• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing

    2022-09-24 08:04:12ChenWang王塵WeiHangFan范偉航YiHongXu許怡紅YuChaoZhang張宇超HuiChenFan范慧晨ChengLi李成andSongYanCheng陳松巖
    Chinese Physics B 2022年9期
    關(guān)鍵詞:李成

    Chen Wang(王塵) Wei-Hang Fan(范偉航) Yi-Hong Xu(許怡紅) Yu-Chao Zhang(張宇超)Hui-Chen Fan(范慧晨) Cheng Li(李成) and Song-Yan Cheng(陳松巖)

    1Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices,School of Opto-electronic and Communiction Engineering,Xiamen University of Technology,Xiamen 361024,China

    2Department of Physics,Semiconductor Photonics Research Center,Xiamen University,Xiamen 361005,China

    Keywords: phosphorus diffusion, activation concentration, co-implanted fluorine, germanium, excimer laser annealing

    1. Introduction

    Germanium (Ge) is regarded as a promising high mobility channel material that can replace silicon for postsilicon complementary metal-oxide-semiconductor (CMOS)processing. It owns high electron and hole mobility, low process temperature as well as high absorption coefficient in optical communication band.[1,2]These advantages make it widely used in many devices, such as photo-detectors,[3]sensors,[4]and metal-oxide-semiconductor field-effect transistors (MOSFETs).[5]N-type doping of Ge with high active dopant concentration is an important issue for both CMOS field-effect transistors and optoelectronic applications. As an example, highly doped n-type layer in PIN photodetector structure or in source/drain region in MOSFET structure has played an important role in the performance of devices. Besides,the n-type doping level as high as 1×1020cm-3activation concentration with low diffusion is usually necessary for a downscaling beyond 15 nm. However, it is hard to fulfill the high level n-type doping in Ge because of low solid solubility and large diffusion coefficient of V-group impurity,[6]which will restrict its applications to some extent. In order to obtain heavy n-type doping in Ge, the combination of ion implantation and post-annealing process is frequently utilized.[7]After ion implantation, the severe crystal damage will be formed and induce a number of point defects consisting of Ge vacancies and self-interstitial Ge atoms. As is well known,the diffusion of most n-type dopants in Ge is based on vacancy-assisted mechanisms in the post-annealing process.[8]Recently, the laser annealing technique has been considered as a very promising method to achieve high carrier concentration doping in Ge beyond the solid solubility limit due to its high temperature (beyond the melting point) and metastable state annealing process.[9]Up to now,many reports[10-14]have been devoted to the obtainment of high n-type doping concentration in Ge by using laser annealing,which is verified to be an efficient means for restoration of ion implantation damages. However,it encounters a contradiction between high activation concentrations needed by high laser annealing energy density and low energy density required by shallow junction(narrow dopant profile).

    The defect engineering was employed to control the impurity diffusion by modulating the number of trapped vacancies through using co-implantation technique.Many elements,such as carbon(C),nitrogen(N),and fluorine(F),have proved to be alternative co-doping ions to suppress dopant diffusion in the post-annealing process.[15-17]Among those elements,theoretical and experimental studies[13,18-22]show that F owns a large electro-negativity and has been confirmed to be one of the best options because of its higher bonding energy with vacancy to form FnVmclusters than n-type dopants.

    In this work, the diffusion and activation of phosphorus in co-implanted P+F Ge after being annealed under different conditions are investigated in detail. Two annealing methods,namely excimer laser annealing(ELA)and rapid thermal annealing(RTA),are used to explore the effects of F on the diffusion and activation of phosphorus in Ge. The evidence and mechanism of F suppressing P diffusion in Ge are suggested by annealing P-only implanted and P+F co-implanted Ge by using ELA and RTA.

