• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB

    2022-09-24 08:03:54HongWang王虹ZunrenLv呂尊仁ShuaiWang汪帥HaomiaoWang王浩淼HongyuChai柴宏宇XiaoguangYang楊曉光LeiMeng孟磊ChenJi吉晨andTaoYang楊濤
    Chinese Physics B 2022年9期
    關(guān)鍵詞:楊濤

    Hong Wang(王虹) Zunren Lv(呂尊仁) Shuai Wang(汪帥) Haomiao Wang(王浩淼)Hongyu Chai(柴宏宇) Xiaoguang Yang(楊曉光) Lei Meng(孟磊)Chen Ji(吉晨) and Tao Yang(楊濤)

    1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China

    4Zhejiang Laboratory,Hangzhou 310027,China

    Keywords: chirped quantum-dot,superluminescent diodes,direct Si doping

    1. Introduction

    A superluminescent diode (SLD) is an ideal optical broadband source for applications such as fiber optic gyroscopes (FOGs), wavelength-division multiplexing (WDM)and optical coherence tomography(OCT).[1-4]The SLD emitting at 1.3 μm is very important for OCT because it has the lowest absorption in human tissue.Resolution is the key to the imaging quality of OCT.The longitudinal resolution is determined by the coherence length(Lc)of the light source,which is related to the spectral width(Δλ)and center wavelength(λ0)byLc≈λ20/Δλ.[3]A wider spectral width can raise the resolution of the OCT.Moreover,a higher output power can improve the sensitivity of the system.[5]Therefore, a simultaneous increase in the output power and spectral width of the SLDs is highly desirable. In addition,the spectral dip is also an important parameter for SLDs,it refers to the value of the depression in the center of spectrum,which represents the flatness of the top of the spectrum.[6]Spectral dip can cause side lobes of the main peak in the point spread function (PSF) of the light source, which can cause noise in the OCT image and reduce the axial resolution.[3]Therefore, post-growth annealing process and optimization of chirped quantum dot(QD)structure are used to obtain the spectrum with flat top.[7,8]

    The application of QDs in the active region of SLDs has aroused great interest since it was first proposed, especially for InAs/GaAs QDs.[9-14]Due to the feature of self-assembled QDs grown by Stranski-Krastanow mode,they typically have a large size fluctuation and a Gaussian emission spectrum close to ideal. In addition, owing to the limited density of states for the ground state (GS) of the QDs, the emission of higher excited states(ESs)of the QDs can be easily achieved at a relatively small injection current density,leading to a broadened emission spectrum due to the simultaneous contribution of GS and ESs of QDs. Moreover, to further increase the spectral width of QD-SLDs, a chirped multilayer QD structure of the active region is commonly adopted by depositing strain-reducing layer(SRL)of different thicknesses.[15,16]Majid reported the spectrum dip from the central wavelength of 0.2 dB over 40-nm spans and that<1.5 dB over 300-nm spans for QD-SLDs with the InAs/InGaAs dot-in-a-well (DWELL)structure.[17]Recently, we reported that the spectrum dip is 1.2 dB for InAs/GaAs QD-SLD with direct Si doping in QDs when the spectral width was 105 nm.[18]For QD-SLDs with a central wavelength in the O-band, and utilizing the common contribution of GS and ES to broaden the spectrum,their spectrum dip is not less than 0.2 dB.[19-21]In addition, it is found that doping technology is often used to improve the performance of QD-SLDs, such as p-type modulation doping technology.[22]However, it can only increase the output power, but not broaden the spectrum. Another doping technology is direct Si doping technology.[23]It has been shown that direct Si doping can effectively enhance the performances of QD devices,such as lasers and solar cells.[24,25]Especially,it has been demonstrated that Si doping technology can simultaneously improve the output power and spectral width of QDSLDs.[18]

