• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Chern number phase in topological insulator multilayer structures: A Dirac cone model study

    2022-09-24 07:59:06YiXiangWang王義翔andFuXiangLi李福祥
    Chinese Physics B 2022年9期

    Yi-Xiang Wang(王義翔) and Fu-Xiang Li(李福祥)

    1School of Science,Jiangnan University,Wuxi 214122,China

    2School of Physics and Electronics,Hunan University,Changsha 410082,China

    Keywords: topological insulator multilayer,Chern number,phase diagram

    1. Introduction

    The quantum anomalous Hall(QAH)insulator,or called the Chern insulator,has aroused the ongoing interests in condensed matter physics, where the dissipationless chiral currents can flow in a zero magnetic field.[1-3]It was first observed in magnetic topological insulator(TI)thin films[4]that are formed by an intricate interplay between the ferromagnetism due to the magnetic-doping and the intrinsic spin-orbit coupling.[5]The magnetic-doping breaks the time-reversal symmetry (TRS) in the system and can open a small Dirac mass gap in the topological surface states.[6]In these systems,the unavoidable inhomogeneity of the magnetic-doping would lead to the complex magnetic orders.[7,8]As a consequence,the QAH effect can only be observed at extremely low temperature, which is about several tens of milikelvin, one to two orders of magnitude below the Curie temperature of the magnetic dopants.[4,8-12]When the crystalline structure and magnetic order are self-organized into a well-ordered topological superlattice, the QAH insulator can be observed at much higher temperature.[13,14]

    On the other hand,as the bulk states of the TIs are gapped,a highly simplified Dirac cone model was initially proposed to explain the QAH behavior in the magnetic TI thin film.[5]The model was later developed to describe the magnetic-doped TI and ordinary insulator multilayers that can host the 3D Weyl semimetal(WSM)phase.[21,22]In the Dirac cone model,only the Dirac cone degrees of freedom on each TI surface were retained,with the intralayer and interlayer Dirac cone hoppings being included;while the bulk electronic dynamics were completely ignored.This was demonstrated to be valid by comparing the model parameters with the DFT band calculations.[23]Furthermore, the Dirac cone model was used to explore the dependence of the QAH behavior on the film thickness, the magnetic configuration as well as the stacking sequences of the TI layers.[23]

    Motivated by these progresses,here we try to investigate the high-Cbehavior in the magnetic-doped TI multilayer structures from the point of view of the Dirac cone model.We focus on the Chern number phase diagram,where the Chern number is calculated by capturing the evolution of the phase boundaries with the parameters.[16,19]For comparison,we also consider another two TI multilayer structures as well as the 3D TI superlattice structures. Our main findings are as follows:(i) Within the Dirac cone model, the high-Cbehavior is attributed to the band inversion of the renormalized Dirac cones that is driven by the exchange splitting,along with which the spin polarization at theΓpoint gets increased. In the highest-Cphase, the occupied states are fully down-spin polarized at theΓpoint. (ii) To explain the observation that the Chern number decreases with the decreasing middle magnetic-doped layer thickness,[15]we assume that the related intralayer Dirac cone hopping changes from negative to positive.Based on this assumption, it is interesting to find that at certain magneticdoping, the Chern number can also get increased when the layer thickness decreases. (iii) For another two TI multilayer structures,the band inversion cannot be achieved for all negative-mass Dirac cones even when the magnetic exchange splittings are very strong.(iv)For the 3D TI superlattice structures,besides the high-Cphases,the WSM phases can appear and span broad parameter regions.Our work can provide more insights on the high-Cbehavior realized in the TI multilayer structures,which may pave the way for the future topological electronic devices.

    2. Model and method

    The experimental configuration of the TI multilayers[15]is plotted in Fig.1. It stacks along thezdirection and includes the alternating magnetic-doped and undoped TI layers, with the layer number in the plot beingN1= 3 andN2= 2, respectively,so the undoped TI layer is sandwiched between the doped TI layers.

    We use the Dirac cone model to describe the dynamics of the TI multilayer structures. In the model,the linear Dirac cones are assumed to be present on both the top and bottom surfaces of the magnetic-doped TI layer as well as the undoped TI layer. The Hamiltonian is written as(ˉh=1)[21-23]

    whereαis the layer index. We assume that the magnetization is along thezdirection,so thatMα=1 in the magnetic-doped layer, andMα=0 in the undoped layer. As shown in Fig. 1,each surface Dirac cone has one nearby magnetic-doped TI layer, which may be the same layer with the exchange splittingJiα=JSor the adjacent layer with the exchange splittingJiα=JD. The Dirac cones localized on different surfaces can be coupled by the Dirac cone hoppings and exchange splittings and thus get renormalized. Note that the hoppings beyond the nearest-neighbor Dirac cones are neglected because they are minor[23]and will not change the main conclusions in this paper. In our calculations,we take-ΔS=1 as the unit of energy and set the parameterδ=JD/JS.

