• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure:Model and simulation

    2022-09-24 08:04:12ZiHengWang王自衡YiJunZhang張益軍ShiManLi李詩曼ShanLi李姍JingJingZhan詹晶晶YunShengQian錢蕓生FengShi石峰HongChangCheng程宏昌GangChengJiao焦崗成andYuGangZeng曾玉剛
    Chinese Physics B 2022年9期
    關鍵詞:石峰晶晶

    Zi-Heng Wang(王自衡) Yi-Jun Zhang(張益軍) Shi-Man Li(李詩曼) Shan Li(李姍)Jing-Jing Zhan(詹晶晶) Yun-Sheng Qian(錢蕓生) Feng Shi(石峰)Hong-Chang Cheng(程宏昌) Gang-Cheng Jiao(焦崗成) and Yu-Gang Zeng(曾玉剛)

    1School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2National Key Laboratory of Science and Technology on Low-Level-Light,Xi’an 710065,China

    3Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: temporal response,GaAs-based photocathode,distribution Bragg reflection,graded-bandgap

    1. Introduction

    Since the advent of the GaAs-based vacuum photocathode,it has attracted extensive research interest due to its high quantum efficiency,low thermal noise,spin-dependent effects,and high-speed response.[1-6]After decades of research, the GaAs-based photocathode gradually becomes irreplaceable in specific application areas,such as night vision imaging,spinpolarized electron source, spectrophotometer, photon counting, laser detection, and thermionic energy converters.[7-13]Quantum efficiency is one of the most significant parameters of photocathode. How to improve the quantum efficiency is always a hot issue in numerous photocathode researches.During this period, many approaches regarding structural design have been proposed, such as field-assist structure and distribution Bragg reflection (DBR) structure.[14-19]In previous researches, the photoemission process of the photocathode was treated as a steady-state situation for studying quantum efficiency or an unsteady-state situation for investigating temporal response.[20-23]For the field-assisted photocathode adopting the varied-doping structure,researchers have explored the temporal response characteristic theoretically and experimentally.[24,25]However, the dynamic temporal properties of the laminated GaAs-based photocathode with DBR structure and graded-bandgap emission layer still lack a suitable model to be described and investigated. Besides, the influence of the DBR structure on the temporal response and the intrinsic mechanism also need to be explained.

    According to Spicer’s three-step model of photoemission,[26]the emission progress of excited electron can be divided into generation,transport and escaping. In the progress of photoelectron generation, the photocathode with gradedbandgap emission layer and DBR reflection layer has different photoelectron generation characteristics and electron transport characteristics. The DBR layer located beneath the emission layer can act as a reflector,which has the function of realizing the total reflection at target wavelength. Hence,the propagating process of the incidence light in the emission layer can be divided into two parts: forward incidence and backward reflection caused by the reflection of DBR structure. In addition, the interface recombination and built-in electric field in the laminated graded-bandgap emission layer also influence the internal transport of photoelectron. Accordingly,this laminated photocathode requires an appropriate time-dependent photoemission model.

    In this paper, a time-dependent photoemission model is deduced to study the temporal response of the laminated GaAs-based photocathode with DBR structure and gradedbandgap emission layer. The derivation method is based on the unsteady one-dimensional continuity equations combined with the numerically discrete calculation. The related optical properties involved in the calculation process are simulated by the finite-different time-domain(FDTD)method. With the assist of the deduced model,the effect of the secondary absorption caused by the DBR layer and the graded bandgap structure on the temporal response are indicated clearly. We emphatically discuss the effect of DBR structure on the temporal response from the perspectives of emission layer thickness,electron concentration distribution,and incident light wavelength.The analysis results indicate that how the structural design of GaAs-based photocathode influences the temporal response,which will provide effective theoretical guidance for further improvement.

    2. Structure and theoretical model

    The laminated GaAs-based photocathode consists of a DBR layer,a varying-composition,and varying-doping emission layer. As shown in Fig.1(a),from top to bottom,the photocathode includes a GaAs-based emission layer, a DBR reflection layer,and a substrate.The emission layer is composed of the varying-composition and varying-doping InxGa1-xAs.Under the emission layer, the DBR layer is formed by alternately stacking two types of thin materials with different refractive indexes. Through reasonable design, the DBR layer has the function of realizing the total reflection at a specific wavelength.In this case,the original transmission light toward the substrate would be reflected back to the emitting layer,and thus generating the secondary absorption,which improves the absorptivity of the emission layer, especially the absorptivity at the target wavelength.

