• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure

    2022-09-24 08:04:10XinxinZuo左欣欣JiangLu陸江XiaoliTian田曉麗YunBai白云GuodongCheng成國棟HongChen陳宏YidanTang湯益丹ChengyueYang楊成樾andXinyuLiu劉新宇
    Chinese Physics B 2022年9期
    關(guān)鍵詞:陳宏楊成白云

    Xinxin Zuo(左欣欣) Jiang Lu(陸江) Xiaoli Tian(田曉麗) Yun Bai(白云) Guodong Cheng(成國棟)Hong Chen(陳宏) Yidan Tang(湯益丹) Chengyue Yang(楊成樾) and Xinyu Liu(劉新宇)

    1Institute of Microelectronics of the Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100029,China

    Keywords: silicon carbide(SiC),short-circuit(SC),super-junction(SJ),trench MOSFET

    1. Introduction

    Compared with the power devices by using the matured silicon materials,the devices with silicon-carbide(SiC)materials can achieve a superior performance owing to the excellent material properties such as wide energy band gap,low intrinsic carrier concentration,and high breakdown electric field.[1,2]In recent years,the commercial SiC power MOSFETs have been regarded as promising candidates to replace the conventional silicon power devices. Meanwhile, the reliability issues are always accompanying the SiC MOSFETs in the harsh application conditions, and more research resources are required to meliorate the device’s performance. The short-circuit(SC)failure is one of the most serious reliable issues for SiC power devices. During the SC transient process, the high DC bus voltage and the large saturation current will be applied to the device, resulting in the device’s performance degradation or even severe burnout failure if the device is without sufficient SC withstand ability. Therefore, the enhancement of the SC robustness is always a main concern of researchers.

    Benefitting from the high-power density,high integration,and low on-resistance,the SiC trench MOSFETs have become the widely used devices in power electronic systems. Many previous studies have focused on the SC failure mode and the comparison of SC performance between the trench structure and the planner structure.[3-17]Unfortunately, these results showed that a weaker SC robustness is found in the SiC trench MOSFET due to its higher power density.[5-7]Whereas,only a few studies on improving the SC reliability of the SiC trench MOSFETs are given. Okadaet al. have demonstrated the improvement of SC reliability with the SiC SJ trench MOSFET structure,[18]but further structure optimization still needs to be carried out to enhance the SC reliability.

    In this paper,a 1200 V SiC SJ MOSFET with a partially widened pillar structure is given by using the Sentaurus TCAD simulation tool.[19]Based on the altered pillar structure, the proposed structure can provide a superior SC ability and maintain a good Baliga’s FOM(BV2/Ron)simultaneously. Firstly,the basic parameter characteristics of the conventional trench MOSFET(CT-MOSFET),the SJ MOSFET,and the proposed device are compared. Subsequently, the SC characteristics of all devices are investigated under the varied SC pulse time.Finally, the variation of structural parameters for the P-pillar modulation region is analyzed to achieve an optimal device’s performance.

    2. Device structures and simulation setup

    Figure 1 shows the cross-sectional schematics of three 1200V SiC MOSFETs investigated in this paper. All devices are designed with an identical epitaxy thickness of 12 μm and doping concentration of 3×1015cm-3. Uniform channel length (0.8 μm) and P-body doping concentration of 2×1017cm-3at the channel area are used to achieve the same threshold voltage (Vth). The channel electron mobility is set at 20 cm2/V·s. The current spreading layer(CSL)is added to optimize the on-current capability. The new structure with a partially widened pillar region is shown in Fig. 1(c), where a P-pillar modulation region is extended into the N-pillar. The doping concentration of the P-pillar modulation region keeps consistent with that of P-pillars. The detailed structure dimensions and doping concentration are listed in Table 1.Hmis the distance from the center position of the P-pillar modulation region to the top,and the width of the P-pillar modulation region is defined asWm,as indicated in Fig.1(c). The fabrication process of the proposed structure is compatible with standard trench SJ MOSFET by using the multiple epitaxial layers growth and ion-implantation,[20,21]as illustrated in Fig.2.And it only needs to adjust the implanting window at the corresponding position to form the partially widened P-pillar region.

    Table 1. Detailed structure parameters of devices.

