high-performance interrogation with a wide linear range,high resolution and high speed,and can be used in applications in bridge security monitoring and industrial machinery sensing that require the measurement of strain or temperature.

    2. Principle of operation

    A schematic diagram of our proposed interrogation system is illustrated in Fig. 1. A homemade erbium-doped fiber amplifier (EDFA) is used as the broadband optical source(BOS)to provide a broadband optical signal with a full bandwidth of 60 nm. After transmission through a MI with two unbalanced arms,a sinusoidal broadband optical signal is obtained and then sent to a phase modulator(PM).After amplification in another EDFA and transmission through a dispersive medium(i.e.,a dispersion-compensating fiber,DCF),the modulated signal is transmitted through a FRR and then converted into a radio-frequency(RF)signal in a PD.The generated RF signal is amplified by an electrical amplifier(EA)and then divided into two paths via a divider. One path of the RF signal is fed back to the PM to form the OEO loop while the other is monitored via an electrical spectrum analyzer(ESA).

    Fig.1. The proposed OEO-based interrogation system with the optical path shown in black and the electrical path shown in orange. BOS, broadband optical source; Cir, circulator; OSA,optical spectrum analyzer; OC,optical coupler;Ri,in-line reflector(i=1,2);MI,Michelson interferometer;PC,polarization controller; PM, phase modulator; EDFA, erbium-doped fiber amplifier; DCF, dispersion-compensating fiber; FRR, fiber ring resonator; PD,photodetector;EA,electrical amplifier;ESA,electrical spectrum analyzer.

    The interrogation principle is described below. The transmission function of the MI can be written as

    whereλis the wavelength of the broadband optical signal,nis the refractive index of the optical fiber composing the MI,ΔLis the length difference between the two arms of the MI.The FSR of the MI can be derived as ΔλFSR=λ2/2nΔL. Thus,the sinusoidal broadband optical signal with a FSR equal to ΔλFSRis obtained.

    As reported in Moraet al.,[10]a single-passband MPF can be obtained by the joint operation of the sinusoidal broadband optical signal, an electro-optic modulator, a dispersive medium and a PD. The central frequency of the singlepassband MPF can be written as[10]

    whereDis the total dispersion (ps/nm) of the DCF (and is fixed in this work). Hence,fMPFis uniquely linearly proportional to ΔλFSR. Similar to the mechanism of the optical fiber laser,[11]if the single-passband MPF alone is incorporated in a closed OEO loop and provides sufficient gain for the OEO loop, a RF signal whose frequency is equal tofMPFwould be obtained. Considering the 3-dB bandwidth of the singlepassband MPF and the single-mode oscillation of the OEO further, we used a FRR composed of an optical coupler and a length of optical fiber in our work. This introduces an additional infinite impulse response(IIR)-MPF with a periodic response and narrow bandwidth nature for each peak. The FSR of the FRR-based IIR-MPF can be expressed as[12,13]

    whereLFRRis the length of the optical fiber constituting the FRR,andcis the speed of light in a vacuum.Therefore,in this work, the open-loop response of the proposed OEO (i.e., the MPF response)would be determined jointly by the responses of the single-passband MPF and the FRR-based IIR-MPF.The frequency of the OEO is mainly determined byfMPFand is uniquely linearly proportional to ΔλFSR. The mode spacing of the OEO is jointly affected by the FSR of the FRR-based IIR-MPF and the lengthLDCFof the DCF.[13]Thereby, the wavelength-to-frequency mapping from the FSR ΔλFSRof the MI to the frequency of the OEO is established.

    When the sensing arm of the MI is affected by external physical factors, the optical spectrum at the output of the MI would shift,leading to the variation of ΔλFSR.For temperature measurement,the varied FSR of the MI can be written as It can be found that the frequency shift of the OEO is linearly proportional to the variation of temperature when the total dispersionDof the DCF is fixed. In a similar way,the linear relationship between the variation of strain Δεand the frequency shift of the OEO can be expressed as Δf=(1-pe)2nLΔε/Dλ2, wherepeis the effective elastic-optic coefficient of the fiber. Hence,interrogation of the MI can be implemented by monitoring the frequency shift of the OEO.