    Fig. 1. Schematics of the TI multilayer structure, including the alternating magnetic-doped(N1 =3)and undoped(N2 =2)TI layers. The magnetization in the magnetic-doped TI layer is along the z direction and the interlayer distance is denoted by d. The Dirac cone hoppings ΔS and ΔD, and the exchange splittings JS and JD are indicated by the arrows. Without hoppings and exchange splittings,the Dirac cones are localized on the top and the bottom surface of each TI layer.

    To calculate the Chern number in the TI multilayer structures, we follow the previous works[16,19]and try to judge the Chern number by exactly capturing the evolution of the phase boundaries with the parameters, as the Chern number change is closely connected to the gap closings. To help the Chern number judgment,two limiting cases need to be considered: (i)JS=0 of no magnetic-doping case,where the TRS is preserved and the Chern number must be vanishing, with the renormalized Dirac cones always appearing in pairs with opposite masses; (ii)ΔD=0 of the limiting isolated-layer case,where the mass of each renormalized Dirac coneMican be calculated analytically and then the Chern number is obtained.As the Dirac cones on all surfaces own the positive chiralityχi=1 and each Dirac cone can contribute a componentCito the Chern number,we have

    Compared with the common Chern number calculations by using Kubo’s formula[1]or Fukui’s algorithm,[24]where the exact diagonalization is needed to obtain the eigenenergy and eigenstate for each wavevector in the Brillouin zone(BZ),the above method requires much less computational resources and time, and is expected to be extended to the antiferromagnetic configuration as well as other topological systems.

    3. Magnetic-doped TI thin film

    which becomes block diagonalized. It shows that the chirality of the renormalized Dirac cones in the upper/lower block remains the same as in Eq. (4), but the Dirac cone mass in the upper/lower block will get reduced/increased by the intralayer Dirac cone hopping. Then,the Chern number of the system is obtained as

    We can see that(i)whenJS<|ΔS|,the Dirac cone mass is negative in the upper block and positive in the lower block, and thus the Chern numberC=0; (ii) whenJS>|ΔS|, the Dirac cone mass in the upper block becomes positive,thus the band inversion occurs andC=1. Thus in a magnetic-doped TI thin film, the nontrivialC=1 phase can be observed only when the magnetic-doping reaches a certain ratio, which is consistent with the experimental observations in the Cr-doped or Vdoped (Bi,Sb)2Te3thin film.[4,9-12]Note that the Dirac cone model cannot support the high-Cphase in the TI thin film,which, though predicted in theory,[16,19,26]but to our knowledge,has not yet been reported in experiment.

    Fig. 2. The energy bands ε ~vkx when setting ky =0, and the wavefunction distributions at the Γ point on each Dirac cone in the magneticdoped TI thin film. We choose JS =0.4 in(a)and(b),and JS =1.6 in(c)and(d). In the wavefunction distributions,the blue and orange bars denote the upspin and downspin contributions,respectively,and the bar heights are proportional to the weights of the distributions. For clarity,the neighboring distributions are shifted vertically by 0.8.

    4. TI multilayer structures

    Next, for the TI multilayer structures, the Chern number phase diagrams are plotted in the parametric space (JS,ΔD)in Fig. 3, with the layer numberN2increasing from 1 to 5 in(a)-(e)andN1=N2+1. Experimentally, tuning the parametersJSandΔDis quite feasible,as the exchange splittingJSis expected to increase with the magnetic-doping or to increase with the decreasing temperature, and the interlayer hoppingΔDis expected to increase when the van der Waals gap is narrowed by the external pressure.[23,27]In the phase diagrams,the contour scale represents the magnitude of log10Δ, whereΔis the energy gap of the lowest bands and the bright blue lines denote that the gap is closed.

    Figure 3 shows that the Chern numberCcan increase from zero up to its highest valueC=N1+N2. WhenJS=0 of no magnetic-doping case, the Chern number always vanishes due to the presence of the TRS.On the other hand,whenΔD=0 of the isolated-layer case,similar to Eq.(7),the Chern number of the TI multilayer structures is obtained as

    We can see that when the exchange splittingJSincreases,the negative massJS-|ΔS| of the Dirac cone in the magneticdoped TI layer becomes positive at the critical pointJS=|ΔS|,which isN1-fold degenerate; whereas the negative massJD-|ΔS|of the Dirac cone in the magnetic-undoped TI layer becomes positive at the critical pointJD=|ΔS|, which isN2-fold degenerate. Thus, the Chern number evolutions withJSare as follows:(i)WhenJS<|ΔS|,the Chern number vanishesC=0. (ii) When|ΔS|<JS<|ΔS|/δ,C=N1. (iii) WhenJS>|ΔS|/δ, the Chern number increases to its highest valueC=N1+N2,where the band inversions occur for all negativemass Dirac cones.