    2. Experiments

    A thickness of~450-μm p-Ge with (100) orientation and a resistivity of 0.05 Ω·cm-1 Ω·cm was employed as a substrate. The Ge substrates were cleaned ultrasonically by being immersed in acetone, ethanol, and de-ionized water, each for 10 min. And the sequence was repeated three times. Next,they were dipped into hydrofluoric acid solution (HF:H2O=1:50) for 30 s to etch off the entire native oxide layer. Finally, all samples were rinsed with de-ionized water for 10 min and dried with high purity nitrogen. Before co-implantation,a 13-nm-thick silicon dioxide film was grown on the surface of Ge substrate by radio frequency magnetron sputtering. And then,two kinds of the samples were prepared.Among the samples of the first kind, some substrates could be implanted only by phosphorous ion with injection energy of 30 keV and a dose of 5×1015cm-2. Phosphorus (P) is a preferable implanted dopant into Ge because other n-type doped impurities,such as antimony and arsenic,will generate more ion implantation damages. Moreover, they own higher impurity diffusion coefficient with abundant vacancies. And among the samples of the other kind,some substrates could be co-implanted by phosphorus(P)and fluorine(F).The implantation condition of phosphorous ion is the same as that in the first kind of sample. After P implantation, fluorinions were implanted into Ge substrate with injection energy of 20 keV and a dose of 5×1014cm-2again. Prior to carrying out any post-annealing process, the SiO2film deposited on substrate surface was etched off by using HF:H2O=1:20 solution at room temperature. And then, all of the implanted samples were ultrasonically cleaned in deionized water for 15 min so as to eliminate the intrinsic oxide layer on Ge surface, which is speculated to be the source of oxygen contaminant during the annealing of Ge.[23]

    After that, the samples with implanted P-only and P+F were annealed by two kinds of annealing methods, namely ELA and RTA,respectively. The annealing conditions of ELA on samples were 100 mJ/cm2and 175 mJ/cm2with one pulse,respectively. The ELA process was performed by a 248-nm KrF excimer laser(Coherent Inc. from USA)with 25-ns pulse duration in nitrogen environment. The light spot size during laser annealing was 5 mm×4 mm. In thexdirection and theydirection, the continuous laser scanning was carried out to include the entire sample. The RTA process condition fixed at 650°C for 15 s under nitrogen atmosphere was chosen because it might be the suitable condition to activate implanted ion and repair the implantation damages.[24]

    The profiles of P and F chemical concentrations with the varied depths were acquired by using dynamic secondary-ionmass spectrometry (SIMS) PHI ADEPT 1010 instrument. A Cs+primary ion beam with an accelerating voltage of 2 kV,a current of 30 nA and an incident angle of 60°was employed.The carrier concentration depth profiles were obtained by the SSM2000 nano-spreading resistance probe (SRP) measurement system. Samples were beveled using a 0.1-micron diamond paste to have a bevel angle of 0.5°and a depth resolution of about 30 nm. For measurement we used tungsten-osmium probes with a load of 5 grams,probe spacing 80μm and 5-mV small bias applied between two probes. The cross-sectional high-resolution transmission electron microscopy (HRTEM)was used on the co-implanted samples to demonstrate the crystal structure of Ge before and after being annealed by 175-mJ/cm2laser. The Raman spectra of the co-implanted samples were measured to display the restoration of the crystalline structure before and after being annealed under different conditions.

    3. Results and discussion

    The profiles of phosphorus and fluorine in the samples implanted with P-only and P+F before and after annealing are characterized by SIMS measurement as shown in Fig. 1.Through integrating SIMS profiles,the real dose of phosphorus and fluorine in implanted sample without annealing are 4.72×1015cm-2and 3.1×1014cm-2after the SiO2has been wiped off, respectively. Moreover, the dose loses and the depths for the samples with implanted P-only and P+F after being annealed under various conditions are calculated and displayed in Table 1. As can be seen in Fig. 1(a), a slight diffusion of phosphorus happens and the dopant dose loss is 11.7% in sample A after being annealed by a 100-mJ/cm2laser. By contrast,there is little diffusion or the rearrangement of phosphorus, and only 4% dopant dose is lost in the sample B. Besides, the diffusion redistribution of fluorine seems to happen in 55-nm depth range with 7% dopant dose lost.Figure 1(b) shows the dopant profiles of samples C and D with ELA at 175 mJ/cm2. In the phosphorus there happens impurity diffusion with a length~141 nm at the concentration of 1×1018cm-3and the dopant dose loss reaches up to 36.2% in sample C with P-only implantation. The sample D with P+F co-implantation, by contrast, exhibits a halved phosphorus dopant dose loss of about 16.9% and a depth of~129 nm. Moreover, the diffusion redistribution of fluorine is enhanced to some extent,and the dopant dose loss increases to 12.3%. Based on the above analysis,the reduced phosphorus dopant depth and dose loss by the co-implanted fluorine element may be attributed to the reduction of the number of vacancies,[13,18]which is consistent with the phenomenon in other reports.[19,20]In order to further clarify the effect of the co-implanted fluorine,the RTA process(at 650°C for 15 s)is also conducted in sample E and sample G,and the profiles of P and F are displayed in Fig.1(c).As we can see from the figure,the phosphorus shows a box-shaped distribution in each of the two samples. An obvious diffusion of the phosphorus with a depth~288 nm occurs, and the dopant doseloss rises up to 73.3%in sample E with P-only implantation. However,sample G with P+F co-implantation,by contrast,shows a reduced phosphorus dopant dose loss of about 56.6% and a depth of~236 nm. It is worth noting that the diffusion of fluorine element is controlled by external diffusion and fluorine dose loss increases up to 95.7%. This interesting phenomenon may be due to the pre-etching of surface SiO2prior to annealing and is consistent with other reported result.[20]In summary,the diffusion of phosphorus can be suppressed to some extent because of the fluorine co-implantation in Ge, whether using ELA process or RTA process.