    The energy band structure of the GaAs-based photocathode is shown in Fig.1(b). Because of the varying-composition and varying-doping structure, the conduction-bandECand valence-bandEVof the emission layer are respectively bent and inclined by the Fermi level leveling effect. Hence, the built-in electric fieldEinis generated in the bandgap bending region, and the direction is from the surface toward the bulk. With the assist of the built-in electric field and diffusing effect, the photoelectron transports toward the surface of the emission layer and finally enters into the vacuum. The DBR layer,which is composed of the alternating growing GaAs sublayer and AlAs sublayer, is grown on the high-quality GaAs substrate. The material of DBR structure guarantees the lattice matching at each interface. In addition,the AlAs sublayer also has the function of preventing the reverse recombination of photoelectron,because of the broad bandgap. In structural design,the emission layer is divided intonsublayers,and the In composition of each sublayer gradually increases in the direction of electron transport. The doping concentration of the emission layer exponentially decreases in the direction of electron transport.

    Fig. 1. (a) Structure diagram and (b) energy band structure of laminated GaAs-based photocathode,with EC being the minimum of conduction band,EV the maximum of valence band,EF the Fermi level,E0 the vacuum level,and Ein the built-in electric field.

    According to the theory of thin film optics,the thickness of the alternating materials needs satisfy the following expressions to realize the total reflection at target wavelength:

    whereλtargetis the target wavelength,nLandnHare the refractive indices of the materials in the DBR layer respectively,andnH>nL,dLanddHare the thicknesses of these two materials in each alternation period. When the In composition changes linearly,the intensity of the built-in electric field generated by the varying-composition and exponential-doping can be calculated by the following formulas:[14,27,28]

    whereN(Tn) andN(0) are the doping concentrations at the ends of the emission layer,k0is the Boltzmann constant,Tkthe absolute temperature,q0the electron charge,EgnandEg1are the bandgaps of the innermost sublayer and the outmost sublayer in the emission layer,andTnis the total thickness of the emission.

    The unsteady one-dimensional continuity equation of the laminated GaAs-based photocathode can be expressed as

    wherene(z,t) is the instantaneous electron concentration in the emission layer,Dniis the electron diffusion coefficient,μiis electron mobility,τiis the lifetime of electron,and the subscriptivalue runs from 1 ton,corresponding to the sublayers with different In compositions in the emission layer.When the incident light transmits through the emission layer at the first time,the light absorption process is called first absorption,and the generation rate of photoelectronsg1(z,t)can be expressed as given below. Whent=0,

    whereRhvis the reflectivity of incident surface,I0is the intensity of incident light,αhvis the absorption coefficient,diis the thickness of each sublayer,andTiis the position of a sublayer along thezaxis. Because the DBR layer is located behind the emission layer, the transmission part of the incident light will be reflected back into the emission layer and causes the secondary absorption in the emission layer. At this point,the photoelectron generation rate of the secondary absorption can be expressed below. Whent=0,

    whereTemissionis the transmissivity of the emission layer,RDBRis the reflectivity of the DBR layer, andR'hvis the reflectivity of the emission layer in the backward direction. To solve the differential continuity equation, Eq. (7), the boundary conditions of the interfaces between the sublayers are also necessary,and the equations are given as follows:wheni=2,3,...,n,

    wheretsis the average decay time of the electron concentration at the emitting surface,which is an approximately comprehensive parameter describing the whole photoelectron transport progress,[24]andSviis the surface recombination rate of each interface. To investigate the time response characteristic of the photocathode,it is assumed that the light source is an ideal pulse source att=0. Hence,the continuity equation,Eq.(7),is given below.whent/=0,

    Since the exact analytical solution of the unsteady continuity equation cannot be obtained easily through the above equations,the differential discrete method of numerical calculation is utilized to approximate to the actual solution. In this way,the thicknesses of the emission layer and the time lapsing can be discretized into grids. The thickness is divided intoMparts and each spatial step is Δz. The time lapsing is divided intoKparts and each temporal step is Δt. In this case, the electron concentration distribution in the emission layer can be discretized as follows:

    whereNis the discretized electron concentration distribution,jis the discretized spatial coordinate,kis the discretized temporal coordinate. Afterward, the continuity equation and boundary conditions can also be represented by the discretized method. Whent=0,the initial value of the electron concentration distribution becomes