    In this paper, we demonstrated enhanced performances of InAs/GaAs chirped multilayer quantum-dot superluminescent diodes (CMQD-SLDs) with direct Si doping compared with ones without any doping in QDs. It was found that the output power of the doped CMQD-SLD is always higher than that of the undoped CMQD-SLD at identical injection currents. The maximum output power of the doped CMQDSLD reached 1.16 mW at 430 mA,while that of the undoped CMQD-SLD was only 0.06 mW at 290 mA, an increase of approximately 18.3%. The broadest half-maximum full width(FWHM)of the spectrum for the doped CMQD-SLD is 98 nm,compared to only 70 nm for the undoped CMQD-SLD,an increase of approximately 40%. Moreover, the spectral dip of the doped CMQD-SLD is decreased to 0.2 dB, which is the same as the minimum reported for QD-SLDs with a central wavelength in the O-band.[17-21]The improved performance of doped CMQD-SLD can be attributed to the direct doping of Si in the QDs, which passivates the nonradiative recombination centers within or near the QDs and provides excess carriers to occupy the higher excited states.[18,23-25]A shorter cavity length CMQD-SLD was also fabricated, and a maximum spectral width of 106 nm was obtained. In addition, through anti-reflection coating and device packing,the maximum output power and spectral width of CMQD-SLD with direct Si doping were increased to 16.6 mW and 114 nm,respectively.

    2. Experiment

    The InAs/GaAs CMQD-SLD samples used in the study were grown on n+GaAs(100)substrates by molecular beam epitaxy(MBE).The active region of the CMQD-SLD samples consists of ten stacked layers of~2.2 monolayers InAs QDs with or without Si doping. Each InAs QD layer was capped with an In0.17Ga0.83As SRL and a subsequent 40-nm-thick GaAs barrier layer after the QD layer was deposited. SRLs of different thicknesses were used to realize sequential shifts in the emission center wavelength of the QD layers. The Si atom doping concentration of the InAs QDs in the active region for the doped CMQD-SLD samples was 5×1017cm-3. Both the doped and undoped CMQD-SLD samples contain an n+-GaAs buffer layer, an n-Al0.4Ga0.6As lower-cladding layer, a GaAs lower-waveguide layer, an active region, an upper-waveguide layer, a p-Al0.4Ga0.6As upper-cladding layer, and a p+-GaAs contact layer. The devices were fabricated by standard photolithography,dry etching,contact metallization,and cleaving techniques. The width of the waveguide was 5μm. The“J”-shape ridge waveguide structure was used in this study,which was divided into two parts,one part was a straight waveguide,and the other part was a bent waveguide. We firstly fabricated devices with a cavity length of 3 mm(L=3 mm),with a bending region of 1 mm and a straight region of 2 mm. Next, to optimize the performance of the device, we also fabricated devices with the cavity length of 2 mm (L=2 mm), with a bending region of 1 mm and a straight region of 1 mm. To minimize the optical transmission losses,the curvature radius of the curved area was 0.8 cm.The bent region was tilted from the normal direction of the cleaved facet by 7°.

    3. Results and discussion

    Figures 1(a)and 1(b)show the power-dependent photoluminescence(PL)spectra of the active regions of the undoped and doped CMQD samples at room temperature (RT). One emission peak of 1289 nm is observed in Fig.1(a),so that the light emission of the undoped sample is mainly from the GSs of the QDs. As the pump power increased,the peak intensity of the PL spectra gradually increased, but the GS peak was always dominant. As the pump power was 5P0(P0=1 W),the FWHM of the PL spectra was only 154 nm. However,two emission peaks at 1203 nm and 1281 nm are observed in Fig.1(b).

    Fig.1. PL spectra from the active region of the doped(a)and undoped(b)samples at RT.

    The broad Gaussian-like emission at 1281 nm corresponds to the GS emission of QDs, while the combination of the emission at 1203 nm is the ES emission. As the pump power increased,the energy levels of ES were gradually filled,and the peak intensity of the ES gradually increased, and finally exceeded the peak intensity of the GS,while the FWHM of the PL spectra gradually increased. When the pump power was 5P0, the FWHM of the PL spectra was 175 nm. The broadened PL spectra for the doped sample is attributed to the direct Si doping providing excess electrons, which can lead to an increase in ES emission. It can be easily found from Fig. 1 that the peak intensity of the doped sample is approximately 2.03 times higher than that of the undoped sample at RT. This can be attributed to the fact that Si doping can inactivate the nonradiative recombination centers near or within the QDs and provide excess electrons to fill into higher energy levels,thereby effectively suppressing the nonradiative recombination process.[23]

    Fig.2. The P-I characteristics of the doped and undoped CMQD-SLDs measured at RT under CW.