    Fig.1. SIMS profiles of P and F accessed from the samples implanted with P-only and P+F before and after one pulse laser annealing at(a)100 mJ/cm2,(b)175 mJ/cm2,and(c)annealing at 650 °C for 15 s.

    Table 1. Dose looses,depths for samples implanted by P-only and P+F under various annealing conditions.

    For further exploring the role of fluorine during the phosphorus diffusion after ELA process, the non-equilibrium mechanism in ultra-fast melting and recrystallization process of co-implanted P+F Ge need further investigating. When the excimer laser with an enough laser energy density irradiates the surface of Ge, a melted zone will be well defined,resulting in an abrupt transition between the liquid and solid phase Ge. In our previous studies,[24,25]an analytical model was proposed to predict the impurity diffusion profiles under various laser annealing energy densities and the impurity diffusion occurring and being controlled in the melting region mostly. Based on this model,[24]the SIMS profiles of P in samples C and D are simulated and fitted after ELA without taking into account the surface recombination or segregation of phosphorus. The well fitting curves (represented by continuous lines)are shown in Fig.2 through optimizing the parameters. Hence, the diffusion coefficient of phosphorus in the melting region of sample C and sample D are obtained to be about 3.94×10-4cm2/s and 3.45×10-4cm2/s, respectively. The reduced diffusion coefficient can be explained below. After being implanted by P ions, the amorphous Ge is formed and the F ions implanted in Ge are more likely to form F interstitials.[13,18,20]And then, the F interstitials will combine with vacancies to form FnVmclusters quickly during the initial phases of laser annealing[20]because FnVmclusters has a higher bonding energy than FGei(F bonding with Ge interstitials).[13,18]Moreover,in the amorphous Ge region,there exist a large number of vacancies and the diffusion of P is vacancy-assisted diffusion during the ELA.[25]However,these FnVmclusters are stable and can possibly stabilize the excess vacancies. Hence,the fewer vacancies can take part in the diffusion of P in the melting region,leading to the shorter P diffusion depth than those without F ions implantation. Besides,in the laser annealing process, the amorphous Ge is gradually crystallized because the interaction between Ge interstitials and FnVmclusters results in the elimination of vacancies and the release of mobile F interstitials. The SiO2capping layer is removed so that it cannot inject interstitials into Ge to help annihilate the vacancies. Moreover, the F atoms will escape from Ge into the outside by high-mobile F interstitials quickly,which is the possible reason for the F dose loss as high as 95.6%after RTA process.

    Fig. 2. Simulated (red solid line) and measured (empty square and empty circle)P profiles of the samples C and D with ELA at 175 mJ/cm2.