    When the interlayer hoppingΔDis nonvanishing, the Dirac cones in different TI layers will get coupled and further renormalized, which thus breaks the Dirac cone degeneracy. The renormalized Dirac cones may not be localized in one TI layer, but extended to all layers [see Figs. 4(a) and 4(b)]. As a result, with the increasingJS, the band inversion occurs successively for the renormalized Dirac cones. Each time a phase boundary is crossed, the band inversion occurs for one negative-mass Dirac cone and the Chern number will be changed by one. WhenΔDincreases, we can see that all phase boundaries originating fromJS=|ΔS|/δmove to largerJS.On the other hand,for the phase boundaries fromJS=|ΔS|,only one will move toJS=0,meaning that the region spanned by theC=0 phase is shrinking so that a minor magnetic doping can drive the transition from theC=0 phase toC=1,while the remainingN1-1 ones all move to largerJS.

    Fig.3. Phase diagrams of the TI multilayer structures in the parameter space(JS,ΔD),with the Chern number C and the spin polarization η at the Γ point being labeled as(C,η). The contour scale represents the magnitude of log10Δ,where Δ is the energy gap of the lowest bands,and the bright blue lines denote that the gap is closed. We choose the parameter δ =0.6,the layer number N2=1-5 in(a)-(e)and N1=N2+1.

    In the phase diagrams, if the magnetic-doping is small,the value of the critical pointJS=|ΔS|/δatΔD=0 will become larger. However,if the magnetic-ordered septuple layer is formed,such as in MnBi2Te4,[28]where the exchange splitting is greatly strengthened,δwill be expected to be close to 1 and thus the critical point will be close toJS=|ΔS|. In the experiment,[15]the thicknesses of the magnetic-doped and undoped layers are taken asd=3 nm andd=4 nm,respectively.The different TI layer thicknesses and properties can lead to the unequalΔSin the different layers, which will not change the basic physics and the structure of the phase diagrams(see Appendix A).

    Next,we study the wavefunction distribution and the spin polarization in the TI multilayer structures. The spin polarizationηkis defined as

    We also investigate the spin polarization at nonzero wave vectors. In Fig. 4(c), when settingky=0,ηis plotted as a function ofvkx,where the different lines correspond toJSincreasing from 0.12 to 3.6. We can see that,althoughηkmay increase with|kx| around theΓpoint, it decreases when|kx|is large enough. On the other hand,ηkalways increases withJS. Thus, at the asymptotically strong Zeeman splitting, the system may be driven into the ferromagnetic Chern insulator phase.[29]In the experiment, the spin polarization can be detected by the spin-polarized angle-resolved photoemission spectroscopy.[30]

    Fig.4. (a)and(b)The wavefunction distributions of all VBs at the Γ point on each Dirac cone in the TI multilayer structures. The blue and orange bars denote the upspin and downspin contributions,respectively,and the bar heights are proportional to the weights of the distributions. For clarity,the neighboring distributions are shifted vertically by 0.3. (c)The spin polarization versus vkx,where JS increases from 0.12 to 3.6 and the corresponding Chern number is labeled on the right. We choose N2=2 and N1=N2+1,ΔD=1,JS=0.84 in(a),JS=1.08 in(b),and ky=0 in(c).

    The recent experiment that implemented on the TI multilayers [(Bi,Sb)2-xCrxTe3-(Bi,Sb)2Te3]N2-(Bi,Sb)2-xCrxTe3reported the observations of the high-Cphase withC=N2when the magnetic-doping ratio isx=0.24.[15]According to the above analysis,this suggests that at such a ratio,the band inversion only occurs inN2negative-mass Dirac cones. WhenΔD=0, all these Dirac cones are localized in the magneticdoped TI layers. In Ref. [15], the authors also reported that,for the TI multilayersN1=3 andN2=2, the Chern number can change fromC=2 toC=1 when the middle magneticdoped layer thickness was tuned to decrease fromd=4 nm to zero. They suggested that when the magnetic-doped layer thickness decreases, a pair of nontrivial interface states will disappear, so the Chern number is reduced by one. Here in the Dirac cone model, our observation could be instead explained by assuming that the intralayer hopping within the middle magnetic-doped TI layerΔSmwill change from negative to positive when the layer thickness decreases.This means that when the layer is thick enough, the Dirac cones attract each other so thatΔSmis negative. When the layer thickness decreases and becomes smaller, the Dirac cones become less attractive and even repel each other when a critical thickness is broken through,soΔSmbecomes positive. In our calculations,the chosen model parametersΔS=-1 andΔD>0 are consistent with the above assumptions. Moreover, in Ref. [23], by comparing the model parameters with the DFT band calculations,the authors obtained the oppositeΔSandΔD,which also supports our assumptions.