    Figure 2 shows theP-Icharacteristics of the Si-doped and undoped CMQD-SLDs(L=3 mm)measured under continuous wave(CW)operation at RT.The original output power of the undoped sample is multiplied by ten and plotted in the graph. The cavity facet of the bent waveguide is defined as the front facet of the output. As shown in Fig.2,the CMQDSLDs have typicalP-Icharacteristics,whereP-Ishows a superlinear relationship. TheP-Icurve shows no knee,indicating the suppression of lasing. Furthermore, it can be clearly seen that the output power of Si-doped CMQD-SLD is always higher than that of undoped CMQD-SLD under the same injection currents. This shows that the doped sample has lower output power consumption at the same injection current. In particular,the maximum output power of the Si-doped sample reaches 1.16 mW at 430 mA,while that of the undoped sample is only 0.06 mW at 290 mA.The increase in output power of the doped sample can be attributed to the fact that Si doping can inactivate nonradiative recombination centers near or within QDs,thereby effectively inhibiting the nonradiative recombination process.[23]As the injection current increases,the output power of the CMQD-SLDs reaches a maximum value and then begins to decrease due to the carrier thermal escape at higher injection currents.

    Figure 3 presents the optical spectra of the undoped and doped CMQD-SLDs measured at RT. The optical spectra of undoped CMQD-SLD are shown in Fig. 3(a). As the injection current increases, carriers fill higher energy levels, and the center wavelength of the optical spectra gradually shifts to blue and then to red. There is also a gradual increase in the FWHM of the spectrum. The broadest FWHM of spectrum is 70 nm at 500 mA.Additionally,at higher injection currents,the self-heating of the device becomes apparent,and the output power no longer increases.All spectra show a Gaussian shape,and there do not change significantly with increasing injection current. It can be inferred from the central wavelength position of the spectra that the carriers are mainly filled with the GSs of the QDs,so the optical emission of the undoped sample mainly originates from the GSs of the QDs. The optical spectra of doped CMQD-SLD are shown in Fig. 3(b). When the injection current is small, the carriers are randomly filled into each QD in the active region, and preferentially recombine in QDs with a larger size and lower energy level. In this case, the device has a long luminescence wavelength and the device’s luminescence comes mainly from the contribution of spontaneous emission, with a large spectral width. With increasing injection current, the carriers fill into the small and high-energy QDs,and the luminous wavelength of the device is blue shifted. When the peak intensity from the ES of the QDs is equal to that from the GS of the QDs (GS=ES), the spectral FWHM is the broadest. When the injection current is 200 mA, the doped sample achieves the GS=ES regime,and the spectral FWHM is 98 nm. At the maximum spectral FWHM,the output power of the doped sample is 0.5 mW.As the injection current is further increased, the peak of the ES dominates,while the spectral width seems to decrease rapidly due to the significant increase in the contribution of stimulated emission. Since direct Si doping provides excess electrons,more carriers would fill into the ESs of the QDs,and the doped sample achieves the GS=ES regime. For the undoped sample,the GS peak always dominates,and the ES of QDs can not emit. However, the obvious advantage of SLDs with QDs as the active region is to use the common contribution of GS and ES to broaden the optical spectrum. Direct doping with Si enhances the exploitation of this advantage. When the FWHM of the spectrum is at its broadest, the spectrum dip over this range is<0.2 dB, which is smaller than that of the uniform multilayer QD-SLD.[18]Figure 3(c)shows the corresponding change in the FWHM of undoped and doped CMQD-SLD as the injection current increases. The spectral FWHM of the undoped sample continues to increase with increasing injection current. Since the gain of the undoped active region is small,there is still only the GS emission of the QDs before the selfheating effect of the device due to the high injection current is obvious. Due to the ES emission of doped CMQD-SLD,the FWHM of the spectrum has a tendency to increase first and then decrease. The broadest FWHM of the spectrum of the doped sample is broader than that of the undoped sample.This can also be attributed to the fact that Si doping provides excess electrons,allowing carriers to be filled to higher energy levels.

    Fig.3.Optical spectra of the(a)undoped and(b)doped CMQD-SLDs(L=3 mm)measured at RT,(c)the corresponding change in the FWHM of(a)and(b),with increasing injection current.

