• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy

    2022-09-24 08:04:12FangQiLin林芳祁NongLi李農(nóng)WenGuangZhou周文廣JunKaiJiang蔣俊鍇FaRanChang常發(fā)冉YongLi李勇SuNingCui崔素寧WeiQiangChen陳偉強DongWeiJiang蔣洞微HongYueHao郝宏玥GuoWeiWang王國偉YingQiangXu徐應強andZhiChuanNiu牛智川
    Chinese Physics B 2022年9期

    Fang-Qi Lin(林芳祁) Nong Li(李農(nóng)) Wen-Guang Zhou(周文廣) Jun-Kai Jiang(蔣俊鍇)Fa-Ran Chang(常發(fā)冉) Yong Li(李勇) Su-Ning Cui(崔素寧) Wei-Qiang Chen(陳偉強)Dong-Wei Jiang(蔣洞微) Hong-Yue Hao(郝宏玥) Guo-Wei Wang(王國偉)Ying-Qiang Xu(徐應強) and Zhi-Chuan Niu(牛智川)

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: type-II superlattice,InAs/GaSb,long-wavelength,strain-balanced

    1. Introduction

    Since G. A. Sai-Halasz, R. Tsu, and L. Esaki[1]firstly proposed the theory of type-II superlattices in 1977, after decades of theoretical scientific development and the progress of molecular beam epitaxy technology,it has aroused great interest from many researchers worldwide. In 1987,D.L.Smith and C. Mailhiot[2]proposed that type II superlattices could be used as excellent candidate materials for infrared detectors.The current state-of-the-art infrared detection technology is based on mercury cadmium telluride (Hg1-xCdxTe) materials,and most commercial LWIR optical receivers are dominated by Hg1-xCdxTe material,[3,4]which can obtain high detectivity and fast response. Hg1-xCdxTe materials can be used for infrared detection based on PIN and avalanche photodiode(APD)structures.[5]

    However, Hg1-xCdxTe has some defects, such as poor uniformity,[6]a high thermal expansion coefficient,[7]extreme sensitivity to component control,[8,9]and a large tunneling dark current[10-12]due to the low effective mass of electrons.The HgxCd1-xTe materials needed for infrared detectors are difficult to grow consistently on account of high sensitivity to alloy composition, which causes poor spatial uniformity.This problem is particularly severe in LWIR and very longwavelength infrared detection(VLWIR).Other commercially available LWIR detectors[13]include Si:x,[14]vanadium oxide(VxOy),[15]and amorphous silicon(α-Si),[16]which have high operating temperatures(uncooled),good uniformity,compatibility with existing COMS processes, and low manufacturing costs. However,these photodetectors are limited by a narrow tunable wavelength range and poor detectivity.

    Compared with other materials (Hg1-xCdxTe, InSb,QWIP, QD, and VxOy, etc.), InAs/GaSb, as a typical type-II superlattice material, has many advantages,[17-19]such as accurate regulation of the band gap, high operating temperature,[20-22]large effective mass,[2]inhibition of Auger recombination,[23]broadband absorption,incident light at normal angle and good uniformity of material growth. The detection wavelength of InAs/GaSb type-II superlattice materials can be changed from near infrared to very long wave infrared only by adjusting the layer thickness of the InAs and GaSb layers.[24,25]Especially for long-wavelength infrared (LWIR)[26,27]and very long-wavelength infrared(VLWIR)[28-30]range detection,its advantage is obvious. Although InAs/GaSb T2SL was deemed a competitive candidate,the current efficiency is still far from expected. To further improve crystalline quality and device performance,many strategies,including optimizing the heterojunction interface by controlling the Sb/As background pressure and shutter sequence during interface formation,using a migration-enhance epitaxy technique,[31,32]and introducing novel structures to suppress dark current,[33,34]have been adopted. These approaches have been proven to be very effective.

    In this paper, we demonstrate that a high-quality strainbalanced InAs/GaSb type-II superlattice material for longwavelength infrared range detection could be obtained by optimizing the V/III beam-equivalent pressure (BEP) ratio during the molecular beam epitaxy growth process. The longwavelength InAs/GaSb superlattice materials prepared in various V/III BEP ratios were assessed by using high-resolution xray diffraction,atomic force microscopy and the relative spectral response.