    To see the effect ofΔSmon the Chern number modulation,in Fig.5,the phase diagrams of the TI multilayer structures are plotted in the parameter space(JS,ΔSm),withΔD=0.5 in(a)andΔD=1.5 in (b). We can see that in Fig. 5(a), there is noC=2 toC=1 phase transition along the vertical direction. However, in Fig. 5(b), theC=2 toC=1 phase transition can be captured along the left solid arrow, which agrees with the experiment.[15]More interestingly,in Fig.5(b),when the magnetic-doping increases and the exchange splitting lies within the range 1.51<JS<1.84, there can exist theC=2 toC=3 phase transition, e.g., along the right dashed arrow.Therefore, as long as the layer thickness is not vanishing and the Dirac cones are still present on the surfaces, the Chern number may get increased. The conclusion is quite different from the interface Dirac state mechanism,but also roots in the band inversion of the Dirac cone.

    Fig.5. Phase diagrams of the TI multilayer structures in the parameter space of (JS,ΔSm), with the Chern number C being labeled. The contour scale represents the magnitude of log10 Δ, where Δ is the energy gap of the lowest bands. The bright blue lines denote that the gap is closed. We choose the parameter δ =0.6, the layer number N2 =2,N1=N2+1,and ΔD=0.5 in(a)and ΔD=1.5 in(b).

    5. Other TI multilayer structures

    To make comparisons, we study another two TI multilayer structures,with the Chern number phase diagrams plotted in Fig.6. In Fig.6(a),we choose the layer numbersN1=2 andN2= 3 so that the magnetic-doped TI layers are sandwiched between the undoped ones. In Fig. 6(b), we chooseN1=N2=2 and the number of the magnetic-doped TI layer is equivalent to the undoped layer.

    Fig. 6. Phase diagrams of two alternative TI multilayer structures in the parameter space of(JS,ΔD),with the Chern number C and the spin polarization η at the Γ point being labeled as(C,η). The contour scale represents the magnitude of log10Δ, where Δ is the energy gap of the lowest bands and the bright blue lines denote that the gap is closed. We choose the parameter δ =0.6,the layer numbers N1 =2,N2 =N1+1 in(a)and N1=N2=2 in(b).

    In the isolated layer case ofΔD= 0, for the topmost undoped TI layer, the masses of the two renormalized Dirac cones are calculated as

    For the spin polarizationηat theΓpoint,the results are shown in Fig. 6. We can see that the relation in Eq. (10) of the spin polarization to the Chern number still holds. Comparing Figs. 6(a) and 6(b) with Fig. 3(a), we find that, although the nontrivial Chern number phases span the similar regions,the spin polarizations are quite different. As analyzed above,even when the Chern number takes its highest value,the spin polarization at theΓpoint cannot be saturated in the two TI multilayer structures.

    We note that in Fig. 6, the gaps are well opened in the Chern insulator phases. Because the Fermi energy needs to be tuned in the gap,the large gap favors the experimental observations. This conclusion is quite different from our previous work,[16]where the gaps of the Chern insulator phases were found to be too small to hinder the experimental observations.

    6. TI superlattice structure

    In addition, we study the TI superlattice structure under the periodic boundary conditions in thezdirection. Note that in a unit cell, the topmost and bottommost Dirac cones may have two nearby magnetic-doped TI layers. As more and more magnetic-ordered TIs have been successfully fabricated in experiments,[28,31-33]the TI superlattice considered here may also be realized in the future.

    The phase diagrams for the TI superlattice are plotted in Figs. 7(a) and 7(b), where the unit cell includes the same TI layer number as in Figs.3(a)and 3(b),respectively.The bright blue regions denote that the energy gaps are closed so that the system lies in the gapless WSM phase. Figures 7(a)and 7(b)show that the WSM phases can span large parameter regions and separate the distinct Chern insulator phases. This is consistent with the previous studies,[21,23]while it is quite different from the TI multilayer structures, where no WSM phase exists in Fig.3. This is explained such that the wave vectorkzneeds to take a specific value to close the gap so that the WSM phase can be accommodated in the TI superlattice,[21,22]butkz

    Fig. 7. Phase diagrams of the TI superlattice structures in the parameter space of (JS,ΔD), and the corresponding kz value for the energy gap. In(a)and(b),the Chern number C is labeled and the contour scale represents the magnitude of log10 Δ, where Δ is the energy gap of the lowest bands. The bright blue regions denote that the gap is closed,and the system lies in the gapless WSM phase. We choose the parameter δ =0.6,the layer number N2 =1 in(a)and(c),N2 =2 in(b)and(d),and N1=N2+1.