    Fig.4. (a)The P-I characteristics of doped CMQD-SLD(L=2 mm)measured at RT under CW and the corresponding change in the FWHM of spectrum of device, with increasing injection current. (b) Optical spectra of doped CMQD-SLD(L=2 mm).

    Next, the performance of the doped CMQD-SLD with a shorter cavity of 2 mm is also measured. For the doped CMQD-SLD(L=2 mm),the maximum output power reaches 0.95 mW at 390 mA,as shown in Fig.4(a). The output power of the sample saturates at 390 mA due to the shorter gain length of the sample than that of the above device. Figure 4(b)presents the RT optical spectra of the doped CMQD-SLD(L=2 mm). The spectral variation of the doped CMQD-SLD(L=2 mm)with the injection current follows the same rule as that of the doped CMQD-SLD (L=3 mm) described above.When the injection current is 110 mA,the sample achieves the GS=ES regime,the spectral FWHM is 106 nm,the spectrum dip over 106-nm spans is~0.2 dB, and the output power is 0.11 mW.Figure 4(a)also shows the corresponding change in the FWHM of the spectrum with increasing injection current.The spectral FWHM of the doped CMQD-SLDs all show the same changing law. First, the GS emission is dominant. As the current increases,the peak intensity of the ES is gradually higher than that of the GS,and finally,the ES emission dominates. The broadest spectral FWHM of the sample is wider than that of the doped CMQD-SLD (L=3 mm). The reason is that the length of the straight waveguide of the doped CMQD-SLD (L=3 mm) is longer than that of the sample.The increase in the length of the straight waveguide increases the gain, which is obtained when the light travels back and forth in the waveguide,and increases the proportion of the excited emission,thus reducing the FWHM of the spectrum.

    Finally,the facet of the bent region of the doped CMQDSLD (L=2 mm) is covered by antireflection (AR) coating(reflectance below 1%) to reduce the reflection and suppress lasing. The samples are loaded with the p-side up on a thermoelectric cooler (TEC) stage, and the device temperature is maintained at 25°C during the measurements. The output power of the sample is 16.6 mW at 850 mA measured under CW operation at 25°C,as shown in Fig.5(a). Figure 5(b)presents the optical spectra of the sample. When the injection current is 150 mA,the sample achieves the GS=ES regime,with a spectral FWHM of 114 nm,a spectral dip of~0.2 dB in this range and an output power of 0.16 mW.After the spectrum is dominated by the peak of ES, the spectrum width shows a trend of first decreasing and then increasing. When the injected current is greater than 600 mA,the spectrum width increases, which is due to the improved heat dissipation efficiency of the device that enables the injected carriers to be filled to a higher energy level. When the injection current is 850 mA, the spectral FWHM is 114 nm. The active region structure,the quality of the AR coating and the package structure continue to be optimized to achieve higher device performance.

    Fig.5. (a)The P-I characteristics of doped CMQD-SLD(L=2 mm)with AR coating measured at RT under CW and the corresponding change in the FWHM of spectrum of device, with increasing injection current. (b)Optical spectra of doped CMQD-SLD(L=2 mm)with AR coating.

    4. Conclusion

    In conclusion, the InAs/GaAs CMQD-SLDs with and without direct Si doping in QDs are fabricated and characterized, and the results show that the output power of the doped CMQD-SLD is invariably higher than that of the undoped CMQD-SLD under the same injection current. The maximum output power of the doped CMQD-SLD reaches 1.16 mW at 430 mA, while that of the undoped QD-SLD is only 0.06 mW at 290 mA.The maximum spectral FWHM of the doped CMQD-SLD is 98 nm at 200 mA, but it is only 70 nm at 500 mA for the undoped CMQD-SLD.Furthermore,the doped CMQD-SLD has the smallest spectral dip of 0.2 dB at an injection current of 200 mA.We also fabricate CMQDSLDs with a shorter cavity length and obtain a maximum spectral width of 106 nm. In addition, to further optimize the device performance,the facet of the bent region of doped CMQD-SLD is covered by AR coating, and the samples are loaded with the p-side up on a TEC stage. The performance of the doped CMQD-SLD is achieved with a maximum output power of 16.6 mW and a spectral width of 114 nm.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62035012, 62074143, and 62004191)and Zhejiang Lab(Grant No.2020LC0AD02).