    To achieve more accurate simulation results, a series of physical models including Shockley-Read-Hall (SRH),Auger recombination, anisotropic avalanche (Okuto-Crowell model), incomplete ionization, and mobility degradation by the normal electric field (Enormal) are added in simulation settings. In addition, the thermodynamic model is employed to describe the electrothermal coupling behavior when the device is subjected to a high current density during the SC process. The active area of the chip in this paper is designed with 35 mm2.

    Fig.2. The main fabrication flow of two structures: (a)the SJ structure and(b)the proposed structure with the partially widened pillar.

    3. Results and discussion

    3.1. Static parameters

    Figure 3 illustrates the simulation results of static characteristics for the aforementioned three MOSFETs. From Fig.3(a), it can be seen that theVthcurves of the three structures almost completely overlap, and theVthof all devices atIds=1 mA is maintained at 2.19 V owing to the same structure and doping concentration of the channel region. Figure 3(b)shows that the breakdown voltages (BV) for three structures atIds=1 μA are 1913 V, 1836 V, and 1802 V, respectively.All of the structures meet the basic requirement of the 1.2 kV device design. A little lowerBVvalue in SJ structure can be noted,which is consistent with the previous study.[20]

    According to the simulation results ofI-Vcharacteristics shown in Fig.3(c),the on-state resistance(Ron)at the current of 30 A are 40.2 mΩ,25.4 mΩ,and 29.3 mΩ,respectively. It is worth noting that theRonof the proposed structure is slightly higher compared with the conventional SJ MOSFET due to the narrowing of the current path induced by the partially widened pillar region. But thisRonvalue is obviously smaller than the CT-MOSFET due to the advantages of the N-pillar. In addition,the Baliga’s figures of merit(Baliga’s FOM=BV2/Ron)of all structures are calculated to evaluate overall static performance. It can be found in Table 3 that the Baliga’s FOM of SJ MOSFET and the proposed structure are increased by 46.2%and 22%compared with the CT-MOSFET,respectively.Therefore, the proposed structure can maintain a good static ability owing to the advantages of the SJ structure.

    Fig.3. The comparison of simulation results(a)the threshold voltage,(b)the breakdown voltage,(c)the forward I-V characteristic and(d)the saturation characteristic.

    As given in Fig.3(d),theIdsfor three structures atVds=800 V are 287 A, 278 A and 247 A, respectively. The saturation current value of the SJ MOSFET is close to that of the CT-MOSFET, indicating a similar SC ability. However, the saturation current of the proposed structure is significantly reduced. Under the highVds, the widened P-pillar depletes the N-pillar further and narrows the current path, resulting in the lower saturation current in the proposed structure.Therefore,a superior SC capability at the high drain voltage can be demonstrated.

    In addition,it can be noted in Fig.3(d)that an incomplete saturation state of theIdscurves is found with the increase of drain voltage.The reason is related that the P+area blocks the depletion layer extension in the P-body during the increasing ofVds.Therefore,the pinch-off effect of the channel is affected inevitably,resulting in an incomplete saturation condition.

    3.2. Optimization of pillar doping concentration in the SJ MOSFET

    Obviously,the pillar doping concentration will influence the device characteristics in the SJ MOSFET. It is necessary to select an appropriate pillar doping concentration to achieve optimal performance, and the N-pillar and P-pillar have the same width to maintain charge balance. The static parameters with the variation of pillar doping concentration are illustrated in Fig.4.

    Fig.4. The static performance of the SJ MOSFET with different pillar doping concentrations.

    Table 2. The simulation results of the SJ MOSFET with varied pillar doping.

    The exact values of the static parameters, the Baliga’s FOM, and the saturation current atVds=800 V are given in Table 2.

    As shown in Fig. 4, theRonandBVof the SJ MOSFET decrease gradually with the pillar doping concentration increasing from 5×1015cm-3to 5×1016cm-3. TheBVdecreases quickly when the pillar concentration exceeds 4×1016cm-3, and theRonpresents a sudden increase when the pillar concentration drops to 5×1015cm-3. Meanwhile,the saturation current of the SJ structure is higher than that of the CT-MOSFET when pillar concentration exceeds 1×1016cm-3from Table 2, indicating a poor SC characteristic. Therefore,the value of 1×1016cm-3is the optimal pillar doping concentration of the SJ structure in this simulation MOSFET after the selection between Baliga’s FOM and SC ability.