    3. Experimental results and discussion

    The experimental setup of the proposed interrogation system is shown in Fig.1. A homemade EDFA with non-uniform spontaneous emission spectrum profile acts as the BOS. As observed by the OSA (Yokogawa, AD6370D) and shown in Fig. 2(a), a sinusoidal broadband optical signal with a ΔλFSRof 0.406 nm @ 1540 nm is obtained by the joint use of the BOS and the MI.Then, the sinusoidal broadband optical signal is modulated in the PM(Thorlabs,LN53S-FC)with a 3-dB bandwidth of 10 GHz and a half-wave voltage of 3.5 V. The DCF has a total dispersionDof-334 ps/nm and a lengthLDCFof around 2.4 km. After transmission through the DCF and amplification by another EDFA(Lion,BROADTRAN-16),the modulated optical signal is sent to the FRR,which comprises a 40:60 optical coupler and an optical fiber with a lengthLFRR(~500 m). Finally, the optical signal is converted into a RF signal in the PD (Thorlabs, RXM25AF) and amplified by an EA with a 3-dB bandwidth of 20 GHz and a typical gain of 26 dB. The generated oscillation signal is monitored by the ESA(Agilent,N9010A).

    Joint operation of the sinusoidal broadband optical signal with ΔλFSR=0.406 nm and a DCF withD=-334 ps/nm leads to a single-passband MPF and the OEO,the responses of which are shown in Fig. 2(b). The frequencies of the singlepassband MPF and the OEO are in good agreement,although they are slightly different from the theoretical result based on Eq. (2). This frequency difference is mainly introduced by the instability of the MI reflection spectrum and the resulting measurement error of ΔλFSR. However, it would not greatly deteriorate the performance of the proposed interrogation system since the interrogation is not performed by tracking the wavelength shift. The 3-dB bandwidth of the single-passband MPF is around 396 MHz, which would lead to severe mode competition in the OEO.The FRR-based IIR-MPF is therefore introduced to mitigate this problem. The zoom-in spectrum of the OEO is shown in Fig. 3. Multiple modes with a spacing of 84 kHz and 429 kHz are observed simultaneously;the former is determined byc/nLDCF,and the latter is determined by ΔfFRR. It worth noting that,due to the FRR,single-mode oscillation of the OEO is guaranteed. A BOS with Gaussian or rectangular profile can also be used to narrow the 3-dB bandwidth of the single-passband MPF and mitigate the mode competition to some extent.

    Fig.2. (a)Optical spectrum of the sinusoidal broadband optical signal measured at the output of the MI.Inset: zoomed-in view of the optical spectrum.(b) Measured OEO output (blue solid curve) and the single-passband MPF response(red short dash curve).

    Fig. 3. Electrical spectrum of the OEO output (the resolution bandwidth is 0.75 kHz).

    The performance of the proposed interrogation system in temperature measurement was evaluated. Part of the sensing arm was placed into a thermostatic water bath,and the lengthLof the optical fiber affected by the temperature variation was 106 cm. As shown in Fig.4,the frequency of the OEO shifted toward a higher-frequency regime with increasing temperature. This is consistent with the theoretical analysis described in Eq.(5). The linear relationship between the frequency shift of the OEO and the temperature variation can be learned from Fig.5. The temperature sensitivity and the correlation coefficient(R2)are 35.35 MHz/°C and 0.99,respectively.To further improve this sensitivity,Lcan be increased further. An appropriate decrease of the total dispersionDof the DCF would also help. Note that the frequency of the OEO changes from 7.8 GHz to 8.5296 GHz when the sensing head is moved from the test bench to the water bath. This is mainly due to the following two reasons. The first is the undesired disturbance and stretching of the MI arm during this movement. The second is the difference between room temperature and the water temperature. Nevertheless, when the optical fiber is fixed in the water bath at constant temperature,the OEO oscillates stably.Calibration is also required before the test.

    Fig.4. OEO outputs at different temperatures.

    Fig. 5. Relationship between the temperature variation and the frequency shift of the OEO.