    2. Experiment

    In our experiment, all epitaxial samples were grown on tellurium-doped n-type epi-ready GaSb (001) substrates by a Veeco Gen 20 molecular beam epitaxy system, which was equipped with group-III (Ga, In, and Al) SUMO dual-source cells and group-V(Sb2and As2)valve crack sources. The detailed structure of the LWIR detector is shown in Fig. S4 of the supporting information. Before the growth of functional layers,the wafers were heated to 420°C in a preparation module for 2 hours of degas and then heated to 680°C in a growth module for 30 minutes to remove the surface oxide layers. After that, a thin GaSb buffer layer was deposited at 630°C to keep the surface smooth.In situreflection high-energy electron diffraction (RHEED) was used to monitor the substrate surface temperature and growth status.When the substrate surface temperature reached a typical temperature(marked asTc),the electron diffraction pattern changed from 2×5 to 1×3,andTcwas defined as the transition temperature at which GaSb surface reconstruction(2×5?1×3).[35]occurred at a given antimony flux. All these samples were grown atTc-15°C.

    During the serials growth of these samples, the As/In beam-equivalent pressure ratios were set at 2, 3, 4, 5, and 7,and the Sb/Ga BEP flux ratio was kept at 7. Then the Sb/Ga beam-equivalent pressure ratios were set at 5, 6, 7, 8, 9, and 10 (marked as A, B, C, D, E, and F), while the As/In beamequivalent pressure ratio was kept at 3, and the more parameters detail are shown in Table 1 of supporting information.After the optimization of the 12.5 ML/8 ML InAs/GaSb superlattice absorption region,LWIR detectors were fabricated,as shown in Fig.S6. The device consisted of 7 functional layers from bottom to top: tellurium-doped n-type GaSb (001)substrates,GaSb buffer layer,bottom n-type contact layer and barrier sharing the same structure, which was composed of 18/3/5/3 MLS of InAs/GaSb/AlSb/GaSb superlattices. The ptype absorption regions share the same structure as the top ptype contact layer,which consists of 12.5/8 MLs of InAs/GaSb superlattices. Finally,a 200 nm GaSb layer cap was deposited to protect the superlattices.

    After epitaxial growth of the functional layers,for all the samples, optical microscopy was used to observe and estimate surface defects by using a Nikon Eclipse LV100D optical microscope. The structural quality was assessed by symmetric (004) x-ray scans with a Bruker JV QC-3 high-resolution double-crystal x-ray diffractometer (HRXRD), and the surface morphology was studied by using a Park System NX20 atomic force microscope (AFM). The optical performance of the epitaxial layers was measured by using a Bruker Vertex-80 Fourier transform infrared(FTIR)spectrometer.

    3. Results and discussion

    To balance the strain of 12.5 MLs/8 MLs InAs/GaSb with the GaSb substrate,the InSb interface was adopted in this experiment. In each growth period, the nominal interface type was varied by using the techniques of migration-enhanced epitaxy (MEE). The indium and antimony shutters were kept open for a few seconds to generate the InSb interface between the InAs and GaSb layers. The mechanical shutter sequences used during the growth period in this work are illustrated in Fig. 1. Specifically, the indium shutter was kept open before and after the growth of the InAs layer for 2.9 seconds and 2.7 seconds, respectively. At a high growth rate, it is easy to form an InSb island structure. To improve the growth of the InSb interface, it was deposited by employing a low growth rate indium source. Similarly, the Sb shutter was kept open before and after the growth of the GaSb layer for 6 seconds and 3 seconds,respectively.

    Fig.1. The shutter sequence during per period.