    3.3. The SC simulation results and analysis of the three different structures

    The circuit of short-circuit mixed-mode simulation is shown in Fig.5. The parameters are set as follows: the parasitic inductance (Lp) is 200 nH, the DC drain-source voltage is 800 V[6,13,14], and the gate resistance (Rg) is 2.5 Ω. The single pulse gate voltage of 15 V/0 V with varied pulse times is applied to control the SC times. The simulation waveforms of the drain-source voltage (Vds), the drain current (Ids), and the lattice temperature (Tmax) are captured to inspect the SC performance.

    Fig.5. Schematic of circuit used for SC simulation in this paper.

    The SC waveforms under different gate pulses of the CTMOSFET are shown in Fig.6. It is found that theIdsgradually decreases to 0 A atTpulse=15 μs, which means the device is at normal turn-off condition. Once the gate pulse time(Tpulse)increases to 16 μs, theIdscannot drop to 0 A and shows a gradual increase at the final time of the SC process,indicating an abnormal turn-off process. Furthermore,it can be seen that a rapid increase of theIdswhen theTpulseincreases to 20 μs,resulting in a severe burnout failure. Therefore, the SC withstand time(SCWT)of the CT-MOSFET is 15μs,and the SC saturation current is about 495 A,as given in Fig.6.

    Fig. 6. The SC simulation results of the CT-MOSFET under different gate pulses.

    Fig. 7. The SC simulation results of the SJ MOSFET under different gate pulses.

    A similar situation of the SJ MOSFET can be found in Fig.7. The SC saturation current of the SJ MOSFET is about 460 A,which is slightly lower than that of the CT-MOSFET.Thus, the SCWT of the SJ MOSFET is 17μs. The SJ MOSFET shows a slightly better SC performance than the CTMOSFET,which is consistent with the results given by Okadaet al.[17]

    Figure 8 shows that the SC saturation current of the proposed structure is about 360 A, which is much less than the other two structures. The SCWT is increased to 24 μs,which is improved by 60%and 41.2%compared with the CTMOSFET and SJ MOSFET,respectively.All parameters comparison of the three structures obtained from the simulation is summarized in Table 3.

    It can be inferred from the above discussion that the burnout failure occurs after the devices are subjected to a harsh SC pressure. The internal lattice temperature rises rapidly due to the high SC current and voltage, then the electro-thermal coupling effect with the positive feedback phenomenon will occur continually. After a long SC time,the current inside the device still rises sharply even if the gate is turned off,resulting in the dynamic avalanche breakdown and heat accumulation at the local region. Thus, this failure is directly affected by the magnitude of the SC current, and the device with a lower SC current demonstrates a robust SC withstand ability.

    Fig. 8. The SC simulation results of the proposed structure under different gate pulses.

    Table 3. The simulation results of the three different MOSFETs.

    3.4. Analysis of the physical mechanism inside the devices

    To analyze the inner physical mechanism of different SC abilities,as shown in Fig.9,the same gate voltage pulse time of 20 μs is applied to the three structures. The distribution of the electric field, the total current density, and the lattice temperature at the time points 20 μs and 40 μs are obtained in Figs. 10, 11, and 12, respectively. From the comparison waveforms, the proposed structure can turn off safely, while the CT-MOSFET and the SJ MOSFET fail at this SC pressure.

    From Fig. 9, it can be seen that theIdsincreases firstly and then decreases during the SC process. We believe that these changes are attributed to the channel mobility. The rise ofIdsat the beginning is related to the weakening of Coulomb scattering mechanism from two aspects. The inversion charge increases with the rise of lattice temperature when the channel is formed,and the influence of Coulomb scattering on carrier mobility was shielded by abundant free electrons. In addition,the trapped charge reduces due to the energy band narrowing with the lattice temperature rising, then the Coulomb scattering effect caused by the interface charged center is weakened. Subsequently,the continuous increase in lattice temperature leads to the increase of surface roughness scattering and phonon scattering, which in return causes the decrease of inversion layer carrier mobility and the subsequent decline of SC current.

    As shown in Fig. 10, the distribution of electric field is changed due to the addition of the partially widened p-pillar.Most importantly, the cumulation of the electric field at the trench bottom area is suppressed. It can be seen that the high electric field is transferred to the bottom of the widened Ppillar region,which also helps to protect the gate oxide below the trench.

    Fig.9.Comparative simulation results of the three different structures under the same gate pulse of 20μs,including the waveforms of Ids and Tmax.

    Fig. 10. Simulation results of electric field distribution inside the devices at time points 20μs and 40μs for(a)the CT-MOSFET,(b)the SJ MOSFET,(c)the proposed structure.