    Next, the interrogation resolution and accuracy of the OEO-based interrogation system were investigated. Considering the use of the FRR and the corresponding mode spacing of 429 kHz, the theoretical interrogation resolution is 0.012°C,which can be improved by decreasing the FSR ΔfFRRof the FRR when the sensitivity is fixed; however, ΔfFRRcannot be decreased arbitrarily due to mode competition of the OEO.This places an upper limit on the interrogation resolution.The interrogation accuracy is evaluated by measuring the stability of the OEO. As shown in Fig. 6, when the proposed OEO-based interrogation system operates in a room environment over 30 min, the measured frequency and power fluctuations are 2.88 MHz and 1.24 dB, respectively. Hence, the temperature interrogation accuracy corresponds to 0.08°C.To improve this temperature interrogation accuracy further,the frequency fluctuation of the OEO should be minimized and an additional mechanism for further mode selection is required. Considering the OEO frequency tunable range of around 3 GHz(in this case)and the temperature sensitivity of 35.35 MHz/°C,the theoretical temperature interrogation range of the proposed interrogation system is around 84.9°C.However, in practice this interrogation range can be improved by broadening the frequency tunable range of the OEO and the 3-dB bandwidth of the photoelectric devices (e.g., the 3-dB bandwidth of the PM).

    Fig. 6. Measured frequency fluctuation (red squares) and power fluctuation(blue circles)of the OEO.

    A comparison of various temperature-sensing schemes and the interrogation approaches is shown in Table 1. Indeed,the interrogation resolution of our work should be improved compared with that in the work of Liet al.[4]However,unlike the wavelength interrogation scheme based on an OSA,[4,14,15]our work achieves wavelength-to-frequency mapping in the electrical domain, illustrating a potential method of highspeed interrogation that supports a wide linear interrogation range by avoiding overlapping of the measured spectrum.[18]Note that the interrogation speed reaches the MHz range when a digital signal processor unit is used.[19]Compared with a microwave photonics-based interrogation system using a VNA,[7,8]our work lowers the overall cost by avoiding the use of a VNA. In addition, compared with temperature measurement systems based on a Sagnac interferometer[13]or Mach-Zehnder interferometer,[17]a MI indeed provides a much higher sensitivity. The ultra-sensitive nature of a MI,in turn,implies that a MI is susceptible to undesired disturbance and the stability of the proposed interrogation system would be adversely affected to some extent. It is worth noting that when the sensing head is sensitive to other physical factors(e.g.,refractive index,strain),the proposed OEO-based interrogation system can be used not only for temperature measurement but also the measurement of these physical factors.[20]Such an OEO-based interrogation system with high resolution and high speed would support practical applications such as bridge security monitoring and industrial machinery sensing.

    Table 1. Comparison of various temperature sensing schemes.

    4. Summary

    In summary, we have demonstrated a MI interrogation system implemented in the electrical domain. The fundamental idea is wavelength-to-frequency mapping enabled by the OEO.With the applied external physical factors,the frequency of the OEO changes with the FSR shift of the MI. Operational feasibility is verified for temperature measurement,and the temperature sensitivity,interrogation resolution and interrogation accuracy are 35.35 MHz/°C,0.012°C,and 0.08°C,respectively. The sensitivity can be improved by increasing the length of optical fiber affected by temperature. The interrogation resolution,although limited,is adjustable and can be improved by appropriately increasing the length of optical fiber constituting the FRR.