    3. Simulation and discussion

    The model of the temporal response characteristic of the laminated GaAs-based photocathode is deduced by numerically solving the unsteady one-dimensional continuity equation. In this case, the relationship between the structural design and the temporal response characteristic can be further investigated through the deduced model. The structural parameters of the photocathode are set to be as follows. The InxGa1-xAs emission layer is divided into 5 sublayers with different In compositions. The thickness values of sublayers each are 0.1μm, 0.1μm, 0.1μm, 0.1μm, and 0.7μm, from bulk to surface,and the In composition values of corresponding sublayers are 0.05, 0.10, 0.15, 0.20, 0.20, respectively.The doping concentration of the entire emission layer exponentially decreases from 1×1019cm-3to 1×1018cm-3,from bulk to surface. Under the ideal assumption, the In composition in the emission layer increases linearly from 0.05 to 0.20 within a thickness of 0.4 μm. Afterwards, a uniform composition In0.2Ga0.8As sublayer of 0.7 μm in thickness adjacent to the varying composition sublayers helps to improve the absorption capability at 1064 nm. For computability, it is assumed that the bandgap changes linearly in the varying composition region. In this case, the built-in electric fieldE2generated by the varying composition is considered to be uniform in the varying composition region.[27,28]Since the outmost and second sublayers are both In0.2Ga0.8As material,it is considered that there is no interface between the two sublayers in simulation. Therefore,the photoelectrons in the second sublayer directly travel across the interface into the outmost sublayer without recombination. In simulation, the refractive index and extinction coefficient of GaAs and AlAs are cited from Ref. [29], while the refractive index and extinction coefficient of InxGa1-xAs are taken from Ref. [30]. According to Eqs.(1)and(2), to reduce the reflectivity and improve the photoresponse at 1064 nm, the thickness values of the GaAs and AlAs in the DBR layer are set to be 76 nm and 90 nm,respectively. The quantity cycle of the DBR layer is set to be 10 and the total thickness of the DBR layer is 1.66μm. Because the propagation time of the incident light in the emission layer and the DBR layer is much less than the temporal response of photocathode, the propagation time is ignored in the simulation. In this case, the optical properties of the photocathode with the mentioned structural design can be simulated to verify the reasonability. As shown in Fig. 2, the FDTD method is utilized to theoretically calculate the reflectivity and the absorptivity spectrum of the photocathode with the above structure. In the process of FDTD simulation, the light source is placed in the vacuum,and the light beam is incident normally on the surface of emission layer.As shown in Fig.2,the reflectivity curve appears as an oscillating curve in the wavelength range above 800 nm, because of the alternant thin films. According to the theory of DBR design, the lowest wavelength valley when the reflectivity curve fluctuates should be located at 1064 nm. The simulated reflectivity curve and absorptivity curve reach a minimum value and a maximum value at 1064 nm, respectively, which proves that the introduction of DBR structure reliably can improve the absorption capability of emission layer at 1064 nm.

    Fig. 2. Simulated reflectivity curve and absorptivity curve of the InxGa1-xAs emission layer with DBR structure.

    Combining the results of FDTD simulation,the temporal response of the photocathode can be calculated by the deduced model. As for the varying-composition InxGa1-xAs emission layer, the band gap, electron mobility, electron diffusion coefficient all depend on In compositionx, and the relationship expressions are given by[31,32]

    Table 1. Parameters used in simulation of quantum efficiency curves.

    Fig. 3. Simulated flux curves of emitted photoelectrons with (a) different surface electron decay time ts and(b)different thickness values of uniform composition In0.2Ga0.8As sublayer.

    The flux curves of emitted photoelectron with different values oftsare simulated and shown in Fig. 3(a), wherein the total thickness of InxGa1-xAs emission layer is set to be 1.1 μm. The wavelength of monochromatic pulse light source is 1064 nm. It can be seen obviously that with the increase ofts, the positions of the peak values severely shift to the right and the full widths at half maximum(FWHM)are broadened. According to the definition, in a certain photocathode structure, the value oftsshould also be determined.Changing the value oftsalone can lead to discrepancies in the simulation results as shown in Fig. 2(a). The value oftsis relevant to the whole photoelectron transport process, especially the thickness of emission layer. In this case, the value oftsis determined by the thickness of emission layer and the relationship is cited from the results of Ref.[24]. The normalized flux curves of emitted photoelectrons with different thicknesses of emission layer are simulated and shown in Fig.3(b). Because the uniform composition In0.2Ga0.8As sublayer is the main part of the emission layer, and has the best absorption at 1064 nm,the thickness of the uniform composition In0.2Ga0.8As sublayerd1is adjusted in simulation. It can be seen that the increase of the thickness significantly worsens the temporal response in terms of the right shift of peak and the broadening of FWHM, as shown in Fig. 3(b). With the increase of thickness of the uniform composition sublayer,more photoelectrons are generated in the deeper region,which weakens the enhancement of DBR layer. Besides, the photoelectrons need more transit time to reach the emitting surface.