    WhenJS=0 of no magnetic-doping case, the masses of the 2(N1+N2)renormalized Dirac cones can be calculated analytically as

    7. Discussion and conclusion

    In summary,we have studied the Chern number phase diagrams in the TI multilayer structures using the Dirac cone model, where the Chern number is effectively calculated by capturing the evolutions of the phase boundaries with the parameters. We find that the magnetic doping can drive the band inversion of the Dirac cones and thus induce the high-Cphase transitions. In the highest Chern number phase, the occupied states are down-spin polarized at theΓpoint.

    Compared with the previous theoretical works that used the plane wave expansion method on thek·pmodel,[15,16]our results show the following differences: (i) The inverted bands are related to the renormalized Dirac cones. (ii) The Chern number may get increased even when the thickness of the middle magnetic-doped TI layer decreases. (iii)The gaps are well opened in the Chern insulator phase in another two TI multilayer structures. The differences are attributed to the fact that the surface states of each TI layer in the multilayer structures are well captured by the Dirac cone model,but may not be correctly described by the plane-wave expansion method.We hope that these conclusions,especially(ii)and(iii),would be demonstrated in the future TI multilayer experiments.

    Besides the magnetic-doped TI multilayers,the magneticordered ones,as well as the factors that cannot be included in the DFT calculations,such as disorder and magnetic field,can also be described by the Dirac cone model. We expect the Dirac cone model to be widely used to explain more emergent phenomena in the TI multilayer structures, such as the axion insulator.[34,35]

    Appendix A:Unequal intralayer Dirac cone hoppings

    The above Chern number expression shows that the critical points are located atJS=|ΔS1| andJS=|ΔS2|/δ, as shown in Fig. A1(a). More importantly, the structure of the phase diagram in Fig. A1(a) is similar to Fig. 3(b). When settingΔD=0.9,in Fig.A1(b)we plot the phase diagram in the parametric space (JS,|ΔS2|). We observe that as|ΔS2| increases,the left three phase boundaries show minor changes,while the right two phase boundaries will move to higherJS. Thus for the unequalΔS1andΔS2, the qualitative results of the phase diagram remain unchanged.

    Fig. A1. Phase diagrams of the TI multilayer structures in the parameter space(JS,ΔD)in(a)and(JS,|ΔS2|)in(b),with the Chern number C and the spin polarization η at the Γ point being labeled as (C,η).The contour scale represents the magnitude of log10 Δ, where Δ is the energy gap of the lowest bands, and the bright blue lines denote that the gap is closed. We choose the parameter δ =0.6,the layer number N2=2,N1=N2+1,ΔS1=-1,and in(a)ΔS2=-0.8,in(b)ΔD=0.9.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804122 and 11905054),the China Postdoctoral Science Foundation(Grant No.2021M690970),and the Fundamental Research Funds for the Central Universities of China.