    猜你喜歡
    劉玲海東
    打工妹的愛情“戰(zhàn)爭”(8)
    牡丹(2022年6期)2022-04-30 21:44:41
    女性多練深蹲好處多
    保健與生活(2022年8期)2022-04-08 21:48:33
    筑夢海東,遇見未來
    黃河之聲(2021年15期)2021-10-27 11:37:06
    筑夢海東,遇見未來
    黃河之聲(2021年12期)2021-10-25 01:51:06
    “詮釋學(xué)東漸及其效應(yīng)”訪談錄
    刺莓華
    我們愛老師
    描述人物的不同造型
    森林里的怪婆婆
    如何描述植物
    国产又爽黄色视频| 天天躁日日躁夜夜躁夜夜| 国产成+人综合+亚洲专区| 亚洲av欧美aⅴ国产| 美女午夜性视频免费| 丁香六月天网| 亚洲美女黄片视频| 亚洲全国av大片| 亚洲精品在线美女| 国产深夜福利视频在线观看| 亚洲欧美色中文字幕在线| 少妇被粗大的猛进出69影院| 国产精品免费一区二区三区在线 | 精品熟女少妇八av免费久了| 国产av又大| 丝袜人妻中文字幕| 久久久国产成人免费| 成人黄色视频免费在线看| 午夜精品久久久久久毛片777| 99香蕉大伊视频| 欧美黄色淫秽网站| 桃花免费在线播放| 亚洲综合色网址| 法律面前人人平等表现在哪些方面| 首页视频小说图片口味搜索| 国产成人av教育| 18禁黄网站禁片午夜丰满| 国产成人精品无人区| 男女下面插进去视频免费观看| 男女免费视频国产| 黄色视频不卡| 高清视频免费观看一区二区| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 在线天堂中文资源库| 人人妻,人人澡人人爽秒播| www日本在线高清视频| 日韩中文字幕视频在线看片| 精品熟女少妇八av免费久了| 香蕉国产在线看| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 可以免费在线观看a视频的电影网站| 最近最新免费中文字幕在线| 国产三级黄色录像| 午夜福利乱码中文字幕| 中文亚洲av片在线观看爽 | 亚洲天堂av无毛| 日韩人妻精品一区2区三区| 人成视频在线观看免费观看| 黄色视频,在线免费观看| 91麻豆精品激情在线观看国产 | 亚洲av日韩在线播放| 99精品欧美一区二区三区四区| av天堂在线播放| 亚洲国产看品久久| 精品国产亚洲在线| 久9热在线精品视频| 在线观看免费视频日本深夜| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 18在线观看网站| 不卡一级毛片| 操出白浆在线播放| av天堂在线播放| 老司机福利观看| 日韩欧美三级三区| 亚洲 国产 在线| 岛国在线观看网站| 国产日韩一区二区三区精品不卡| 久久精品亚洲av国产电影网| 亚洲av美国av| 日本五十路高清| 曰老女人黄片| 精品少妇久久久久久888优播| 老司机午夜十八禁免费视频| 高清黄色对白视频在线免费看| 91麻豆精品激情在线观看国产 | 男女之事视频高清在线观看| 在线永久观看黄色视频| 丝袜在线中文字幕| 无限看片的www在线观看| 亚洲第一欧美日韩一区二区三区 | 首页视频小说图片口味搜索| 国产黄色免费在线视频| 19禁男女啪啪无遮挡网站| 国产又爽黄色视频| 久久婷婷成人综合色麻豆| 一本综合久久免费| av天堂久久9| 菩萨蛮人人尽说江南好唐韦庄| av网站免费在线观看视频| 国产精品九九99| av欧美777| 嫩草影视91久久| 午夜激情av网站| 少妇猛男粗大的猛烈进出视频| 2018国产大陆天天弄谢| 欧美日韩视频精品一区| 国内毛片毛片毛片毛片毛片| 久久av网站| 亚洲成人免费av在线播放| 在线观看免费视频日本深夜| 欧美乱码精品一区二区三区| 高清在线国产一区| 亚洲人成伊人成综合网2020| 国产黄色免费在线视频| 俄罗斯特黄特色一大片| 18禁国产床啪视频网站| 久久久国产欧美日韩av| 另类精品久久| 亚洲欧美一区二区三区久久| 成人18禁高潮啪啪吃奶动态图| 老司机午夜十八禁免费视频| 大香蕉久久成人网| 免费女性裸体啪啪无遮挡网站| 国产午夜精品久久久久久| 日韩欧美一区二区三区在线观看 | 高潮久久久久久久久久久不卡| 高清av免费在线| 老司机深夜福利视频在线观看| 久久国产精品人妻蜜桃| 日韩大片免费观看网站| 亚洲国产av影院在线观看| 可以免费在线观看a视频的电影网站| 日韩人妻精品一区2区三区| 亚洲九九香蕉| 国产精品.