    From the high-resolution x-ray diffraction results shown in Figs.2(a)and S1,in these samples,the Sb/Ga BEP flux ratio was kept at 7,and we can clearly see that lattice mismatch between the epitaxial layer and the substrate of the five samples falls first and then rises as the As/In BEP flux ratio rises.When the As/In BEP flux ratio is small,the tensile strain is not exactly compensated,resulting in a compressive strain. When the As/In BEP flux is 3,the mismatch reaches a smallest value of 20 arcsec (165 ppm). When the As/In BEP flux ratio is large, the tensile stress becomes larger as the As/In BEP flux ratio rises. Similarly,from Figs.2(b)and S3,we can see that lattice mismatch between the epitaxial layer and the substrate of the six samples falls first and then rises as the Sb/Ga BEP flux ratio rises. When the Sb/Ga BEP flux ratio is small, the InSb faces produced between the InAs layers and GaSb layers are not enough to balance the intrinsic tensile strain. When the Sb/Ga BEP flux is 8, the mismatch of sample D reaches a smallest value of 13 arcsec (108 ppm), but it produces too many InSb faces when the Sb/Ga BEP flux ratio is large,and the compressive stress becomes larger as the Sb/Ga BEP flux ratio rises.

    The surface morphology roughness was evaluated by AFM,as shown in Figs.2(a),2(c),S2,and S3. Generally,the growth rate of epitaxial layers is determined by the III group element BEP flux, while the V/III BEP flux ratio will influence the nucleation process and then play a crucial role in the material surface quality.

    To some extent, the FWHM and intensity of the zeroorder diffraction peak from high-resolution x-ray diffraction can indicate the epitaxial quality of the heterogeneous interface. As shown in Fig. 2(d), when the Sb/Ga BEP flux ratio is too small or large,the intensity of the zero-order diffraction peak decreases considerably and reaches a maximum value of 5.52×106when the Sb/Ga BEP flux ratio is 8. In contrast,the FWHM obtains a small value with 28 arcsec at 8. It should be noted that the FWHM of these samples are relatively close,which means that the interface of the six samples is flat with the same shutter sequences.

    Fig.2. The material quality of the samples. (a)The mismatch(arcsec)and RMS at different As/In BEP fluxes. (b)The mismatch(arcsec/ppm)at different As/In Sb/Ga BEP fluxes. (c)Surface roughness at different Sb/Ga BEP flux. (d)The FWHM and intensity of the zero-order peak at different Sb/Ga BEP fluxes. (e)The AFM image of As/InBEP=3 (2×2μm2). (f)The AFM image of Sb/GaBEP=8 (5×5μm2).

    From the AFM results, whether there is too large or too little As/In ratio, many rod-shaped islands are generated on the surface. From the theory of film formation, they are not suitable for atoms to migrate to a reasonable lattice position to form a smooth and flat surface. When the As/In BEP and Sb/Ga flux is 3 and 7 respectively, the AFM images show an RMS surface roughness of approximately 2.29 ?A.In order to obtain better surface morphology, then Sb/Ga flux should be optimized. We can see that there are many V group vacancies when the Sb/Ga BEP flux ratio is small, as shown in Fig. S5(Sb/Ga = 3, 4, and 5). When the Sb/Ga BEP flux ratio is larger than 8, many three-dimensional network structures are produced on the surface, as shown in Figs. S5 (Sb/Ga = 10 and 11) and S3 (Sb/Ga = 9 and 10). This is caused by too many Sb atoms adsorbed on the surface,and excess Sb atoms lead to the growth model transforming into an island growth model. Too much or too little Sb atom flux causes the surface to be rough. When the Sb/Ga BEP flux ratio is 8,the smallest RMS surface roughness was obtained,as shown in Figs.2(f),S4 and S5. The AFM images show an RMS surface roughness of approximately 1.63 ?A and clear atomic steps over an area of 10×10μm2and 5×5μm2as shown in Fig.2(f).

    The period thickness of the 12.5 ML/8 ML InAs/GaSb superlattice epitaxial layer was extracted from HRXRD. The HRXRD measurements agree well with the simulation results,as shown in Fig.3. The measured period of this material is approximately 61.44 ?A(theoretical period thickness is 62.22 ?A),as shown in Fig. 3, and the high-resolution x-ray diffraction exhibits high-order satellite peaks,which indicate that the epitaxial material possesses high quality.

    Fig.3. High-resolution x-ray diffraction and simulation results.

    Fig.4. The relative spectral response of LWIR detector.