    美女高潮到喷水免费观看| 男女免费视频国产| a在线观看视频网站| 国产亚洲欧美精品永久| 久久精品亚洲熟妇少妇任你| 国产日韩欧美亚洲二区| 国产亚洲欧美在线一区二区| 久久久国产成人免费| 狂野欧美激情性xxxx| 国产成人a∨麻豆精品| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 精品国产乱码久久久久久男人| 欧美日韩一级在线毛片| 久久青草综合色| 国产日韩欧美视频二区| 久久久欧美国产精品| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 免费一级毛片在线播放高清视频 | 丝袜喷水一区| 精品国产乱码久久久久久男人| 午夜老司机福利片| 国产亚洲精品一区二区www | 三上悠亚av全集在线观看| 日本撒尿小便嘘嘘汇集6| 啦啦啦在线免费观看视频4| 麻豆乱淫一区二区| avwww免费| 天堂中文最新版在线下载| 精品久久久久久电影网| 亚洲欧美一区二区三区久久| tube8黄色片| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| 久久99热这里只频精品6学生| 韩国高清视频一区二区三区| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 国产高清videossex| 国产精品久久久久久精品电影小说| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 老汉色∧v一级毛片| 午夜福利,免费看| 91国产中文字幕| 丰满迷人的少妇在线观看| 亚洲欧美激情在线| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 国产高清国产精品国产三级| 妹子高潮喷水视频| www.av在线官网国产| 久9热在线精品视频| 黄色怎么调成土黄色| 蜜桃国产av成人99| 久久久国产精品麻豆| 视频区图区小说| 啦啦啦在线免费观看视频4| 成人av一区二区三区在线看 | 一本综合久久免费| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 久久久国产一区二区| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 制服诱惑二区| 色视频在线一区二区三区| 蜜桃国产av成人99| 99国产综合亚洲精品| e午夜精品久久久久久久| 一区二区三区乱码不卡18| 在线观看人妻少妇| 久久久水蜜桃国产精品网| 又爽又黄无遮挡网站| 国产熟女午夜一区二区三区| 久9热在线精品视频| 正在播放国产对白刺激| 国产亚洲精品av在线| 久久精品亚洲精品国产色婷小说| 全区人妻精品视频| 少妇粗大呻吟视频| 国产av一区二区精品久久| 欧美黑人精品巨大| 国产精品精品国产色婷婷| 99久久无色码亚洲精品果冻| 一边摸一边抽搐一进一小说| tocl精华| 免费在线观看成人毛片| 国产片内射在线| 亚洲av成人一区二区三| 午夜激情av网站| 天天躁夜夜躁狠狠躁躁| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 亚洲五月天丁香| aaaaa片日本免费| 亚洲欧洲精品一区二区精品久久久| 色综合婷婷激情| 午夜两性在线视频| 男女午夜视频在线观看| 长腿黑丝高跟| 俄罗斯特黄特色一大片| 久久午夜亚洲精品久久| 日本一区二区免费在线视频| 91大片在线观看| 国产精品98久久久久久宅男小说| 亚洲自拍偷在线| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 久久热在线av| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 制服丝袜大香蕉在线| 香蕉国产在线看| 高清在线国产一区| 日本熟妇午夜| 五月伊人婷婷丁香| 国产一区二区在线av高清观看| 国产精品久久久久久人妻精品电影| 99久久精品国产亚洲精品| 成人一区二区视频在线观看| 亚洲电影在线观看av| 18禁国产床啪视频网站| 国产黄色小视频在线观看| 色播亚洲综合网| 国产亚洲欧美98| 真人做人爱边吃奶动态| 在线观看免费视频日本深夜| 亚洲精品在线观看二区| 天堂动漫精品| 欧美乱妇无乱码| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 1024视频免费在线观看| 国产探花在线观看一区二区| avwww免费| 欧美乱妇无乱码| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看 | 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 亚洲精品av麻豆狂野| av天堂在线播放| 日日干狠狠操夜夜爽| 最近最新中文字幕大全电影3| 国产精品综合久久久久久久免费| 极品教师在线免费播放| 黄色a级毛片大全视频| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全免费视频| 欧美一级a爱片免费观看看 | 精品国产乱子伦一区二区三区| 日韩精品青青久久久久久| av视频在线观看入口| 国内久久婷婷六月综合欲色啪| 久久婷婷成人综合色麻豆| 久久精品综合一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| 久久久国产精品麻豆| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 成在线人永久免费视频| 黄色a级毛片大全视频| 亚洲真实伦在线观看| 69av精品久久久久久| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 日本 欧美在线| 成人欧美大片| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 国产精品久久电影中文字幕| 此物有八面人人有两片| 日本一二三区视频观看| 天天一区二区日本电影三级| 亚洲中文av在线| 91麻豆av在线| 亚洲全国av大片| 国产高清有码在线观看视频 | 久久亚洲精品不卡| 制服诱惑二区| 午夜精品一区二区三区免费看| 久久久久性生活片| 亚洲av熟女| 亚洲自拍偷在线| 国产成人影院久久av| 日韩欧美在线乱码| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 国产午夜福利久久久久久| 九九热线精品视视频播放| 99热这里只有精品一区 | 国产精品久久久久久久电影 | 亚洲男人天堂网一区| 