    Fig. 11. Simulation results of total current density distribution inside the devices at time points 20μs and 40μs for(a)the CT-MOSFET,(b)the SJ MOSFET,(c)the proposed structure.

    As depicted in Fig.11,the current flowing path of the proposed device is modulated compared with the CT-MOSFET and the SJ MOSFET. It can be seen that the widened Ppillar region squeezes the electron flowing path in the N-pillar,which is similar to the JFET effect in the planar DMOSFET.Meanwhile, when the proposed structure is under a highVds,the hot spot is transferred to the widened P-pillar region, as illustrated in Fig. 12. Therefore, the huge SC saturation current caused by the larger avalanche injection is weakened. Although, it can be seen that the current still flow within the widened P-pillar region due to the dynamic avalanche accumulation at that area. But the saturation current is suppressed effectively.

    Fig.12. Simulation results of lattice temperature distribution inside the device at time points 20μs and 40μs for(a)the CT-MOSFET,(b)the SJ MOSFET,(c)the proposed structure.

    Under the influence of electric field and current density,the internal peak junction temperature of the proposed structure is significantly lower than that of the CT-MOSFET and the SJ MOSFET at times 20 μs and 40 μs, as shown in Fig. 12.Consequently, the electro-thermal coupling effect with the positive feedback phenomenon is suppressed in the proposed structure,resulting in the improvement of the SC reliability.

    3.5. Proposed structure parameters optimization

    The influence of structure parameters in the proposed structure is investigated,including the position(Hm)and width(Wm)of the P-pillar modulation region.The doping concentration of the P-type region is fixed at 1×1016cm-3as the same with the aforementioned SJ MOSFET to avoid the complex fabrication variation and the over intensified JFET effect. According to the structure and cell pitch of the proposed MOSFET, theHmis adjusted from 4 μm to 7 μm and theWmis increased from 1 μm to 2 μm to analyze the device’s performance. Figure 13 shows the proposed MOSFET’s static parameters and saturation current varying withHmandWm,and the detailed simulation results are summarized in Table 4.

    From Fig.13,it can be seen that theBVdegrades slightly with the descending of location (Hm) and the widening of width(Wm)for the P-pillar modulation region,which is caused by partial charge imbalance behavior. That means the changing of theBVis little with the variation ofHmandWmfor the small modulation region. Meanwhile, it is worth noting that theRonkeeps unchanged if theHmis over 5μm. On the contrary,theRonincreases sharply and the Baliga’s FOM degenerates severely once theHmdecreases to 4μm. The reason is that the current flowing path will be seriously suppressed when the position of the P-pillar modulation region is too close to the P-shield region. Moreover, theRongradually increases with the widening ofWm. The more obvious increase ofRonand the critical degradation of Baliga’s FOM are found at theWmof 2μm.

    Figure 13(b) and Table 4 exhibit that the saturation current of the proposed structure gradually decreases with the rising of location (Hm) and the widening of width (Wm) for the P-pillar modulation region. That means the distinct suppression effect can be found if the P-pillar modulation region is close to the top side, bringing a better SC reliability. However, it may cause the sacrificing of the static performance as we mentioned before. After comprehensive consideration,theHm=5μm and theWm=1.5μm are selected as the optimal structural parameters by comparing static characteristics and SC performance.

    Fig. 13. The (a) Ron and BV; (b) Baliga’s FOM and saturation current(Vds=800 V)of the proposed structure with different Hm and Wm values.

    Table 4. The simulation results of the proposed structure with varied Wm and Hm.

    4. Conclusion

    In this study, a 1200 V SiC super-junction (SJ) MOSFET with a partially widened pillar is proposed to improve the SC capability. By investigating the static characteristics and the SC performance, it is found that the Baliga’s FOM(BV2/Ron) of the proposed structure increased by 22% compared to the conventional trench structure. Meanwhile, a superior SC performance is also achieved. Compared with the conventional trench structure and SJ structure, the SC withstand time (SCWT) of the proposed structure increased by 60%and 41.2%,respectively. The enhancement of SC ability is attributed to the suppression of the saturation current at the SC transient process without sacrificing the on-state current ability. In addition, the fabrication technology is compatible with the standard epitaxy growth method with simple implant window adjustment.

    Acknowledgement

    Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No.2019B090917010).