    The activation concentrations of phosphorus at a fixed depth of about 30 nm in germanium under different annealing conditions are characterized by the SRP measurement as shown in Fig. 3. For the sample A and sample B with ELA at 100 mJ/cm2, their carrier concentrations are as low as 7.9×1018cm-3and 9.2×1018cm-3, respectively, which can be attributed to the deficient laser energy values needed to annihilate the implantation damages and activate dopants,which will be confirmed by Raman spectrum next. As for the samples C and D each irradiated by an increased laser fluence of 175 mJ/cm2, their activation concentrations of phosphorus are 2.7×1020cm-3and 4.4×1020cm-3, respectively, which is beyond the phosphorus solid solubility limit in Ge in the ELA process.[10]Moreover, the samples E and G with RTA at 650°C for 15 s acchieve their activation concentrations of 4.2×1019cm-3and 5.3×1019cm-3,respectively. The higher carrier concentration in sample G with co-implantation is due to the narrower P profile than the sample E.Furthermore,comparing the ELA method with the RTA method,the ELA combined with co-implanted F ion is a more efficient technique to achieve high-activation-concentration doped n-Ge with narrow dopant profile than those obtained by RTA process.

    Fig.3. Activation concentrations at 30-nm depth,obtained by SRP,for samples A,B,C,D,E,and G respectively.

    The Raman spectra for the as-implanted P+F and P-only samples before and after being annealed under different conditions are characterized and shown in Fig. 4. For the asimplanted P+F and P-only samples without being annealed,the broad peak of amorphous Ge (a-Ge) phase centered at about 270 cm-1indicates that the surfaces of Ge substrates are severely damaged,resulting in the formation of amorphous Ge layer after implantation process. After ELA at 100 mJ/cm2,both of them show that the Ge-Ge optical phonon mode representing crystallized Ge(c-Ge)near 300 cm-1appears while the peak of a-Ge still exists in the spectrum. It can be due to the fact that the deficient laser annealing energy gives rise to the partial restoration of implantation-damaged lattices. When the as-implanted P+F and P-only samples are annealed at 175 mJ/cm2, the peak of a-Ge disappears and only crystal Ge peaks are observed with a low full-width at half-maximum(FWHM)value of about 7.2 cm-1and 7.4 cm-1,respectively.Hence,it can be suggested that the ELA is an effective annealing method to repair the lattice damages induced by mixed ion implantation. It will also be confirmed by the HRTEM image in Fig. 5(b) in the following. Moreover, the Raman spectra of the samples E and G with RTA process also show only c-Ge peaks with an FWHM of about 7.67 cm-1and 7.6 cm-1,respectively.

    Fig.4. Raman spectra of P+F co-implanted and P-only implanted samples before and after being annealed under different conditions.

    Fig. 5. Cross-sectional HRTEM images of co-implanted P+F samples (a)before and after(b)being annealed by laser at 175 mJ/cm2.

    The structures of co-implanted P+F samples before and after ELA at 175 mJ/cm2are explored by cross-sectional HRTEM as shown in Figs.5(a)and 5(b). It can be seen from Fig. 5(a) that a 67-nm-thick amorphous Ge layer is formed with a clear amorphous/crystal interface due to severe damage induced by high energy and dose mixed ion implantation.After ELA at 175 mJ/cm2,almost no extending defect can be detected as shown in Fig.5(b),which indicates that the amorphous Ge layer is transformed into crystal Ge completely. It is consistent with the result of Raman analysis in Fig.4.

    4. Conclusions

    Both excimer laser annealing process and rapid thermal annealing process are utilized to investigate the diffusion and activation of phosphorus in phosphorus and fluorine coimplanted Ge. No matter what annealing methods are used,the co-implanted fluorine can reduce phosphorus diffusion and enhance phosphorus activation during the annealing. It is attributed to the formation of high bonding energy FnVmclusters which can eliminate some excess vacancies resulting in the reduced vacancy-assisted diffusion of phosphorus. The laser density of 100 mJ/cm2is not high enough to crystallize implantation induced amorphous Ge layer while a maximum activation concentration of about 4.4×1020cm-3with a reduced diffusion length and dopant loss is achieved at 175 mJ/cm2in P+F co-implanted Ge. Moreover, the ELA process is more efficient to reduce diffusion length and promote activation concentration than the RTA process. In conclusion, the combination of excimer laser annealing and co-implantation techniques will be a very promising method to fulfill highactivation and shallow-diffusion n-type doping in Ge.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61904155),the Science and technology Project of Fujian Provincial Department of Education,China (Grant No. JAT200484), the Natural Science Foundation of Fujian Province, China (Grant No. 2018J05115), and the Scientific Research Projects of Xiamen University of Technology,China(Grant No.YKJCX2020078).