    Although the graded-bandgap emission layer and the DBR layer can improve the quantum efficiency, the effect of this laminated structure on the temporal characteristic still needs further studying. Figure 4(a)demonstrates the normalized flux curves of emitted photoelectrons for the varying composition structure and the uniform composition structure. In the simulations, the total thickness of InxGa1-xAs emission layer in the structure with DBR layer is set to be 1.1 μm. In the comparative structure,the entire emission layer is replaced by a uniform In0.2Ga0.8As layer with the same thickness. Besides,tsis set to be 2.4 ps for both structures.[24]It can be clearly observed that the photocathode with graded-bandgap emission layer has better temporal response,because the builtin electric field which is opposite to the direction of electron movement,accelerates the movement of electrons. To reduce the influence of structural difference on the result, the temporal response of the proposed structure is simulated without considering the built-in electric field for comparison. The improvement effect of the built-in electric field on the temporal response can be directly observed. According to the above deduced photoelectron generation rate formula,the existence of DBR layer improves the problem of diffusion velocity by the distributing of the generated electrons. Through the abovededuced model of electron concentration distribution, it can be found that the effect of secondary absorption of DBR layer is determined by the thickness of emission layer. Too thick an emission layer will reduce the light energy entering into the DBR layer and weaken secondary absorption. To verify this conjecture, a new photocathode structure with thinner emission layer is simulated for comparison as shown in Fig.4(b).In this new structure, the total thickness of emission layer is set to be 0.6 μm, and the thickness of the uniform composition In0.2Ga0.8As sublayer decreases to 0.2 μm for reducing the light absorption in the first absorption. Meanwhile, thetsis adjusted to 1.5 ps due to the decrease of emission layer thickness.[24]It can be seen that the improvement effect of the DBR layer on the temporal response becomes more obvious with emission layer thinening, because the proportion of the excited electrons generated by the secondary absorption increases with the thickness of emission layer decreasing.

    Figure 5 shows the time evolutions of the electron concentration distributionn(z,t)in the emission layers with different photocathode structures. The total thickness of the emission layer is set to be 0.6μm to emphasize the effect caused by the DBR structure,andtsis assumed to be 1.5 ps.The emitting surface is located at the origin of abscissa. In Fig. 5(a), it is clear that the initial photoelectron distribution is uniformized by the secondary absorption because of the DBR structure.With the emitting of photoelectron,the electron concentration at the emitting surface decreases rapidly,and a bulge of electron concentration distribution is formed in the bulk as shown in Figs. 5(b)-5(d). In this case, the uniform initial electron concentration distribution can reduce the blocking effect of concentration gradient on photoelectron diffusion. The electron concentration in the In0.15Ga0.85As sublayer decreases faster, due to a mass of photoelectrons passing through the interface between In0.2Ga0.8As sublayer and In0.15Ga0.85As sublayer,and transporting toward the emitting surface. Meanwhile,these figures also demonstrate the characteristics of the DBR layer to enhance the absorption capacity of the emission layer.

    Fig. 4. Simulated flux curves of emitted photoelectrons for (a) different built-in electric field cases and(b)different emission layer thickness values with or without DBR layer.

    Figure 6 shows the relationship between the DBR structure and temporal response under different incident light wavelengths. The total thickness of emission layer is also 0.6 μm andtsis also set to be 1.5 ps. It is noted that the improvement effect of DBR structure on the temporal response is obvious for the 1064-nm-wavelength incident light, while the temporal response of the photocathode with DBR structure is no different from that without DBR structure for the 780-nm-wavelength incident light. Besides, it can also be found that the improvement effect of DBR structure on the temporal response is reduced when the incident light wavelength decreases. Because the InGaAs material has weaker absorption capability for the longer wavelength light,with the wavelength of incident light decreasing,less transmission light can reach the DBR layer and establish the secondary absorption.However,the improvement effect of the DBR structure is determined by the contribution of secondary absorption to total absorption. After the incident light is absorbed completely in the first absorption process,the introduction of DBR layer has no influence on the temporal response.