    猜你喜歡
    陳宏楊成白云
    高考物理模擬試題(五)
    竊愛靜悄悄:亡妻郵件里有個鬼魅身影
    Existence Criterion of Three-Dimensional Regular Copper-1, 3, 5-Phenyltricarboxylate (Cu-BTC) Microparticles
    以愛為名:我成了猙獰婚姻里的怨婦
    室友A4
    白云(外三首)
    天津詩人(2017年2期)2017-11-29 01:24:14
    拋體運(yùn)動與圓周運(yùn)動
    尋找丟失的快樂
    白云的來歷
    雕塑隨想錄
    雕塑(1997年2期)1997-06-30 08:58:28
    一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 久久6这里有精品| 一级毛片电影观看| 国产亚洲91精品色在线| 日韩精品有码人妻一区| 亚洲精品,欧美精品| 久久久久国产网址| 97超碰精品成人国产| 午夜免费观看性视频| av专区在线播放| 亚洲三级黄色毛片| 亚洲国产精品国产精品| 国产精品熟女久久久久浪| 日本猛色少妇xxxxx猛交久久| 99久久中文字幕三级久久日本| 亚洲精品色激情综合| 国产精品福利在线免费观看| 亚洲天堂av无毛| 国产精品av视频在线免费观看| 欧美bdsm另类| 只有这里有精品99| 成人国产麻豆网| www.色视频.com| 国产伦精品一区二区三区视频9| 五月伊人婷婷丁香| 国产真实伦视频高清在线观看| 欧美精品一区二区免费开放| 国产一区二区三区av在线| 3wmmmm亚洲av在线观看| 三级国产精品欧美在线观看| 成年美女黄网站色视频大全免费 | 永久网站在线| 亚洲av日韩在线播放| 日本黄大片高清| 中文字幕av成人在线电影| 交换朋友夫妻互换小说| 午夜福利在线在线| 国产极品天堂在线| 精品人妻偷拍中文字幕| 国产黄色免费在线视频| 街头女战士在线观看网站| 国产一区二区在线观看日韩| 亚洲av欧美aⅴ国产| 五月天丁香电影| 91aial.com中文字幕在线观看| 亚洲第一区二区三区不卡| 欧美三级亚洲精品| freevideosex欧美| 少妇人妻一区二区三区视频| 国产精品av视频在线免费观看| 亚州av有码| 高清日韩中文字幕在线| 免费不卡的大黄色大毛片视频在线观看| 99久久精品热视频| 久久热精品热| 午夜福利在线在线| 91狼人影院| 91精品伊人久久大香线蕉| 久久青草综合色| 91精品国产国语对白视频| 久久韩国三级中文字幕| 一区二区三区四区激情视频| 嫩草影院新地址| 亚洲aⅴ乱码一区二区在线播放| 国产成人a∨麻豆精品| 少妇裸体淫交视频免费看高清| 天天躁日日操中文字幕| 91久久精品国产一区二区成人| 欧美一区二区亚洲| 在线观看美女被高潮喷水网站| 欧美少妇被猛烈插入视频| 久久久国产一区二区| 多毛熟女@视频| a级毛片免费高清观看在线播放| 一级a做视频免费观看| 各种免费的搞黄视频| 亚洲精品乱久久久久久| 九色成人免费人妻av| 少妇人妻久久综合中文| 各种免费的搞黄视频| av又黄又爽大尺度在线免费看| 亚洲国产欧美人成| 一级二级三级毛片免费看| 亚洲色图综合在线观看| 欧美成人a在线观看| 少妇猛男粗大的猛烈进出视频| 91精品伊人久久大香线蕉| 国产在视频线精品| 亚洲精品成人av观看孕妇| 少妇 在线观看| 热re99久久精品国产66热6| 欧美成人精品欧美一级黄| 国产乱来视频区| 久久久久性生活片| 九九爱精品视频在线观看| 精品人妻一区二区三区麻豆| 国产精品99久久99久久久不卡 | 亚洲图色成人| 免费黄网站久久成人精品| 新久久久久国产一级毛片| 午夜激情福利司机影院| 亚洲精品久久午夜乱码| 99久久精品国产国产毛片| 在线观看免费日韩欧美大片 | 在线看a的网站| 中文字幕av成人在线电影| 国产女主播在线喷水免费视频网站| 国产白丝娇喘喷水9色精品| 色网站视频免费| av在线蜜桃| 亚洲欧美精品自产自拍| 亚洲av欧美aⅴ国产| 汤姆久久久久久久影院中文字幕| av国产免费在线观看| 男人舔奶头视频| 国产精品偷伦视频观看了| 亚洲天堂av无毛| 欧美日韩精品成人综合77777| 亚洲欧洲国产日韩| 国产成人精品婷婷| av在线播放精品| 亚洲成人手机| 日日摸夜夜添夜夜爱| 亚洲综合色惰| 少妇的逼水好多| 久久av网站| 欧美日韩综合久久久久久| av福利片在线观看| 青春草国产在线视频| 热re99久久精品国产66热6| 欧美极品一区二区三区四区| 妹子高潮喷水视频| 黑人猛操日本美女一级片| 欧美性感艳星| 天堂8中文在线网| 成年人午夜在线观看视频| 国产人妻一区二区三区在| 久久久久久久久久久丰满| 中文资源天堂在线| 天堂中文最新版在线下载| 亚洲欧美日韩无卡精品| 日韩制服骚丝袜av| av一本久久久久| 深爱激情五月婷婷| 简卡轻食公司| 纯流量卡能插随身wifi吗| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 免费观看a级毛片全部| 国产精品熟女久久久久浪| 精品99又大又爽又粗少妇毛片| kizo精华| 国产永久视频网站| 国产精品人妻久久久影院| 男女国产视频网站| 高清欧美精品videossex| 少妇熟女欧美另类| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 久久久久视频综合| 少妇裸体淫交视频免费看高清| 一本一本综合久久| 女的被弄到高潮叫床怎么办| 成人午夜精彩视频在线观看| av.