    猜你喜歡
    楊濤
    目擊
    傳承好紅巖精神 走好新時(shí)代長(zhǎng)征路
    九龍坡:一江繞半島 藝術(shù)煥新生
    Distribution of charged lunar dust in the south polar region of the moon
    Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential?
    Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots*
    THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL
    The Role of Teacher , Learner and Material in Foreign Language Teaching and Learning
    Changes in fi sh diversity and community structure in the central and southern Yellow Sea from 2003 to 2015*
    訣別詩(shī)
    精品久久久久久成人av| 久久久久国产精品人妻aⅴ院| 欧美+日韩+精品| 91狼人影院| 国产亚洲精品综合一区在线观看| 搡老熟女国产l中国老女人| 国产探花极品一区二区| 看黄色毛片网站| 99久久精品一区二区三区| 国产探花在线观看一区二区| 天堂网av新在线| 亚洲欧美日韩东京热| 国产亚洲精品综合一区在线观看| 天堂网av新在线| 真实男女啪啪啪动态图| 蜜桃亚洲精品一区二区三区| 成年免费大片在线观看| 久久久国产成人精品二区| 精品免费久久久久久久清纯| 十八禁人妻一区二区| 精品久久久久久久末码| 熟女人妻精品中文字幕| 亚洲美女搞黄在线观看 | 精华霜和精华液先用哪个| 久久国产乱子免费精品| 久久久久久久久大av| 色吧在线观看| 色噜噜av男人的天堂激情| 亚洲精品日韩av片在线观看| 18禁黄网站禁片免费观看直播| 日本精品一区二区三区蜜桃| 一夜夜www| 最近在线观看免费完整版| 老司机午夜福利在线观看视频| 人妻丰满熟妇av一区二区三区| 国产精品99久久久久久久久| 婷婷精品国产亚洲av| 久久久久久久久久成人| 国产精品国产高清国产av| 白带黄色成豆腐渣| 搞女人的毛片| 在线国产一区二区在线| 国内精品久久久久精免费| 99热这里只有精品一区| 亚洲国产色片| 色精品久久人妻99蜜桃| 性色av乱码一区二区三区2| 成年女人永久免费观看视频| 久久精品国产清高在天天线| 在线观看一区二区三区| www.色视频.com| 国内揄拍国产精品人妻在线| 久久人人精品亚洲av| 午夜a级毛片| 国产高清激情床上av| 3wmmmm亚洲av在线观看| 国产真实伦视频高清在线观看 | 欧美激情久久久久久爽电影| 午夜日韩欧美国产| 免费观看精品视频网站| 日本三级黄在线观看| 性欧美人与动物交配| 好男人在线观看高清免费视频| 午夜免费激情av| 99久久无色码亚洲精品果冻| 中文字幕熟女人妻在线| 欧美黑人欧美精品刺激| 久久久久久久久久黄片| 88av欧美| 亚洲熟妇中文字幕五十中出| 美女高潮喷水抽搐中文字幕| 精品午夜福利在线看| 最新中文字幕久久久久| 五月玫瑰六月丁香| 狠狠狠狠99中文字幕| 国产成人aa在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品不卡视频一区二区 | 亚洲,欧美,日韩| 国产乱人视频| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 一级a爱片免费观看的视频| 午夜a级毛片| 十八禁网站免费在线| 免费高清视频大片| 午夜亚洲福利在线播放| 麻豆成人午夜福利视频| 级片在线观看| 国产伦一二天堂av在线观看| 成人欧美大片| 国内精品一区二区在线观看| 成人av一区二区三区在线看| 3wmmmm亚洲av在线观看| 亚洲国产欧美人成| 最近最新免费中文字幕在线| 日本黄色片子视频| 啦啦啦观看免费观看视频高清| 成人欧美大片| 别揉我奶头~嗯~啊~动态视频| 久久久久国内视频| a在线观看视频网站| 两人在一起打扑克的视频| 国产精品野战在线观看| 亚洲中文字幕一区二区三区有码在线看| 中文亚洲av片在线观看爽| 国产老妇女一区| 亚洲成人久久性| 最新中文字幕久久久久| 搡老妇女老女人老熟妇| 国产v大片淫在线免费观看| 精品国内亚洲2022精品成人| 欧美精品啪啪一区二区三区| 12—13女人毛片做爰片一| 一级a爱片免费观看的视频| 免费高清视频大片| 免费高清视频大片| 身体一侧抽搐| 美女大奶头视频| 黄色女人牲交| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区蜜桃av| 热99re8久久精品国产| 一本精品99久久精品77| 久久久久久久久久成人| 我的女老师完整版在线观看| 久9热在线精品视频| 国产综合懂色| 丰满人妻一区二区三区视频av| 三级国产精品欧美在线观看| 国产精品免费一区二区三区在线| 日韩高清综合在线| 能在线免费观看的黄片| 国产亚洲欧美98| 精品人妻一区二区三区麻豆 | 亚洲经典国产精华液单 | 久久久久久久精品吃奶| 久久6这里有精品| 