久久久| 欧美午夜高清在线| 精品一区二区三卡| 三上悠亚av全集在线观看| 变态另类成人亚洲欧美熟女 | 法律面前人人平等表现在哪些方面| 午夜老司机福利片| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区蜜桃av | 日韩精品免费视频一区二区三区| 久久久久久久国产电影| 999久久久精品免费观看国产| 国产精品久久久久久精品电影小说| 色综合婷婷激情| xxxhd国产人妻xxx| 亚洲欧洲精品一区二区精品久久久| 久久久久视频综合| 久久久国产成人免费| 久久久久国内视频| 免费观看av网站的网址| 国产成人精品在线电影| 国产一区二区三区综合在线观看| 国产不卡av网站在线观看| 精品视频人人做人人爽| 无遮挡黄片免费观看| 丝瓜视频免费看黄片| 成人av一区二区三区在线看| 一级黄色大片毛片| 亚洲一区中文字幕在线| 无限看片的www在线观看| 9色porny在线观看| 久久午夜综合久久蜜桃| 亚洲欧洲日产国产| 大片电影免费在线观看免费| 十分钟在线观看高清视频www| 三级毛片av免费| 后天国语完整版免费观看| 国产黄频视频在线观看| 中国美女看黄片| 亚洲国产欧美一区二区综合| 精品免费久久久久久久清纯 | 亚洲,欧美精品.| 欧美午夜高清在线| 日韩欧美一区二区三区在线观看 | 大片免费播放器 马上看| 99精品在免费线老司机午夜| 亚洲欧美日韩高清在线视频 | 巨乳人妻的诱惑在线观看| 色在线成人网| 一个人免费看片子| 无遮挡黄片免费观看| 丝袜喷水一区| 无遮挡黄片免费观看| 日韩成人在线观看一区二区三区| 精品人妻1区二区| 国产深夜福利视频在线观看| 亚洲全国av大片| 丝瓜视频免费看黄片| 亚洲 国产 在线| 久久精品国产a三级三级三级| 国产深夜福利视频在线观看| 日韩欧美国产一区二区入口| 亚洲 国产 在线| 国产精品影院久久| 日本五十路高清| 新久久久久国产一级毛片| 涩涩av久久男人的天堂| av天堂在线播放| 成人国产一区最新在线观看| 午夜视频精品福利| 日韩中文字幕欧美一区二区| 成人精品一区二区免费| 高清av免费在线| 国产极品粉嫩免费观看在线| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品国产亚洲精品| 女人精品久久久久毛片| 日韩大片免费观看网站| 精品欧美一区二区三区在线| 操美女的视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 夜夜夜夜夜久久久久| 五月开心婷婷网| 人人妻人人澡人人爽人人夜夜| 91成年电影在线观看| 极品教师在线免费播放| 国产免费福利视频在线观看| 亚洲精品自拍成人| 老司机午夜福利在线观看视频 | 国产成人av激情在线播放| 亚洲 欧美一区二区三区| 精品高清国产在线一区| av电影中文网址| 曰老女人黄片| 日韩一区二区三区影片| 妹子高潮喷水视频| 老熟妇仑乱视频hdxx| 免费看a级黄色片| 丁香欧美五月| 一区二区日韩欧美中文字幕| 黄片小视频在线播放| 啦啦啦 在线观看视频| 天天添夜夜摸| 天堂中文最新版在线下载| 久久亚洲真实| 成年人黄色毛片网站| 三级毛片av免费| 精品久久蜜臀av无| 久久ye,这里只有精品| 看免费av毛片| 在线观看舔阴道视频| 超碰成人久久| 精品福利观看| 精品国产亚洲在线| 日韩制服丝袜自拍偷拍| 啦啦啦免费观看视频1| 午夜福利乱码中文字幕| 国产精品麻豆人妻色哟哟久久| 久久久久久久国产电影| 国产男靠女视频免费网站| 精品少妇一区二区三区视频日本电影| 午夜激情av网站| 亚洲精品久久午夜乱码| 咕卡用的链子| 手机成人av网站| 精品国产超薄肉色丝袜足j| 大型黄色视频在线免费观看| 少妇精品久久久久久久| 在线永久观看黄色视频| 在线天堂中文资源库| 久久中文字幕一级| 亚洲精华国产精华精| 成人黄色视频免费在线看| 亚洲成a人片在线一区二区| 午夜激情久久久久久久| 黑人欧美特级aaaaaa片| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区久久| 9热在线视频观看99| 国产一区二区三区视频了| 十八禁高潮呻吟视频| 欧美黑人精品巨大| 岛国毛片在线播放| 天堂中文最新版在线下载| 欧美日韩成人在线一区二区| 国产极品粉嫩免费观看在线| 91麻豆av在线| 免费在线观看日本一区| 一本久久精品| 中文亚洲av片在线观看爽 | 国产日韩欧美视频二区| 日韩欧美国产一区二区入口| 久久精品熟女亚洲av麻豆精品| 天堂动漫精品| 91av网站免费观看| 超色免费av| 99热网站在线观看| 伦理电影免费视频| 亚洲av成人一区二区三| 侵犯人妻中文字幕一二三四区| 久久久久久人人人人人| 日韩 欧美 亚洲 中文字幕| 亚洲精品美女久久久久99蜜臀| 免费女性裸体啪啪无遮挡网站| 超色免费av| 在线av久久热| 50天的宝宝边吃奶边哭怎么回事| 女人爽到高潮嗷嗷叫在线视频| 欧美成人午夜精品| 丁香六月天网| 国产精品二区激情视频| 亚洲精品中文字幕一二三四区 | 女性被躁到高潮视频| 999精品在线视频| 欧美在线黄色| av有码第一页| 丝袜人妻中文字幕| 欧美黄色淫秽网站| 淫妇啪啪啪对白视频| 不卡av一区二区三区| 老司机靠b影院| 精品一品国产午夜福利视频| 美女高潮到喷水免费观看| 欧美精品人与动牲交sv欧美| 人人妻人人澡人人看| 丰满人妻熟妇乱又伦精品不卡| 午夜91福利影院| 妹子高潮喷水视频| av在线播放免费不卡| 黄色视频不卡| 