在线天堂| 国内揄拍国产精品人妻在线| 亚洲精品国产色婷婷电影| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 久久精品国产亚洲av涩爱| 午夜日本视频在线| 国产精品免费大片| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| 久久鲁丝午夜福利片| 久久久久久九九精品二区国产| 黄片wwwwww| 人妻制服诱惑在线中文字幕| 汤姆久久久久久久影院中文字幕| 国产成人免费观看mmmm| 一边亲一边摸免费视频| 中文乱码字字幕精品一区二区三区| 99久久精品一区二区三区| 国产乱人视频| 各种免费的搞黄视频| 国产在视频线精品| 高清毛片免费看| 国产伦在线观看视频一区| 久久久久久久久久久免费av| 天天躁夜夜躁狠狠久久av| 寂寞人妻少妇视频99o| 国产精品蜜桃在线观看| 精品人妻一区二区三区麻豆| 高清视频免费观看一区二区| 亚洲精品视频女| 十分钟在线观看高清视频www | 日韩av不卡免费在线播放| 久久久久视频综合| 一级毛片我不卡| 熟妇人妻不卡中文字幕| 亚洲av中文字字幕乱码综合| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 国产高清有码在线观看视频| 色视频www国产| 高清视频免费观看一区二区| 久久精品人妻少妇| 精品久久国产蜜桃| 啦啦啦视频在线资源免费观看| 精品一区二区三区视频在线| 少妇的逼好多水| 国产高清有码在线观看视频| 在线亚洲精品国产二区图片欧美 | 草草在线视频免费看| av国产精品久久久久影院| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久丰满| 国产在线免费精品| av在线观看视频网站免费| 各种免费的搞黄视频| 亚洲高清免费不卡视频| 精品久久久久久久末码| 亚洲欧美一区二区三区黑人 | 久久久久国产精品人妻一区二区| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频 | 亚洲精品乱码久久久久久按摩| 欧美精品国产亚洲| 在线免费观看不下载黄p国产| 亚洲无线观看免费| av网站免费在线观看视频| 免费久久久久久久精品成人欧美视频 | av在线老鸭窝| 国产免费福利视频在线观看| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 国产欧美日韩精品一区二区| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 久久 成人 亚洲| 国产一级毛片在线| 性高湖久久久久久久久免费观看| 成人国产麻豆网| 国模一区二区三区四区视频| 国产大屁股一区二区在线视频| 一级毛片黄色毛片免费观看视频| 97超视频在线观看视频| 中文字幕精品免费在线观看视频 | 久久国产精品大桥未久av | 99久久中文字幕三级久久日本| 高清欧美精品videossex| 日韩一区二区视频免费看| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 黄色一级大片看看| 青春草国产在线视频| 最近中文字幕2019免费版| 舔av片在线| 极品少妇高潮喷水抽搐| 午夜福利在线观看免费完整高清在| 欧美另类一区| 美女中出高潮动态图| 婷婷色综合大香蕉| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 国产成人午夜福利电影在线观看| 日韩大片免费观看网站| 亚洲图色成人| 在线观看一区二区三区| 水蜜桃什么品种好| 1000部很黄的大片| videossex国产| 亚洲久久久国产精品| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 成人二区视频| 亚洲精品,欧美精品| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 18禁在线播放成人免费| 18+在线观看网站| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 日本-黄色视频高清免费观看| 国产精品精品国产色婷婷| 香蕉精品网在线| 性高湖久久久久久久久免费观看| 色吧在线观看| 成人无遮挡网站| 高清在线视频一区二区三区| 少妇高潮的动态图| av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 99热国产这里只有精品6| 