亚洲人与动物交配视频| 天堂影院成人在线观看| 99国产精品一区二区三区| 好男人电影高清在线观看| 五月玫瑰六月丁香| 91麻豆av在线| 国产高潮美女av| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 在线观看舔阴道视频| 一区福利在线观看| 国产成人av教育| 99国产精品一区二区三区| 欧美午夜高清在线| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 久久精品夜夜夜夜夜久久蜜豆| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 看黄色毛片网站| avwww免费| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 亚洲五月婷婷丁香| 国产又黄又爽又无遮挡在线| 舔av片在线| 噜噜噜噜噜久久久久久91| 18禁裸乳无遮挡免费网站照片| 国产精品美女特级片免费视频播放器| 国产av麻豆久久久久久久| 女同久久另类99精品国产91| 两个人的视频大全免费| 香蕉av资源在线| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 在线播放国产精品三级| 亚洲色图av天堂| 久久精品国产自在天天线| 一区二区三区四区激情视频 | 亚洲经典国产精华液单 | 内射极品少妇av片p| 亚洲激情在线av| 免费在线观看亚洲国产| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 亚洲精品乱码久久久v下载方式| 免费在线观看影片大全网站| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 婷婷亚洲欧美| 国产成人福利小说| 99久久精品热视频| 99久久精品国产亚洲精品| 网址你懂的国产日韩在线| 国产国拍精品亚洲av在线观看| 国产精品亚洲av一区麻豆| 欧美日韩综合久久久久久 | 91在线精品国自产拍蜜月| 亚洲在线自拍视频| 男人舔女人下体高潮全视频| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 欧美在线黄色| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| or卡值多少钱| 免费在线观看日本一区| 少妇丰满av| 国产成人aa在线观看| 亚洲经典国产精华液单 | 精品福利观看| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 一本一本综合久久| 小说图片视频综合网站| 日本a在线网址| 国产色婷婷99| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 国产老妇女一区| 欧美一区二区亚洲| 日韩大尺度精品在线看网址| 久久久久久久久大av| 很黄的视频免费| 国产精品亚洲一级av第二区| 变态另类丝袜制服| 久99久视频精品免费| 国产精品自产拍在线观看55亚洲| 免费看美女性在线毛片视频| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 亚洲国产欧洲综合997久久,| av黄色大香蕉| 国产不卡一卡二| 少妇人妻精品综合一区二区 | 亚洲,欧美精品.| 欧美中文日本在线观看视频| 内射极品少妇av片p| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 国产精品亚洲av一区麻豆| 亚洲国产高清在线一区二区三| 床上黄色一级片| 亚洲人成伊人成综合网2020| 特级一级黄色大片| 精华霜和精华液先用哪个| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| 亚洲经典国产精华液单 | 校园春色视频在线观看| 欧美精品啪啪一区二区三区| 国产主播在线观看一区二区| 久9热在线精品视频| 真人做人爱边吃奶动态| 亚洲真实伦在线观看| 变态另类丝袜制服| 最近在线观看免费完整版| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 男人狂女人下面高潮的视频| 内射极品少妇av片p| 中文字幕人成人乱码亚洲影| 69av精品久久久久久| 内地一区二区视频在线| 小说图片视频综合网站| 俄罗斯特黄特色一大片| 久久精品国产亚洲av天美| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 真实男女啪啪啪动态图| 日韩欧美 国产精品| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 精品一区二区三区视频在线观看免费| 最近视频中文字幕2019在线8| bbb黄色大片| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av| 国内精品久久久久久久电影| 中文资源天堂在线| 国内揄拍国产精品人妻在线| 国产真实乱freesex| 欧美日本视频| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 日本免费一区二区三区高清不卡| 欧美成狂野欧美在线观看| 亚洲av二区三区四区| 我要搜黄色片| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 国产精品一及| 亚洲天堂国产精品一区在线| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 国产日本99.