好男人电影高清在线观看| 国产不卡一卡二| av有码第一页| 久久久久国内视频| 狂野欧美激情性xxxx| 久久久久网色| 12—13女人毛片做爰片一| 国产淫语在线视频| 国产精品一区二区在线观看99| 高清毛片免费观看视频网站 | 精品第一国产精品| 老司机亚洲免费影院| 12—13女人毛片做爰片一| 两个人免费观看高清视频| 国产av精品麻豆| 久久午夜亚洲精品久久| 法律面前人人平等表现在哪些方面| 欧美日韩国产mv在线观看视频| 动漫黄色视频在线观看| 久久精品熟女亚洲av麻豆精品| 成人亚洲精品一区在线观看| 久久精品亚洲av国产电影网| 国产激情久久老熟女| 丰满少妇做爰视频| 12—13女人毛片做爰片一| 热99久久久久精品小说推荐| 中文字幕另类日韩欧美亚洲嫩草| 欧美成狂野欧美在线观看| 2018国产大陆天天弄谢| 午夜成年电影在线免费观看| 窝窝影院91人妻| 国产视频一区二区在线看| 男女无遮挡免费网站观看| 极品教师在线免费播放| 99精品久久久久人妻精品| 国产高清videossex| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 成年人免费黄色播放视频| 久久久久国内视频| 国产成人啪精品午夜网站| 超碰成人久久| 新久久久久国产一级毛片| 亚洲中文av在线| 国产欧美日韩一区二区精品| 制服人妻中文乱码| av免费在线观看网站| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 一级毛片精品| 女人被躁到高潮嗷嗷叫费观| 深夜精品福利| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 欧美精品啪啪一区二区三区| 无遮挡黄片免费观看| 国产精品av久久久久免费| 国产欧美日韩综合在线一区二区| 亚洲精品久久午夜乱码| 在线观看www视频免费| 亚洲第一青青草原| 99riav亚洲国产免费| 国产亚洲午夜精品一区二区久久| 久久精品亚洲熟妇少妇任你| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区久久| 国产99久久九九免费精品| 动漫黄色视频在线观看| 久久av网站| 欧美成狂野欧美在线观看| 人人澡人人妻人| 另类精品久久| 日本精品一区二区三区蜜桃| 欧美精品一区二区免费开放| 9色porny在线观看| 亚洲精品国产区一区二| a级片在线免费高清观看视频| 一边摸一边抽搐一进一小说 | 桃花免费在线播放| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 俄罗斯特黄特色一大片| 久久久久久亚洲精品国产蜜桃av| 搡老熟女国产l中国老女人| 99久久人妻综合| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 一区二区三区乱码不卡18| 日韩成人在线观看一区二区三区| 久久人妻福利社区极品人妻图片| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 天天躁狠狠躁夜夜躁狠狠躁| 少妇裸体淫交视频免费看高清 | 亚洲久久久国产精品| 男人操女人黄网站| 中文字幕av电影在线播放| 91字幕亚洲| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 99国产精品一区二区三区| av在线播放免费不卡| 一级,二级,三级黄色视频| 搡老乐熟女国产| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 色播在线永久视频| 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 免费av中文字幕在线| 一边摸一边做爽爽视频免费| 日韩欧美三级三区| 中文字幕人妻熟女乱码| netflix在线观看网站| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 国产精品偷伦视频观看了| 最近最新中文字幕大全电影3 | 亚洲欧美色中文字幕在线| 久久久国产成人免费| 一本久久精品| 波多野结衣av一区二区av| 最近最新中文字幕大全免费视频| 国产又爽黄色视频| 免费观看人在逋| 午夜成年电影在线免费观看| 天堂俺去俺来也www色官网| 亚洲精品粉嫩美女一区| 亚洲免费av在线视频| 老司机在亚洲福利影院| 精品乱码久久久久久99久播| av福利片在线| 高清欧美精品videossex| 久久久精品免费免费高清| 制服诱惑二区| 精品久久久精品久久久| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 精品高清国产在线一区| 国产精品麻豆人妻色哟哟久久| 午夜福利在线观看吧| 亚洲 欧美一区二区三区| 丁香六月天网| 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久午夜乱码| 丁香六月天网| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| av欧美777| 久久久国产成人免费| 我要看黄色一级片免费的| 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| 老司机深夜福利视频在线观看| 久久天堂一区二区三区四区| 人人妻人人澡人人看| 一边摸一边抽搐一进一出视频| 男女床上黄色一级片免费看| 菩萨蛮人人尽说江南好唐韦庄| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区| 免费高清在线观看日韩| www.