    猜你喜歡
    李成
    Dynamics of bubble-shaped Bose–Einstein condensates on two-dimensional cross-section in micro-gravity environment
    書法欣賞
    祖國(2023年23期)2023-02-25 06:14:50
    懷念李成章教授
    Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images
    李成海就200兆瓦農(nóng)牧光互補項目選址現(xiàn)場辦公
    春燕
    北方音樂(2018年17期)2018-10-31 01:21:04
    杜鵑
    北方音樂(2018年17期)2018-10-31 01:21:04
    莊玉庭先負(fù)李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    Effect of vegetation on flow structure and dispersion in strongly curved channels*
    叶爱在线成人免费视频播放| 午夜免费男女啪啪视频观看| 欧美成人午夜精品| 亚洲精品成人av观看孕妇| 日韩免费高清中文字幕av| 欧美日韩视频高清一区二区三区二| 亚洲欧洲日产国产| 国产成人精品婷婷| 日韩一卡2卡3卡4卡2021年| 久久精品久久久久久噜噜老黄| 成人亚洲欧美一区二区av| 久久人人爽av亚洲精品天堂| 日日撸夜夜添| 国产精品久久久久久精品电影小说| 性少妇av在线| 一区二区三区精品91| 两个人免费观看高清视频| 超碰97精品在线观看| 国精品久久久久久国模美| 国产日韩一区二区三区精品不卡| 高清在线视频一区二区三区| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 久久这里有精品视频免费| 亚洲视频免费观看视频| 亚洲,欧美,日韩| 国产成人一区二区在线| 老女人水多毛片| 国产爽快片一区二区三区| 秋霞在线观看毛片| 9热在线视频观看99| 国产精品久久久久久av不卡| 精品少妇久久久久久888优播| 两个人看的免费小视频| 91久久精品国产一区二区三区| 欧美中文综合在线视频| 久久久久国产一级毛片高清牌| 亚洲av福利一区| av国产精品久久久久影院| 激情视频va一区二区三区| 国产av一区二区精品久久| 大话2 男鬼变身卡| 亚洲内射少妇av| 日本欧美国产在线视频| 久久狼人影院| 麻豆av在线久日| 精品国产一区二区久久| 97在线视频观看| 精品国产乱码久久久久久男人| 欧美在线黄色| 国产精品二区激情视频| 人妻一区二区av| 香蕉丝袜av| 在线观看免费日韩欧美大片| 两性夫妻黄色片| 少妇人妻久久综合中文| √禁漫天堂资源中文www| 黄色怎么调成土黄色| 国语对白做爰xxxⅹ性视频网站| 欧美日韩av久久| 国产精品久久久久久久久免| 国产精品久久久av美女十八| 亚洲,欧美精品.| 亚洲av电影在线进入| 欧美精品人与动牲交sv欧美| 日本色播在线视频| 精品午夜福利在线看| 国产综合精华液| 欧美 亚洲 国产 日韩一| 久久久精品区二区三区| 午夜福利视频在线观看免费| 亚洲精品国产av蜜桃| 999精品在线视频| 在线免费观看不下载黄p国产| 国产精品一二三区在线看| 蜜桃国产av成人99| av在线老鸭窝| 三级国产精品片| 一区二区三区激情视频| 晚上一个人看的免费电影| 蜜桃国产av成人99| 十八禁高潮呻吟视频| 美女中出高潮动态图| 巨乳人妻的诱惑在线观看| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| 制服诱惑二区| 天天操日日干夜夜撸| 国产av码专区亚洲av| 人体艺术视频欧美日本| 国产精品一区二区在线观看99| 大陆偷拍与自拍| 大陆偷拍与自拍| 欧美精品一区二区大全| 欧美日韩成人在线一区二区| 最黄视频免费看| 美女国产视频在线观看| 2018国产大陆天天弄谢| 久久综合国产亚洲精品| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 黄频高清免费视频| 精品一区在线观看国产| 三级国产精品片| 午夜福利,免费看| 日韩av在线免费看完整版不卡| 99热国产这里只有精品6| 日日啪夜夜爽| 国产一级毛片在线| 自线自在国产av| 日本欧美视频一区| 国产精品二区激情视频| 亚洲人成电影观看| 欧美日韩一区二区视频在线观看视频在线| 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 国产精品欧美亚洲77777| 亚洲色图综合在线观看| 久久久久精品性色| 婷婷色av中文字幕| 少妇精品久久久久久久| 两个人免费观看高清视频| 亚洲第一青青草原| 黄色一级大片看看| 亚洲男人天堂网一区| 成人毛片a级毛片在线播放| 久久免费观看电影| av在线观看视频网站免费| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆 | 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 亚洲一码二码三码区别大吗| 大香蕉久久成人网| 女人精品久久久久毛片| 黑人猛操日本美女一级片| 日本av手机在线免费观看| 99久久精品国产国产毛片| 麻豆乱淫一区二区| 亚洲av综合色区一区| 天天躁夜夜躁狠狠躁躁| 国产一区有黄有色的免费视频| 18+在线观看网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩av在线免费看完整版不卡| 欧美人与性动交α欧美精品济南到 | 国产精品 欧美亚洲| 国产精品免费视频内射| 黄色一级大片看看| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 黑丝袜美女国产一区| 免费不卡的大黄色大毛片视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线观看播放| 久久久久精品久久久久真实原创| 春色校园在线视频观看| 在线精品无人区一区二区三| 最近最新中文字幕免费大全7| a 毛片基地| 亚洲,欧美精品.| 精品国产乱码久久久久久小说| 美国免费a级毛片| 久久狼人影院| 国产国语露脸激情在线看| 咕卡用的链子| 亚洲精品一二三| 国产一区二区三区av在线| 9191精品国产免费久久| 少妇的逼水好多| av免费观看日本| 99久久综合免费| 亚洲第一av免费看| 18在线观看网站| 啦啦啦视频在线资源免费观看| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线| 免费av中文字幕在线| 国产亚洲一区二区精品| 国产av精品麻豆| 亚洲精品国产一区二区精华液| 久久精品久久久久久久性| 90打野战视频偷拍视频| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃| 天天躁夜夜躁狠狠久久av| 国产成人av激情在线播放| 日韩av在线免费看完整版不卡| 国产1区2区3区精品| 97在线人人人人妻| 2022亚洲国产成人精品| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 搡女人真爽免费视频火全软件| 亚洲四区av| 久久av网站| 精品久久久久久电影网| 三级国产精品片| 国产男女超爽视频在线观看| 多毛熟女@视频| 久久久久久人人人人人| 亚洲av中文av极速乱| av在线播放精品| 日本欧美视频一区| 最黄视频免费看| 国产片特级美女逼逼视频| 在线精品无人区一区二区三| 精品久久蜜臀av无| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 在线观看人妻少妇| 午夜av观看不卡| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品一二区理论片| 亚洲av.av天堂| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| xxxhd国产人妻xxx| 国产亚洲精品第一综合不卡| 亚洲美女黄色视频免费看| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 久久久久人妻精品一区果冻| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 亚洲四区av| 免费大片黄手机在线观看| 国产成人精品婷婷| 精品亚洲乱码少妇综合久久| 观看av在线不卡| 亚洲av免费高清在线观看| 久久久久精品人妻al黑| 国产片内射在线| 国产亚洲av片在线观看秒播厂| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 男男h啪啪无遮挡| 国产片特级美女逼逼视频| 三级国产精品片| 久久午夜福利片| 久久久久视频综合| 国产精品人妻久久久影院| 观看美女的网站| 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区 | 久久久久久久久久久久大奶| 黄片播放在线免费| 三上悠亚av全集在线观看| 国产精品二区激情视频| 99国产综合亚洲精品| 亚洲国产欧美在线一区| av卡一久久| 高清在线视频一区二区三区| 欧美激情高清一区二区三区 | 欧美xxⅹ黑人| 亚洲第一区二区三区不卡| 国产极品粉嫩免费观看在线| 亚洲,一卡二卡三卡| 国产精品国产三级国产专区5o| 亚洲第一青青草原| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 晚上一个人看的免费电影| 精品酒店卫生间| 久久久精品国产亚洲av高清涩受| 久久午夜福利片| 久久久国产欧美日韩av| 国产成人精品无人区| 免费不卡的大黄色大毛片视频在线观看| www日本在线高清视频| 久久狼人影院| 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 亚洲,欧美精品.