    Finally, an FTIR spectrometer was used to measure the relative spectral response of the LWIR detector at 77 K. The optical performance of the devices is shown in Fig.4. The device exhibits a 100% cut-off wavelength of 12.6 μm under a 20 mV applied bias. The peak response wavelength is approximately 4 μm, in addition, there is a strong CO2absorption peak at 4.26μm.

    4. Conclusion

    In summary, we have obtained high material quality InAs/GaSb type-II superlattice material for long-wavelength infrared range by using optimal V/III beam-equivalent pressure ratio, which is 8 and 3 with MEE method controlled InSb-like interface, and the experimental results indicate that we succeed in growing strain balanced and high quality InAs/GaSb superlattices on the GaSb substrate. In the following steps, we will improve the device performance of the LWIR detectors. High-quality epitaxial materials have laid a solid foundation for designing and manufacturing highperformance infrared photodetectors.

    Acknowledgements

    Project supported by the National Key Technology R&D Program of China (Grant Nos. 2018YFA0209104,2018YFA0209102,2019YFA0705203,and 2019YFA070104),the National Natural Science Foundation of China (Grant Nos. 61790581, 61274013, and 62004189), and the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB22).

    成人av一区二区三区在线看| 美女免费视频网站| 日本成人三级电影网站| 午夜福利在线观看免费完整高清在 | 成年免费大片在线观看| 美女内射精品一级片tv| 精品国产三级普通话版| 在线播放无遮挡| 啦啦啦观看免费观看视频高清| 成人一区二区视频在线观看| 日韩大尺度精品在线看网址| 亚洲图色成人| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av熟女| 国产高清有码在线观看视频| 久99久视频精品免费| 一级av片app| 久久亚洲国产成人精品v| 国产高清视频在线播放一区| 国产一区亚洲一区在线观看| 男人和女人高潮做爰伦理| 国产aⅴ精品一区二区三区波| 国产黄片美女视频| 精品一区二区免费观看| 春色校园在线视频观看| 天堂网av新在线| 国产熟女欧美一区二区| 长腿黑丝高跟| 日本爱情动作片www.在线观看 | 国产真实伦视频高清在线观看| 噜噜噜噜噜久久久久久91| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 亚洲真实伦在线观看| 一级毛片电影观看 | 国产一区二区在线av高清观看| 99久久精品国产国产毛片| 高清毛片免费看| 少妇熟女aⅴ在线视频| 久久精品人妻少妇| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 亚洲精华国产精华液的使用体验 | 亚洲无线在线观看| 99热这里只有是精品在线观看| 午夜视频国产福利| 国产精品福利在线免费观看| 久久6这里有精品| 亚洲欧美精品综合久久99| 不卡视频在线观看欧美| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 在线免费观看不下载黄p国产| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 99久国产av精品国产电影| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 一级毛片电影观看 | 中文字幕熟女人妻在线| 久久精品夜色国产| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 亚洲精品国产av成人精品 | 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久一区二区三区 | 国产人妻一区二区三区在| 中文字幕久久专区| 亚洲精品在线观看二区| 欧美性感艳星| 亚洲不卡免费看| 国语自产精品视频在线第100页| 一区福利在线观看| 国产亚洲精品久久久com| 天堂网av新在线| 一区二区三区高清视频在线| 