免费在线观看黄色视频的| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 51午夜福利影视在线观看| 日本一本二区三区精品| 亚洲美女视频黄频| 美女 人体艺术 gogo| 国产精品一区二区精品视频观看| 欧美性猛交黑人性爽| 高清在线国产一区| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| 嫩草影视91久久| 嫩草影院精品99| www国产在线视频色| 国产精品国产高清国产av| 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频 | 99国产精品一区二区三区| 亚洲成人久久性| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 欧美另类亚洲清纯唯美| 在线国产一区二区在线| 精品电影一区二区在线| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 亚洲第一电影网av| 国产精品免费视频内射| 国产精品久久久人人做人人爽| 久久精品91无色码中文字幕| 级片在线观看| 久久久久久免费高清国产稀缺| 变态另类丝袜制服| 精品久久久久久久久久久久久| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 99久久无色码亚洲精品果冻| 久久久久九九精品影院| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 欧美午夜高清在线| 久久天躁狠狠躁夜夜2o2o| 欧美中文综合在线视频| 亚洲国产高清在线一区二区三| 亚洲中文av在线| 午夜激情福利司机影院| 99热这里只有精品一区 | 中亚洲国语对白在线视频| 午夜福利成人在线免费观看| 无限看片的www在线观看| 欧美+亚洲+日韩+国产| 欧美性猛交黑人性爽| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品av在线| 巨乳人妻的诱惑在线观看| 亚洲aⅴ乱码一区二区在线播放 | 97人妻精品一区二区三区麻豆| 性色av乱码一区二区三区2| 久久久国产成人精品二区| 我的老师免费观看完整版| 色播亚洲综合网| 韩国av一区二区三区四区| 深夜精品福利| 精品第一国产精品| 亚洲激情在线av| 中出人妻视频一区二区| 男女午夜视频在线观看| 很黄的视频免费| 我的老师免费观看完整版| 麻豆av在线久日| 在线十欧美十亚洲十日本专区| 国产精品爽爽va在线观看网站| 黄色a级毛片大全视频| 两个人免费观看高清视频| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 俺也久久电影网| 手机成人av网站| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 丰满的人妻完整版| www.精华液| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 丝袜人妻中文字幕| 曰老女人黄片| 亚洲黑人精品在线| 日韩国内少妇激情av| 午夜福利免费观看在线| 国产成人精品久久二区二区免费| 久久久水蜜桃国产精品网| 观看免费一级毛片| 在线免费观看的www视频| 欧美中文综合在线视频| 欧美黑人精品巨大| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 免费看日本二区| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 久久精品91蜜桃| 国模一区二区三区四区视频 | 无人区码免费观看不卡| 日韩免费av在线播放| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区mp4| 色播亚洲综合网| 日韩国内少妇激情av| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 黑人操中国人逼视频| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| www.999成人在线观看| 精品久久久久久久久久久久久| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 免费看日本二区| 亚洲自拍偷在线| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 91麻豆av在线| 久久亚洲精品不卡| 国产高清videossex| 久久婷婷人人爽人人干人人爱| 美女扒开内裤让男人捅视频| 色噜噜av男人的天堂激情| 91麻豆av在线| 久久精品夜夜夜夜夜久久蜜豆 | www.自偷自拍.com| 免费在线观看成人毛片| 日韩欧美精品v在线| 亚洲免费av在线视频| 日本五十路高清| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 桃色一区二区三区在线观看| 丁香欧美五月| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| svipshipincom国产片| 日韩欧美精品v在线| 欧美3d第一页| 日韩 欧美 亚洲 中文字幕| 女人被狂操c到高潮| 午夜影院日韩av| 国产精品亚洲av一区麻豆| 午夜福利18| 很黄的视频免费| 午夜免费成人在线视频| 老鸭窝网址在线观看| 欧美日韩精品网址| 俺也久久电影网| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 悠悠久久av| 成人av在线播放网站| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| 日韩欧美精品v在线| 亚洲第一欧美日韩一区二区三区| 国产又色又爽无遮挡免费看| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 一级毛片精品| 午夜福利免费观看在线| 99国产精品99久久久久| 他把我摸到了高潮在线观看| 精品欧美一区二区三区在线| 欧美一级a爱片免费观看看 | www日本黄色视频网| 久久久久九九精品影院| 国产乱人伦免费视频| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 香蕉av资源在线| 欧美3d第一页| 久久婷婷成人综合色麻豆| 69av精品久久久久久| 一区二区三区国产精品乱码| 宅男免费午夜| 国产69精品久久久久777片 | av天堂在线播放| 香蕉国产在线看| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看的高清视频| 最近最新中文字幕大全电影3| 国产成人系列免费观看| 久久香蕉激情| 国产精品1区2区在线观看.