青青草视频在线视频观看| 熟妇人妻不卡中文字幕| 亚洲精品aⅴ在线观看| 丰满乱子伦码专区| 嘟嘟电影网在线观看| 尾随美女入室| 搡女人真爽免费视频火全软件| 亚洲国产色片| 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 在线精品无人区一区二区三 | 国产成人aa在线观看| 国产伦精品一区二区三区视频9| 国产av国产精品国产| 久久久久久久亚洲中文字幕| 精品人妻偷拍中文字幕| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 精品久久久久久久久av| 男人爽女人下面视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 亚州av有码| 国产乱来视频区| 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 亚洲人成网站高清观看| 亚洲精品日韩在线中文字幕| 久久青草综合色| 乱系列少妇在线播放| 亚洲国产日韩一区二区| 少妇人妻 视频| av国产久精品久网站免费入址| 一级爰片在线观看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| videos熟女内射| 2022亚洲国产成人精品| 嫩草影院新地址| 国产色爽女视频免费观看| 国产黄色免费在线视频| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 只有这里有精品99| 亚洲国产最新在线播放| 日韩欧美一区视频在线观看 | 亚洲欧美精品自产自拍| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 永久免费av网站大全| 成人漫画全彩无遮挡| 欧美日韩亚洲高清精品| 人妻夜夜爽99麻豆av| 免费观看在线日韩| 在线看a的网站| 国产男女内射视频| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 搡老乐熟女国产| 欧美成人午夜免费资源| 国产免费一级a男人的天堂| 青青草视频在线视频观看| tube8黄色片| 国产真实伦视频高清在线观看| 美女cb高潮喷水在线观看| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 伦理电影免费视频| 欧美 日韩 精品 国产| 永久免费av网站大全| 啦啦啦视频在线资源免费观看| 成年女人在线观看亚洲视频| 国产精品无大码| 97热精品久久久久久| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 亚洲欧美日韩卡通动漫| 成年女人在线观看亚洲视频| 久久精品久久久久久噜噜老黄| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 欧美xxxx性猛交bbbb| 亚洲一区二区三区欧美精品| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 嘟嘟电影网在线观看| 日本午夜av视频| 亚洲国产成人一精品久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 少妇精品久久久久久久| 有码 亚洲区| a级一级毛片免费在线观看| 国产亚洲午夜精品一区二区久久| kizo精华| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| 国产免费视频播放在线视频| 人体艺术视频欧美日本| 嫩草影院入口| 人人妻人人爽人人添夜夜欢视频 | 18禁裸乳无遮挡免费网站照片| 精品视频人人做人人爽| 亚洲国产av新网站| 99热6这里只有精品| 九九在线视频观看精品| 观看美女的网站| 秋霞伦理黄片| 日本wwww免费看| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| 日日撸夜夜添| 嘟嘟电影网在线观看| 亚洲精品乱码久久久久久按摩| 美女cb高潮喷水在线观看| 黄色配什么色好看| 激情 狠狠 欧美| 欧美97在线视频| 久久久久久伊人网av| 中文字幕免费在线视频6| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 免费av不卡在线播放| 一级二级三级毛片免费看| 中文资源天堂在线| 久久 成人 亚洲| 欧美日韩综合久久久久久| 亚洲四区av| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 中文天堂在线官网| 日本欧美国产在线视频| 国产欧美日韩精品一区二区| 亚洲三级黄色毛片| 99热国产这里只有精品6| 99热全是精品| 色吧在线观看| 精品国产三级普通话版| 一区二区三区免费毛片| 秋霞伦理黄片| 99久久精品热视频| 妹子高潮喷水视频| 亚洲精品亚洲一区二区| 热99国产精品久久久久久7| av天堂中文字幕网| 2018国产大陆天天弄谢| 精品亚洲成国产av| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 国产免费福利视频在线观看| 一级毛片我不卡| 国产精品.