亚洲国产欧美人成| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放| 国产91av在线免费观看| 精品熟女少妇av免费看| 露出奶头的视频| 99热这里只有是精品在线观看| 特级一级黄色大片| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 国产aⅴ精品一区二区三区波| 国产成人精品久久久久久| 亚洲精品粉嫩美女一区| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 99热网站在线观看| 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| 国产亚洲欧美98| 黄片wwwwww| 日日撸夜夜添| 在线观看午夜福利视频| 女的被弄到高潮叫床怎么办| 国产aⅴ精品一区二区三区波| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| av中文乱码字幕在线| 国产国拍精品亚洲av在线观看| 男插女下体视频免费在线播放| 蜜桃亚洲精品一区二区三区| 午夜免费男女啪啪视频观看 | a级毛片免费高清观看在线播放| 免费观看人在逋| 亚洲精品国产成人久久av| 国产精品久久久久久av不卡| 精品日产1卡2卡| 欧美+日韩+精品| 99国产极品粉嫩在线观看| 久久久久久久午夜电影| 国产真实乱freesex| 青春草视频在线免费观看| 日本-黄色视频高清免费观看| 99久久精品热视频| 欧美成人一区二区免费高清观看| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 久久久精品94久久精品| 男女视频在线观看网站免费| 性欧美人与动物交配| 久久久精品大字幕| 99视频精品全部免费 在线| 日韩欧美一区二区三区在线观看| 男女视频在线观看网站免费| 亚洲不卡免费看| 亚洲专区国产一区二区| 此物有八面人人有两片| 长腿黑丝高跟| 国产精品嫩草影院av在线观看| 一本精品99久久精品77| h日本视频在线播放| 亚洲精品日韩av片在线观看| 哪里可以看免费的av片| 亚洲国产色片| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 2021天堂中文幕一二区在线观| 亚洲自偷自拍三级| 欧美成人a在线观看| 极品教师在线视频| 国产精品野战在线观看| 一个人看的www免费观看视频| 国产精品福利在线免费观看| 国产成年人精品一区二区| 国产高清有码在线观看视频| 久久人人爽人人片av| 精品一区二区三区av网在线观看| 国产熟女欧美一区二区| 俄罗斯特黄特色一大片| 一级毛片我不卡| 啦啦啦观看免费观看视频高清| av在线观看视频网站免费| 天天躁日日操中文字幕| 在线国产一区二区在线| 久久久久久久久久黄片| 国产视频内射| 亚洲第一区二区三区不卡| or卡值多少钱| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 大又大粗又爽又黄少妇毛片口| 久久人人精品亚洲av| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 久久久欧美国产精品| 国产不卡一卡二| 国产精品嫩草影院av在线观看| 91狼人影院| 搡女人真爽免费视频火全软件 | 97超碰精品成人国产| 欧美bdsm另类| 在线免费观看不下载黄p国产| 亚洲色图av天堂| 麻豆国产97在线/欧美| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 深爱激情五月婷婷| 欧美最黄视频在线播放免费| 国产蜜桃级精品一区二区三区| 国产黄色视频一区二区在线观看 | 国产亚洲精品综合一区在线观看| 一区福利在线观看| 在线免费十八禁| 天天一区二区日本电影三级| 久久久精品94久久精品| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 性色avwww在线观看| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 插逼视频在线观看| 欧美日韩乱码在线| 成人综合一区亚洲| 人人妻人人澡欧美一区二区| a级毛片a级免费在线| 亚洲高清免费不卡视频| 天堂√8在线中文| 亚洲国产精品成人久久小说 | 女人被狂操c到高潮| 老熟妇乱子伦视频在线观看| 日本 av在线| 97热精品久久久久久| 中文字幕久久专区| 免费看a级黄色片| 亚洲最大成人av| 亚洲精品国产av成人精品 | 精品国产三级普通话版| 欧美激情在线99| 中出人妻视频一区二区| 国产亚洲精品综合一区在线观看| 国产女主播在线喷水免费视频网站 | 日日撸夜夜添| 久久久色成人| 99热精品在线国产| 我的老师免费观看完整版| 欧美精品国产亚洲| 别揉我奶头~嗯~啊~动态视频| 联通29元200g的流量卡| 国产高潮美女av| 亚洲熟妇熟女久久| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看| 又粗又爽又猛毛片免费看| 久久人人爽人人爽人人片va| 成人无遮挡网站| 亚洲不卡免费看| 免费看光身美女| 国产精品人妻久久久影院| 日韩亚洲欧美综合| 国产精品亚洲一级av第二区| 免费观看人在逋| 免费人成在线观看视频色| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 免费观看精品视频网站| 寂寞人妻少妇视频99o| 日韩中字成人| 两个人视频免费观看高清| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| aaaaa片日本免费| 免费观看在线日韩| 97热精品久久久久久| 特级一级黄色大片| 成人漫画全彩无遮挡| 精品一区二区三区av网在线观看| 