| 一区福利在线观看| 国产av码专区亚洲av| 大片电影免费在线观看免费| 丝袜喷水一区| 日韩中字成人| 久久人人爽人人片av| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 赤兔流量卡办理| 最新中文字幕久久久久| 飞空精品影院首页| 美女大奶头黄色视频| 丰满少妇做爰视频| 亚洲欧美成人精品一区二区| 97在线视频观看| 亚洲精品国产av蜜桃| 中文欧美无线码| 精品第一国产精品| 美女中出高潮动态图| 成人国产av品久久久| 国产精品免费大片| 纯流量卡能插随身wifi吗| 欧美最新免费一区二区三区| 综合色丁香网| 蜜桃在线观看..| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 国产 一区精品| 日韩中文字幕欧美一区二区 | 亚洲欧洲日产国产| 一区福利在线观看| 又粗又硬又长又爽又黄的视频| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡| 国产激情久久老熟女| 国产成人精品一,二区| 久久99精品国语久久久| 一边摸一边做爽爽视频免费| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 亚洲成av片中文字幕在线观看 | 久久久精品区二区三区| 边亲边吃奶的免费视频| 欧美日韩av久久| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| 成年动漫av网址| av片东京热男人的天堂| 亚洲精品国产av蜜桃| 欧美亚洲 丝袜 人妻 在线| 丝袜脚勾引网站| 亚洲人成77777在线视频| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 国产国语露脸激情在线看| 久久精品久久久久久久性| 成年美女黄网站色视频大全免费| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲| 久久精品国产自在天天线| 亚洲av综合色区一区| 欧美精品一区二区大全| 一二三四在线观看免费中文在| 日韩,欧美,国产一区二区三区| 美女xxoo啪啪120秒动态图| 国产亚洲av片在线观看秒播厂| 午夜av观看不卡| 国产精品久久久久久精品古装| 亚洲一码二码三码区别大吗| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 美女国产高潮福利片在线看| 亚洲欧美精品自产自拍| 人妻人人澡人人爽人人| 欧美激情高清一区二区三区 | 午夜福利影视在线免费观看| 精品国产乱码久久久久久男人| 国产一区二区 视频在线| 成年动漫av网址| 精品国产一区二区久久| a 毛片基地| 1024香蕉在线观看| 2022亚洲国产成人精品| av视频免费观看在线观看| 国产黄色免费在线视频| 久久韩国三级中文字幕| 飞空精品影院首页| 熟女电影av网| 免费久久久久久久精品成人欧美视频| 少妇人妻精品综合一区二区| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 我要看黄色一级片免费的| 国产xxxxx性猛交| 久久精品亚洲av国产电影网| 中文字幕av电影在线播放| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 嫩草影院入口| av在线老鸭窝| 久久久久久久久久人人人人人人| av网站在线播放免费| 丝瓜视频免费看黄片| 中文欧美无线码| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 超碰97精品在线观看| 亚洲av电影在线进入| 咕卡用的链子| 国产免费福利视频在线观看| 在现免费观看毛片| 国产黄色免费在线视频| 久久精品夜色国产| 久久精品亚洲av国产电影网| 欧美亚洲日本最大视频资源| 中文欧美无线码| 国产精品蜜桃在线观看| av在线观看视频网站免费| 蜜桃国产av成人99| 99热国产这里只有精品6| 一区二区三区激情视频| 免费在线观看黄色视频的| 在线观看www视频免费| 国产一区二区三区av在线| 中文字幕制服av| 只有这里有精品99| 丝袜在线中文字幕| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃| 成年女人毛片免费观看观看9 | 男人操女人黄网站| 久久久久久人妻| 日韩中字成人| 免费黄频网站在线观看国产| 十分钟在线观看高清视频www| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 亚洲av福利一区| 午夜福利视频在线观看免费| 欧美国产精品一级二级三级| 欧美人与善性xxx| 午夜久久久在线观看| 亚洲三级黄色毛片| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 波多野结衣一区麻豆| 曰老女人黄片| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 亚洲精品日韩在线中文字幕| 精品国产超薄肉色丝袜足j| 在线精品无人区一区二区三| 伦理电影免费视频| 