| 91成年电影在线观看| 亚洲第一电影网av| 国产野战对白在线观看| 操出白浆在线播放| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 成人永久免费在线观看视频| 91成年电影在线观看| 欧美乱色亚洲激情| 1024视频免费在线观看| 少妇粗大呻吟视频| 欧美3d第一页| 久久婷婷人人爽人人干人人爱| 两个人看的免费小视频| 亚洲精品粉嫩美女一区| 国产亚洲精品一区二区www| 国产成人精品久久二区二区91| 久久国产精品影院| 在线观看日韩欧美| 亚洲乱码一区二区免费版| 久久精品国产99精品国产亚洲性色| 中文字幕人成人乱码亚洲影| 国产高清videossex| 十八禁网站免费在线| 一级毛片精品| 一夜夜www| 国产精品98久久久久久宅男小说| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 女人被狂操c到高潮| 日本 av在线| 亚洲天堂国产精品一区在线| 亚洲中文av在线| 亚洲一区二区三区不卡视频| 午夜福利在线观看吧| 国产99白浆流出| 非洲黑人性xxxx精品又粗又长| 国产成人系列免费观看| 一本精品99久久精品77| 久久久久久国产a免费观看| 一本大道久久a久久精品| 国产精品久久久久久人妻精品电影| 亚洲五月天丁香| 亚洲中文字幕日韩| 非洲黑人性xxxx精品又粗又长| 国产成人系列免费观看| 最新美女视频免费是黄的| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 毛片女人毛片| 2021天堂中文幕一二区在线观| 人妻久久中文字幕网| 国产精品,欧美在线| 久久 成人 亚洲| 一夜夜www| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 国产一区在线观看成人免费| 国产成人av激情在线播放| 露出奶头的视频| 成人国产综合亚洲| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 伦理电影免费视频| 久久久久久大精品| 成人国产综合亚洲| 麻豆国产av国片精品| 人人妻人人澡欧美一区二区| 黄色丝袜av网址大全| 国产三级黄色录像| 婷婷亚洲欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香欧美五月| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 国产精品98久久久久久宅男小说| 久久久国产成人免费| 亚洲国产精品sss在线观看| 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| av福利片在线观看| 国产成人aa在线观看| 日韩 欧美 亚洲 中文字幕| 91老司机精品| 一个人免费在线观看电影 | 日本精品一区二区三区蜜桃| 久久精品亚洲精品国产色婷小说| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 中文在线观看免费www的网站 | 婷婷精品国产亚洲av| 成人av在线播放网站| 五月伊人婷婷丁香| 亚洲 欧美一区二区三区| 18禁美女被吸乳视频| 午夜两性在线视频| 国产69精品久久久久777片 | 国产欧美日韩一区二区精品| 美女免费视频网站| 脱女人内裤的视频| 99国产精品一区二区蜜桃av| 午夜视频精品福利| 国产精品久久电影中文字幕| 国产亚洲欧美在线一区二区| 国语自产精品视频在线第100页| 亚洲人成电影免费在线| 色噜噜av男人的天堂激情| 欧美最黄视频在线播放免费| 69av精品久久久久久| 12—13女人毛片做爰片一| 精品午夜福利视频在线观看一区| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区精品| 午夜福利欧美成人| 免费一级毛片在线播放高清视频| cao死你这个sao货| 女同久久另类99精品国产91| tocl精华| 2021天堂中文幕一二区在线观| 国产又黄又爽又无遮挡在线| 午夜福利免费观看在线| 亚洲自偷自拍图片 自拍| 欧美成人性av电影在线观看| 人妻夜夜爽99麻豆av| 色综合欧美亚洲国产小说| 国产私拍福利视频在线观看| 成人永久免费在线观看视频| 香蕉国产在线看| 国产真人三级小视频在线观看| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 国产精品 欧美亚洲| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 免费在线观看亚洲国产| 他把我摸到了高潮在线观看| 日日夜夜操网爽| 色播亚洲综合网| www.自偷自拍.com| 制服人妻中文乱码| 黄频高清免费视频| 老司机靠b影院| 蜜桃久久精品国产亚洲av| 久久久久久国产a免费观看| 亚洲欧美精品综合一区二区三区| aaaaa片日本免费| 香蕉av资源在线| 亚洲专区字幕在线| 亚洲五月天丁香| 国产男靠女视频免费网站| 欧美久久黑人一区二区| 日日干狠狠操夜夜爽| 日韩免费av在线播放| www.熟女人妻精品国产| 欧美性猛交╳xxx乱大交人| 久久久久久免费高清国产稀缺| 特大巨黑吊av在线直播| 视频区欧美日本亚洲| 在线a可以看的网站| 成人国语在线视频| 日韩三级视频一区二区三区| 国产精品国产高清国产av| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av | 成人亚洲精品av一区二区| 视频区欧美日本亚洲| 午夜两性在线视频| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 国产亚洲精品久久久久久毛片| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区| 超碰成人久久| 欧美乱妇无乱码| 国内揄拍国产精品人妻在线| 在线观看舔阴道视频| 好男人在线观看高清免费视频| 欧美黑人精品巨大| 国产伦在线观看视频一区| 国产真实乱freesex| 欧美午夜高清在线| 国产精品乱码一区二三区的特点| 免费在线观看黄色视频的| 宅男免费午夜| 国产精品国产高清国产av| 在线看三级毛片| 一二三四社区在线视频社区8| 婷婷精品国产亚洲av| 亚洲一区高清亚洲精品| 国产精品九九99| 国产精品久久久久久久电影 | 国产69精品久久久久777片 | 很黄的视频免费| 亚洲熟妇中文字幕五十中出| 国产精品免费视频内射| 成年女人毛片免费观看观看9| 久久久国产精品麻豆| 亚洲中文字幕一区二区三区有码在线看 | 桃红色精品国产亚洲av|