久久久| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 欧美一区二区亚洲| .国产精品久久| 婷婷色综合www| 我的老师免费观看完整版| 国产精品99久久99久久久不卡 | 国产成人午夜福利电影在线观看| 嫩草影院新地址| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 国产极品天堂在线| 欧美高清性xxxxhd video| 亚洲精品色激情综合| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 少妇高潮的动态图| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 久久久久久久国产电影| 在线观看三级黄色| 免费看不卡的av| 亚洲aⅴ乱码一区二区在线播放| 你懂的网址亚洲精品在线观看| 成年人午夜在线观看视频| 自拍偷自拍亚洲精品老妇| 高清毛片免费看| 啦啦啦在线观看免费高清www| 熟女av电影| 大片免费播放器 马上看| 两个人的视频大全免费| 亚洲精品中文字幕在线视频 | 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 久久久午夜欧美精品| 老司机影院成人| 成人亚洲精品一区在线观看 | 亚洲国产色片| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 久久国产精品大桥未久av | 婷婷色综合www| 国产熟女欧美一区二区| 性色avwww在线观看| 欧美区成人在线视频| 欧美zozozo另类| 大香蕉久久网| 久久6这里有精品| 亚洲欧美成人精品一区二区| 欧美另类一区| 中文字幕久久专区| 大码成人一级视频| av在线老鸭窝| 色吧在线观看| 精品亚洲成a人片在线观看 | 中文字幕免费在线视频6| 亚洲熟女精品中文字幕| 人妻系列 视频| 在线观看免费日韩欧美大片 | 国产高清国产精品国产三级 | 好男人视频免费观看在线| 国产高潮美女av| 国产精品蜜桃在线观看| 欧美精品国产亚洲| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 只有这里有精品99| 在线观看人妻少妇| 欧美一区二区亚洲| 精品熟女少妇av免费看| 婷婷色av中文字幕| 亚洲av福利一区| 日韩国内少妇激情av| 国模一区二区三区四区视频| 午夜福利在线在线| 老师上课跳d突然被开到最大视频| 国产精品欧美亚洲77777| 内射极品少妇av片p| 国内精品宾馆在线| 观看av在线不卡| 大又大粗又爽又黄少妇毛片口| 久久精品久久精品一区二区三区| 人妻夜夜爽99麻豆av| 特大巨黑吊av在线直播| 日韩av免费高清视频| 不卡视频在线观看欧美| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 老女人水多毛片| 天堂8中文在线网| 亚洲第一区二区三区不卡| 免费看av在线观看网站| 在线观看三级黄色| 免费大片黄手机在线观看| 亚洲欧美中文字幕日韩二区| 日韩不卡一区二区三区视频在线| 国产午夜精品一二区理论片| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 国产色爽女视频免费观看| 观看美女的网站| 肉色欧美久久久久久久蜜桃| 久久久久久久精品精品| 十八禁网站网址无遮挡 | 国产色婷婷99| 免费观看无遮挡的男女| 国产乱人视频| av在线app专区| 久久人人爽人人爽人人片va| 老熟女久久久| 欧美另类一区| 色综合色国产| 国产中年淑女户外野战色| 国产精品一及| 人人妻人人看人人澡| 人人妻人人添人人爽欧美一区卜 | 欧美成人一区二区免费高清观看| 亚洲真实伦在线观看| 99热这里只有是精品50| 久久6这里有精品| 91午夜精品亚洲一区二区三区| av黄色大香蕉| 综合色丁香网| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 成人漫画全彩无遮挡| 国产免费福利视频在线观看| 久久久久久久国产电影| 国产亚洲最大av| 国产av精品麻豆| 久久99热6这里只有精品| 国产男人的电影天堂91| 三级经典国产精品| 国产精品一二三区在线看| 欧美精品国产亚洲| 一个人看的www免费观看视频| 99热这里只有是精品在线观看| 亚洲av福利一区| 国产白丝娇喘喷水9色精品| 国产乱来视频区| 中文精品一卡2卡3卡4更新| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产专区5o| 精品午夜福利在线看| 成人亚洲精品一区在线观看 | 国产爱豆传媒在线观看| 97在线人人人人妻| 亚洲精品久久午夜乱码| 亚洲激情五月婷婷啪啪| 国产一区有黄有色的免费视频|