久久精品国产清高在天天线| 中文字幕免费在线视频6| 97碰自拍视频| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱 | 久久午夜福利片| 欧美日本视频| 一级毛片电影观看 | 日本一二三区视频观看| av福利片在线观看| av卡一久久| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 三级经典国产精品| 少妇猛男粗大的猛烈进出视频 | 色在线成人网| 一级黄片播放器| 午夜福利在线观看免费完整高清在 | 18禁裸乳无遮挡免费网站照片| 成人永久免费在线观看视频| 99九九线精品视频在线观看视频| 在线国产一区二区在线| 亚洲精品国产成人久久av| 精品一区二区三区av网在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品 | 国产欧美日韩一区二区精品| 熟女电影av网| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜 | 麻豆一二三区av精品| 亚洲一级一片aⅴ在线观看| 欧美成人免费av一区二区三区| 亚洲精品在线观看二区| 99热全是精品| 婷婷精品国产亚洲av在线| 国产精品嫩草影院av在线观看| 在线a可以看的网站| 91在线精品国自产拍蜜月| 尾随美女入室| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 色哟哟·www| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件 | 日日啪夜夜撸| 久久久久性生活片| av在线观看视频网站免费| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 变态另类成人亚洲欧美熟女| videossex国产| 亚洲色图av天堂| 精品免费久久久久久久清纯| av在线亚洲专区| 久久久久久久午夜电影| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 欧美潮喷喷水| 成年女人永久免费观看视频| 天堂av国产一区二区熟女人妻| 国产男人的电影天堂91| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 99热精品在线国产| 色哟哟·www| 联通29元200g的流量卡| 国产一区二区激情短视频| 亚洲三级黄色毛片| 99在线人妻在线中文字幕| 男女那种视频在线观看| 日韩三级伦理在线观看| 久久久精品大字幕| 亚洲内射少妇av| 亚洲人成网站高清观看| 国产一区亚洲一区在线观看| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 久久人妻av系列| 香蕉av资源在线| a级毛色黄片| 真人做人爱边吃奶动态| 国产精品久久电影中文字幕| 精品国内亚洲2022精品成人| 国产乱人视频| 欧美精品国产亚洲| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 男人舔奶头视频| 美女内射精品一级片tv| 午夜日韩欧美国产| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 亚洲av二区三区四区| 舔av片在线| 国产综合懂色| 国产午夜精品久久久久久一区二区三区 | 久久久久久久午夜电影| 国产精品永久免费网站| 男人舔奶头视频| 插阴视频在线观看视频| 亚洲无线观看免费| 日韩三级伦理在线观看| 亚洲av不卡在线观看| 亚洲成人久久性| 亚洲av熟女| 久久久欧美国产精品| 成年女人看的毛片在线观看| 精品人妻偷拍中文字幕| 免费大片18禁| 欧美成人精品欧美一级黄| 精品福利观看| 我的女老师完整版在线观看| 午夜激情欧美在线| 女同久久另类99精品国产91| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 大香蕉久久网| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av天美| 又粗又爽又猛毛片免费看| 亚洲精品久久国产高清桃花| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 在线观看av片永久免费下载| 丝袜美腿在线中文| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 久久精品国产99精品国产亚洲性色| 日本成人三级电影网站| 激情 狠狠 欧美| 精品久久久久久久久久免费视频| 看非洲黑人一级黄片| 国产中年淑女户外野战色| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 国产精品野战在线观看| 久久久久久伊人网av| 国产v大片淫在线免费观看| 午夜福利高清视频| 日韩高清综合在线| 精品少妇黑人巨大在线播放 | 啦啦啦观看免费观看视频高清| av免费在线看不卡| 久久草成人影院| 蜜臀久久99精品久久宅男| 最近在线观看免费完整版| av福利片在线观看| 夜夜爽天天搞| 99久久九九国产精品国产免费| 国产精品精品国产色婷婷| 日韩欧美在线乱码| 久久久久久大精品| 日韩一区二区视频免费看| 国产乱人视频| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 九九热线精品视视频播放| 中文字幕久久专区| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 国产成人精品久久久久久| 欧美成人一区二区免费高清观看| 黄色配什么色好看| 成人漫画全彩无遮挡| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 国产高清三级在线| 亚洲精品国产成人久久av| 日韩国内少妇激情av| 啦啦啦观看免费观看视频高清| 好男人在线观看高清免费视频| 亚洲人成网站在线播放欧美日韩| 18禁在线无遮挡免费观看视频 | 免费av毛片视频| 老司机午夜福利在线观看视频| 日产精品乱码卡一卡2卡三| 99国产精品一区二区蜜桃av| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 联通29元200g的流量卡| 国产精品一及| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 久久精品夜色国产| 一进一出抽搐gif免费好疼| 午夜免费激情av| .