    Fig.5. Electron concentration distributions in emission layer with and without DBR at time t=0 ps(a),1 ps(b),3 ps(c),and 5 ps(d).

    Fig.6. Simulated flux curves of emitted photoelectrons in emission layer with and without DBR at incident light wavelength of(a)1064 nm,(b)960 nm,and(c)780 nm.

    4. Conclusions

    In this work, a general theory model is deduced to describe the temporal response of the laminated graded-bandgap GaAs-based photocathode with DBR structure.By solving the unsteady continuity equation through numerical computation method, the time-dependent flux of emitted photoelectrons is obtained. Besides, the relationship between the temporal response and the structural parameters including the thickness of emission layer,the built-in electric field and the DBR structure is explored. Meanwhile, the time evolution of electron concentration distribution in the emission layer and the influence of incident light wavelength on the temporal response are also simulated. Through the DBR layer, the discrepancy between the absorption capability of the emitting layer and the temporal response can be resolved. By adjusting the initial electron concentration distribution, the temporal response is improved, with the of DBR layer introduced. Moreover, the improvement effect of the DBR layer on the temporal response is enhanced with the decrease of emission layer thickness or the increase of the incident light wavelength. This theoretical model of temporal response characteristic of the complicated GaAs-based photocathode will contribute to the optimization of cathode structure for near infrared response.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.U2141239 and 61771245)and the Fund from the Science and Technology on Low-Light-Level Night Vision Laboratory of China(Grant No.J20200102).