久久久久国产网址| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 一级黄片播放器| 99精国产麻豆久久婷婷| 国产精品99久久99久久久不卡 | 久久久久国产一级毛片高清牌| 日韩精品免费视频一区二区三区| 午夜激情久久久久久久| 国产成人一区二区在线| 天美传媒精品一区二区| 国产男女超爽视频在线观看| 亚洲一区中文字幕在线| 国产精品 国内视频| 久久久精品区二区三区| 日本av免费视频播放| 99久久人妻综合| 最近最新中文字幕免费大全7| 国产一区有黄有色的免费视频| 男女高潮啪啪啪动态图| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区久久久樱花| 咕卡用的链子| 亚洲精品视频女| 婷婷成人精品国产| 亚洲欧美成人综合另类久久久| 97在线视频观看| 日本黄色日本黄色录像| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 欧美日韩一级在线毛片| 亚洲国产成人一精品久久久| 国产男人的电影天堂91| 亚洲,欧美精品.| 两个人看的免费小视频| 久久久国产精品麻豆| 久久午夜福利片| 美女大奶头黄色视频| 丝袜在线中文字幕| 日韩不卡一区二区三区视频在线| 日韩电影二区| 国产综合精华液| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 国产精品av久久久久免费| 一级a爱视频在线免费观看| 中文字幕人妻熟女乱码| 天天躁夜夜躁狠狠躁躁| 亚洲内射少妇av| 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 亚洲经典国产精华液单| 国产黄色视频一区二区在线观看| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 精品久久蜜臀av无| 国产成人午夜福利电影在线观看| 精品少妇内射三级| 午夜福利在线免费观看网站| 国产精品99久久99久久久不卡 | 夫妻午夜视频| 国产在线视频一区二区| 丝袜美足系列| 麻豆av在线久日| 精品国产超薄肉色丝袜足j| 桃花免费在线播放| kizo精华| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| 午夜免费观看性视频| 美女国产视频在线观看| 18+在线观看网站| 久久午夜福利片| 最近最新中文字幕大全免费视频 | 国产男女内射视频| 少妇被粗大的猛进出69影院| 亚洲国产欧美网| 日韩一本色道免费dvd| 久久精品久久久久久久性| 99久久中文字幕三级久久日本| a级片在线免费高清观看视频| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 国产老妇伦熟女老妇高清| 欧美人与性动交α欧美精品济南到 | 久久亚洲国产成人精品v| 男男h啪啪无遮挡| 国产av码专区亚洲av| 激情视频va一区二区三区| freevideosex欧美| 下体分泌物呈黄色| 精品人妻偷拍中文字幕| 一本久久精品| 国产有黄有色有爽视频| 搡老乐熟女国产| 久久毛片免费看一区二区三区| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 制服诱惑二区| 成年av动漫网址| 少妇人妻久久综合中文| 久久久久久久大尺度免费视频| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区| 最近的中文字幕免费完整| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 麻豆av在线久日| 97人妻天天添夜夜摸| 亚洲精品日韩在线中文字幕| 精品少妇一区二区三区视频日本电影 | 国产成人av激情在线播放| 大话2 男鬼变身卡| 久久久久久人妻| 美女国产视频在线观看| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 亚洲婷婷狠狠爱综合网| 成人手机av| 新久久久久国产一级毛片| 我的亚洲天堂| 欧美精品人与动牲交sv欧美| www.自偷自拍.com| 久久久国产一区二区| 国产成人精品在线电影| 99热全是精品| 一区二区av电影网| 国产毛片在线视频| 在线 av 中文字幕| 麻豆av在线久日| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久午夜乱码| 国产av码专区亚洲av| 亚洲国产欧美日韩在线播放| 免费av中文字幕在线| 99re6热这里在线精品视频| 性色avwww在线观看| 国产熟女午夜一区二区三区| 亚洲国产欧美日韩在线播放| 夫妻午夜视频| 中文字幕人妻丝袜制服| 99热全是精品| 又粗又硬又长又爽又黄的视频| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 国产一区二区在线观看av| 欧美人与善性xxx| 丰满少妇做爰视频| 观看av在线不卡| 国产不卡av网站在线观看| 亚洲成人手机| 在线观看免费日韩欧美大片| 成年女人在线观看亚洲视频| 久久青草综合色|