国产精品久久| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 亚洲人成网站高清观看| 99久久中文字幕三级久久日本| 国产精品一区二区免费欧美| 亚洲18禁久久av| 欧美潮喷喷水| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 中文在线观看免费www的网站| 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜精品久久久久久一区二区三区 | 99热全是精品| 久久久午夜欧美精品| 99久国产av精品国产电影| 在线天堂最新版资源| 美女cb高潮喷水在线观看| 欧美三级亚洲精品| 一本久久中文字幕| 亚洲成人av在线免费| 欧美xxxx黑人xx丫x性爽| av福利片在线观看| 性色avwww在线观看| 久久精品91蜜桃| 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站 | 久久久久九九精品影院| 中文亚洲av片在线观看爽| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 成人午夜高清在线视频| 免费无遮挡裸体视频| av卡一久久| 变态另类成人亚洲欧美熟女| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 一本一本综合久久| av在线蜜桃| 久久午夜亚洲精品久久| 国产女主播在线喷水免费视频网站 | 色av中文字幕| 婷婷六月久久综合丁香| 欧美高清性xxxxhd video| 国产成人91sexporn| 中文字幕人妻熟人妻熟丝袜美| 在线免费观看的www视频| 成人美女网站在线观看视频| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 五月玫瑰六月丁香| 国产精品一二三区在线看| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 12—13女人毛片做爰片一| 最近2019中文字幕mv第一页| 成人特级黄色片久久久久久久| 久久6这里有精品| 婷婷亚洲欧美| 卡戴珊不雅视频在线播放| 在线a可以看的网站| 国产精华一区二区三区| 三级国产精品欧美在线观看| 成人av在线播放网站| 嫩草影视91久久| 亚洲一区高清亚洲精品| 久久欧美精品欧美久久欧美| 麻豆乱淫一区二区| 国产一区二区三区av在线 | 别揉我奶头 嗯啊视频| 3wmmmm亚洲av在线观看| 成年av动漫网址| 久久99热这里只有精品18| 97在线视频观看| 久久久欧美国产精品| a级毛片a级免费在线| av在线亚洲专区| 99国产精品一区二区蜜桃av| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 一个人看的www免费观看视频| 毛片女人毛片| 国产视频一区二区在线看| 99riav亚洲国产免费| 国产视频一区二区在线看| 国产成人影院久久av| 亚洲欧美精品自产自拍| 禁无遮挡网站| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 悠悠久久av| 久久精品夜色国产| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 99在线视频只有这里精品首页| 国产成人freesex在线 | 一级av片app| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 黄片wwwwww| 如何舔出高潮| 男女下面进入的视频免费午夜| 99久国产av精品| 神马国产精品三级电影在线观看| 一级黄片播放器| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 国产高清视频在线播放一区| 成人性生交大片免费视频hd| 久久精品人妻少妇| 51国产日韩欧美| av天堂在线播放| 成年免费大片在线观看| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 国产三级在线视频| 午夜激情欧美在线| 嫩草影视91久久| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 日韩亚洲欧美综合| 男人舔奶头视频| 亚洲成人久久爱视频| 亚洲电影在线观看av| 国产成人影院久久av| 久久精品91蜜桃| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠久久av| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 热99re8久久精品国产| 97人妻精品一区二区三区麻豆| 99久国产av精品| 国产私拍福利视频在线观看| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 精品一区二区三区视频在线| 神马国产精品三级电影在线观看|