    猜你喜歡
    石峰晶晶
    巧算最小表面積
    魔方(節(jié)選)
    貝那普利與美托洛爾慢性心衰的臨床療效分析
    Digging for the past
    紅杜鵑(電影文學劇本)
    影劇新作(2020年4期)2020-12-04 20:22:10
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    石峰作品
    國畫家(2018年2期)2018-04-25 06:39:20
    銀億股份:于無聲處聽驚雷
    Regional Warming by Black Carbon and Tropospheric Ozone: A Review of Progresses and Research Challenges in China
    免费日韩欧美在线观看| 午夜激情av网站| 毛片一级片免费看久久久久| 欧美精品亚洲一区二区| 精品国产超薄肉色丝袜足j| 韩国高清视频一区二区三区| 伊人久久大香线蕉亚洲五| av在线老鸭窝| 欧美97在线视频| 一区二区日韩欧美中文字幕| 成年人免费黄色播放视频| 一级a爱视频在线免费观看| 最近2019中文字幕mv第一页| 99久久人妻综合| 精品国产一区二区三区四区第35| 看免费成人av毛片| 亚洲欧美一区二区三区黑人 | 亚洲久久久国产精品| 国产免费现黄频在线看| 这个男人来自地球电影免费观看 | 欧美激情高清一区二区三区 | 伦精品一区二区三区| 亚洲中文av在线| 天堂中文最新版在线下载| 亚洲av国产av综合av卡| 美女国产视频在线观看| 久久人人爽av亚洲精品天堂| 老司机影院成人| 精品国产超薄肉色丝袜足j| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区 | 精品一品国产午夜福利视频| 黄色配什么色好看| 亚洲激情五月婷婷啪啪| 少妇人妻久久综合中文| av天堂久久9| 毛片一级片免费看久久久久| 老汉色∧v一级毛片| 免费黄频网站在线观看国产| 欧美+日韩+精品| 丝袜美腿诱惑在线| 99香蕉大伊视频| 超色免费av| 精品久久久久久电影网| 精品一区在线观看国产| 国产片特级美女逼逼视频| 麻豆精品久久久久久蜜桃| 韩国精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲一码二码三码区别大吗| 精品一区二区三区四区五区乱码 | 少妇人妻 视频| 成人黄色视频免费在线看| 哪个播放器可以免费观看大片| 亚洲成国产人片在线观看| 亚洲成人一二三区av| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 看免费成人av毛片| 日韩av不卡免费在线播放| 哪个播放器可以免费观看大片| 亚洲成国产人片在线观看| 亚洲国产精品一区三区| av女优亚洲男人天堂| 精品国产超薄肉色丝袜足j| 午夜影院在线不卡| 免费大片黄手机在线观看| 90打野战视频偷拍视频| 日韩人妻精品一区2区三区| 午夜福利在线观看免费完整高清在| 久久99蜜桃精品久久| 一本—道久久a久久精品蜜桃钙片| 激情五月婷婷亚洲| 久久久精品94久久精品| 又黄又粗又硬又大视频| 欧美日韩成人在线一区二区| 极品人妻少妇av视频| 热re99久久国产66热| 久久人人97超碰香蕉20202| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 久久久久久久久久人人人人人人| 少妇人妻久久综合中文| 97人妻天天添夜夜摸| 亚洲精品久久成人aⅴ小说| 男的添女的下面高潮视频| 男女边吃奶边做爰视频| 另类精品久久| 老司机影院毛片| 女人精品久久久久毛片| a 毛片基地| 两个人免费观看高清视频| 亚洲精品自拍成人| 一区二区三区四区激情视频| 精品亚洲成国产av| 一级,二级,三级黄色视频| 搡老乐熟女国产| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 久久久久人妻精品一区果冻| av线在线观看网站| 亚洲精品aⅴ在线观看| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 午夜老司机福利剧场| av在线老鸭窝| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 夫妻性生交免费视频一级片| 久久久久视频综合| 日韩中文字幕欧美一区二区 | 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 亚洲精品自拍成人| 看免费av毛片| 国产精品久久久av美女十八| 一区在线观看完整版| 午夜福利视频精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美亚洲 丝袜 人妻 在线| 成人18禁高潮啪啪吃奶动态图| 欧美 日韩 精品 国产| 美女脱内裤让男人舔精品视频| 精品午夜福利在线看| 秋霞在线观看毛片| 五月开心婷婷网| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| 免费播放大片免费观看视频在线观看| 欧美精品亚洲一区二区| 老司机影院毛片| 欧美日韩亚洲国产一区二区在线观看 | 久久久a久久爽久久v久久| 在线看a的网站| av一本久久久久| 老汉色∧v一级毛片| 九草在线视频观看| 熟女少妇亚洲综合色aaa.| 秋霞在线观看毛片| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲最大av| 最近2019中文字幕mv第一页| 久久久久久久久久久免费av| 多毛熟女@视频| 香蕉精品网在线| 欧美最新免费一区二区三区| av天堂久久9| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 国产人伦9x9x在线观看 | 18禁裸乳无遮挡动漫免费视频| 美女国产高潮福利片在线看| 欧美+日韩+精品| 色吧在线观看| 亚洲av综合色区一区| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 一个人免费看片子| 香蕉国产在线看| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 国产极品粉嫩免费观看在线| 最近2019中文字幕mv第一页| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 亚洲成人一二三区av| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| 国产av国产精品国产| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区四区第35| 亚洲美女视频黄频| 性色av一级| 久久女婷五月综合色啪小说| 黑人猛操日本美女一级片| 狠狠精品人妻久久久久久综合| 