熟女人妻精品国产| 亚洲 国产 在线| 久久免费观看电影| 男男h啪啪无遮挡| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 国产一区二区三区视频了| 免费观看av网站的网址| 青青草视频在线视频观看| 精品亚洲成国产av| 久久性视频一级片| 午夜福利影视在线免费观看| 宅男免费午夜| 一本—道久久a久久精品蜜桃钙片| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女 | 男女午夜视频在线观看| 久久久久国内视频| 香蕉久久夜色| 亚洲成av片中文字幕在线观看| 狂野欧美激情性xxxx| 蜜桃国产av成人99| 最近最新中文字幕大全免费视频| 亚洲色图综合在线观看| 一区福利在线观看| 日本wwww免费看| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 国产亚洲精品一区二区www | 国产淫语在线视频| 人人妻人人澡人人看| 麻豆乱淫一区二区| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 80岁老熟妇乱子伦牲交| 日本撒尿小便嘘嘘汇集6| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 国产成人免费无遮挡视频| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 欧美精品一区二区大全| 搡老熟女国产l中国老女人| 99精品欧美一区二区三区四区| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 久久精品亚洲av国产电影网| 在线 av 中文字幕| 久久国产精品大桥未久av| 黄色a级毛片大全视频| 日韩欧美一区视频在线观看| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 欧美精品一区二区大全| 国产成人精品久久二区二区免费| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 99国产精品99久久久久| 男女午夜视频在线观看| 大香蕉久久成人网| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 十八禁网站免费在线| √禁漫天堂资源中文www| 国产成人系列免费观看| 精品国产一区二区久久| 丝袜在线中文字幕| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 99精国产麻豆久久婷婷| 亚洲 欧美一区二区三区| 老司机深夜福利视频在线观看| 国产精品.久久久| 亚洲欧美日韩高清在线视频 | 少妇的丰满在线观看| 自线自在国产av| 美女主播在线视频| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 手机成人av网站| 十八禁人妻一区二区| 成人特级黄色片久久久久久久 | 日韩大片免费观看网站| 韩国精品一区二区三区| 99精品久久久久人妻精品| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说 | 色播在线永久视频| 国产亚洲欧美在线一区二区| 看免费av毛片| 亚洲成av片中文字幕在线观看| av天堂久久9| 少妇被粗大的猛进出69影院| 美女扒开内裤让男人捅视频| 国产在线观看jvid| 久久精品国产99精品国产亚洲性色 | 午夜精品国产一区二区电影| 香蕉国产在线看| 999久久久精品免费观看国产| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女 | 国产一区二区三区在线臀色熟女 | 蜜桃在线观看..| av一本久久久久| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 国产不卡一卡二| 一级片'在线观看视频| 99re在线观看精品视频| 欧美日韩亚洲国产一区二区在线观看 | 麻豆av在线久日| 亚洲五月色婷婷综合| 亚洲av国产av综合av卡| 精品少妇一区二区三区视频日本电影| 日韩人妻精品一区2区三区| 国产精品99久久99久久久不卡| 久久久久久久久久久久大奶|