免费观看av网站的网址| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 男女无遮挡免费网站观看| 成人黄色视频免费在线看| 超碰成人久久| 国产在线免费精品| 久久久精品94久久精品| 欧美成人午夜免费资源| 汤姆久久久久久久影院中文字幕| 午夜91福利影院| 国产一区有黄有色的免费视频| 久久99蜜桃精品久久| 9191精品国产免费久久| 人妻一区二区av| 极品人妻少妇av视频| 侵犯人妻中文字幕一二三四区| 亚洲经典国产精华液单| 久久热在线av| 青春草视频在线免费观看| 制服诱惑二区| 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| xxx大片免费视频| 免费在线观看视频国产中文字幕亚洲 | 精品卡一卡二卡四卡免费| 韩国av在线不卡| 免费少妇av软件| 亚洲中文av在线| 成人黄色视频免费在线看| 国产综合精华液| 最近的中文字幕免费完整| av线在线观看网站| 欧美老熟妇乱子伦牲交| 天堂中文最新版在线下载| av免费观看日本| 黄片播放在线免费| 欧美精品亚洲一区二区| 欧美变态另类bdsm刘玥| 免费观看在线日韩| 欧美国产精品一级二级三级| 三级国产精品片| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 日本91视频免费播放| av在线观看视频网站免费| 婷婷色综合www| 精品人妻熟女毛片av久久网站| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 电影成人av| av卡一久久| 少妇被粗大的猛进出69影院| 国产一区亚洲一区在线观看| 欧美成人午夜免费资源| 欧美人与性动交α欧美精品济南到 | 十八禁高潮呻吟视频| 91国产中文字幕| 亚洲精品日本国产第一区| 黄色一级大片看看| 精品第一国产精品| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡动漫免费视频| 香蕉精品网在线| a级毛片在线看网站| 嫩草影院入口| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 美女中出高潮动态图| 26uuu在线亚洲综合色| 亚洲精品第二区| 叶爱在线成人免费视频播放| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 精品一区在线观看国产| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 妹子高潮喷水视频| 麻豆av在线久日| 欧美人与性动交α欧美软件| 成人亚洲精品一区在线观看| 看免费av毛片| 99国产精品免费福利视频| 高清av免费在线| 久久精品国产亚洲av天美| 欧美亚洲 丝袜 人妻 在线| 日韩免费高清中文字幕av| 午夜免费观看性视频| 18在线观看网站| 中文字幕最新亚洲高清| 三级国产精品片| 国产毛片在线视频| 久久久精品国产亚洲av高清涩受| 性色avwww在线观看| 久久久久久久大尺度免费视频| 尾随美女入室| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 9热在线视频观看99| 一区福利在线观看| 2022亚洲国产成人精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美网| h视频一区二区三区| 日本wwww免费看| 久久精品久久久久久久性| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 大香蕉久久网| 日日摸夜夜添夜夜爱| 亚洲视频免费观看视频| 国产精品 欧美亚洲| 老女人水多毛片| 最新中文字幕久久久久| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 777久久人妻少妇嫩草av网站| av有码第一页| 色吧在线观看| 精品亚洲成国产av| 国产精品亚洲av一区麻豆 | 久久久久久久久久久免费av| 在线观看免费高清a一片| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 欧美97在线视频| 国产精品亚洲av一区麻豆 | 国产有黄有色有爽视频| videossex国产| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 国产伦理片在线播放av一区| 成人影院久久| 18+在线观看网站| 欧美中文综合在线视频| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 女人高潮潮喷娇喘18禁视频| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久| 亚洲婷婷狠狠爱综合网| 国产免费现黄频在线看| av卡一久久| 黄色一级大片看看| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 成人国语在线视频| 老汉色∧v一级毛片| 高清黄色对白视频在线免费看| 黑人猛操日本美女一级片| 成年av动漫网址| 男女免费视频国产| 黄片播放在线免费| 国产人伦9x9x在线观看 | 男女无遮挡免费网站观看| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 久久免费观看电影| 欧美国产精品va在线观看不卡| 国产成人精品福利久久| 日韩中文字幕视频在线看片| 18禁动态无遮挡网站| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 国产亚洲精品第一综合不卡| 99热国产这里只有精品6| 999精品在线视频| 国产黄频视频在线观看| 国产无遮挡羞羞视频在线观看| 青草久久国产| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 丁香六月天网| 久久久久视频综合| h视频一区二区三区| 色哟哟·www| 国产av一区二区精品久久| 国产精品 欧美亚洲| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 不卡视频在线观看欧美| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 亚洲精品av麻豆狂野| 国产一区二区激情短视频 | 美女大奶头黄色视频| 亚洲一区中文字幕在线| 视频在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 最黄视频免费看| 男人舔女人的私密视频| 色吧在线观看| 午夜影院在线不卡| 黑人猛操日本美女一级片| 久久久欧美国产精品| 成人漫画全彩无遮挡| 亚洲久久久国产精品| 免费观看性生交大片5| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 日韩熟女老妇一区二区性免费视频| 色播在线永久视频| 精品国产乱码久久久久久男人| 超碰成人久久| 日韩av在线免费看完整版不卡| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 观看美女的网站| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 欧美97在线视频| 多毛熟女@视频| 熟女av电影| 人人澡人人妻人| 黄色一级大片看看| 最近手机中文字幕大全| 老鸭窝网址在线观看| 亚洲欧美精品综合一区二区三区 | 国产精品嫩草影院av在线观看| 满18在线观看网站| 国产日韩欧美视频二区| 欧美bdsm另类| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 国产成人av激情在线播放| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 叶爱在线成人免费视频播放| 国产 精品1| 国产精品偷伦视频观看了| 中文字幕亚洲精品专区| 亚洲成国产人片在线观看| 日韩电影二区| 国产一区二区 视频在线| 黄色配什么色好看| 春色校园在线视频观看| 亚洲精品视频女| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 成人影院久久| 女性生殖器流出的白浆| 在现免费观看毛片| 大香蕉久久成人网| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美在线一区| 亚洲第一青青草原| 亚洲精品av麻豆狂野| 叶爱在线成人免费视频播放| 狂野欧美激情性bbbbbb| 69精品国产乱码久久久| 日韩制服骚丝袜av| 精品少妇黑人巨大在线播放| 国产极品粉嫩免费观看在线| 女性生殖器流出的白浆| 日本午夜av视频| 久久韩国三级中文字幕| 啦啦啦视频在线资源免费观看| 精品国产一区二区久久| 国产精品久久久久久av不卡| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 日本wwww免费看| 老司机影院成人| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 亚洲成人手机| 18+在线观看网站| 在线天堂中文资源库| 高清视频免费观看一区二区| 少妇人妻久久综合中文| a 毛片基地| 美女高潮到喷水免费观看| 亚洲一级一片aⅴ在线观看| 最近的中文字幕免费完整| 午夜福利,免费看| av片东京热男人的天堂| 麻豆乱淫一区二区| 亚洲经典国产精华液单| 精品一区在线观看国产| 女人高潮潮喷娇喘18禁视频| 超色免费av| 不卡av一区二区三区| 美女高潮到喷水免费观看| 国产人伦9x9x在线观看 | 国产极品粉嫩免费观看在线| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| videosex国产| 不卡av一区二区三区| 免费高清在线观看视频在线观看| 纯流量卡能插随身wifi吗| 女人精品久久久久毛片| 考比视频在线观看| 久久国产亚洲av麻豆专区| 日本免费在线观看一区| 日韩中文字幕欧美一区二区 | 免费观看av网站的网址| 少妇 在线观看| 男人操女人黄网站| 久久久国产欧美日韩av| 伦理电影免费视频| 伦理电影大哥的女人| 久久国内精品自在自线图片| 成人手机av| 亚洲国产精品国产精品| √禁漫天堂资源中文www| 亚洲久久久国产精品| videossex国产| 欧美精品一区二区大全| 999精品在线视频| 国产成人免费观看mmmm| 两个人免费观看高清视频| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看| 一级黄片播放器| 久久这里只有精品19| 两个人免费观看高清视频| 久久 成人 亚洲| 制服丝袜香蕉在线| 麻豆乱淫一区二区| 日日撸夜夜添| 亚洲国产精品999| 亚洲国产欧美网| 母亲3免费完整高清在线观看 | 伊人亚洲综合成人网| 婷婷成人精品国产| 亚洲一级一片aⅴ在线观看| 宅男免费午夜| 午夜91福利影院| 国产麻豆69| 国产亚洲av片在线观看秒播厂| 国产精品 欧美亚洲| 在线天堂中文资源库| 欧美人与性动交α欧美软件| 超色免费av| 新久久久久国产一级毛片| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 国产精品熟女久久久久浪| 亚洲精品视频女| 伊人久久大香线蕉亚洲五| 国产精品欧美亚洲77777| 看免费成人av毛片| 五月天丁香电影| 99香蕉大伊视频| 巨乳人妻的诱惑在线观看| 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 各种免费的搞黄视频| 久久av网站| 国产成人免费无遮挡视频| 纵有疾风起免费观看全集完整版| 香蕉精品网在线| 在线观看三级黄色| 大香蕉久久网| 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| 少妇的逼水好多| 毛片一级片免费看久久久久| 亚洲av国产av综合av卡| 国产乱人偷精品视频| 丰满迷人的少妇在线观看| 国产有黄有色有爽视频| 国产精品一二三区在线看| 成年女人毛片免费观看观看9 | 丝袜在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 免费大片黄手机在线观看| 中文乱码字字幕精品一区二区三区| 成人黄色视频免费在线看| 亚洲第一av免费看| 免费观看性生交大片5| 在线看a的网站| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 国产欧美亚洲国产| 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品第一综合不卡| 国产一区二区 视频在线| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| 久久久久视频综合| 不卡视频在线观看欧美| 成年人午夜在线观看视频| 少妇人妻 视频| 久久久欧美国产精品| 午夜老司机福利剧场| 青草久久国产| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美网| 成人手机av| 在线观看免费视频网站a站| 91精品伊人久久大香线蕉| 一区二区三区精品91| 亚洲欧美色中文字幕在线| 一二三四中文在线观看免费高清| 电影成人av| 伊人久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 男的添女的下面高潮视频| 女人高潮潮喷娇喘18禁视频| 日本av手机在线免费观看| 交换朋友夫妻互换小说| 亚洲少妇的诱惑av| 看免费av毛片| 天天躁夜夜躁狠狠久久av| 十八禁高潮呻吟视频| 久久99热这里只频精品6学生| 男的添女的下面高潮视频| 国产日韩欧美亚洲二区| 国产成人av激情在线播放|