免费观看| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 精品福利观看| 欧美在线一区亚洲| 看十八女毛片水多多多| 欧美成人a在线观看| 欧美日韩瑟瑟在线播放| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 黄色配什么色好看| 天堂av国产一区二区熟女人妻| 91av网一区二区| 真人一进一出gif抽搐免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一及| 夜夜爽天天搞| 日本黄色片子视频| 亚洲av五月六月丁香网| 九九久久精品国产亚洲av麻豆| 亚洲精华国产精华精| 精品久久久久久久久久免费视频| 三级国产精品欧美在线观看| 成年女人永久免费观看视频| 国产精品伦人一区二区| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 日韩国内少妇激情av| 亚洲无线在线观看| 成人亚洲精品av一区二区| 永久网站在线| 变态另类丝袜制服| 午夜久久久久精精品| 99视频精品全部免费 在线| 国产成+人综合+亚洲专区| 欧美精品国产亚洲| 精品欧美国产一区二区三| 天天一区二区日本电影三级| 女生性感内裤真人,穿戴方法视频| 久久久久精品国产欧美久久久| 欧美区成人在线视频| 亚洲综合色惰| 午夜激情欧美在线| 一个人看视频在线观看www免费| 久久婷婷人人爽人人干人人爱| 在线看三级毛片| 神马国产精品三级电影在线观看| 97超级碰碰碰精品色视频在线观看| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区 | 久久久成人免费电影| 亚洲美女搞黄在线观看 | 日韩欧美精品v在线| 夜夜夜夜夜久久久久| 日本五十路高清| 一级黄片播放器| 午夜福利在线在线| 国产成人欧美在线观看| 婷婷色综合大香蕉| 欧美高清性xxxxhd video| 久久亚洲精品不卡| 乱码一卡2卡4卡精品| 色吧在线观看| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 99在线人妻在线中文字幕| 窝窝影院91人妻| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区视频9| 国产精品永久免费网站| 神马国产精品三级电影在线观看| 国产成人影院久久av| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 黄色配什么色好看| 国产av不卡久久| 色av中文字幕| 久久热精品热| 日韩欧美精品免费久久 | 久久精品国产清高在天天线| 日本黄色片子视频| 变态另类成人亚洲欧美熟女| 精品久久国产蜜桃| 中文字幕免费在线视频6| 99久久久亚洲精品蜜臀av| 一区二区三区四区激情视频 | 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 日日夜夜操网爽| 欧美bdsm另类| xxxwww97欧美| 三级国产精品欧美在线观看| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看| 欧美精品国产亚洲| 国产精品伦人一区二区| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩卡通动漫| 在线国产一区二区在线| 久久中文看片网| 精品日产1卡2卡| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 免费看光身美女| 久久久久久国产a免费观看| av黄色大香蕉| 午夜a级毛片| 婷婷丁香在线五月| 精品人妻1区二区| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 欧美黑人欧美精品刺激| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区 | 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 国产精华一区二区三区| 国产黄片美女视频| 观看美女的网站| 午夜视频国产福利| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 可以在线观看的亚洲视频| 成人特级黄色片久久久久久久| 免费无遮挡裸体视频| 婷婷精品国产亚洲av| 国产黄色小视频在线观看| 国产精品不卡视频一区二区 | 高潮久久久久久久久久久不卡| 免费av毛片视频| 老司机福利观看| 女同久久另类99精品国产91| 天堂动漫精品| 天堂影院成人在线观看| 色哟哟哟哟哟哟| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区 | 波多野结衣巨乳人妻| 国产av不卡久久| 久久国产精品人妻蜜桃| 搡女人真爽免费视频火全软件 | 亚洲美女黄片视频| bbb黄色大片| 日本免费一区二区三区高清不卡| 欧美乱妇无乱码| 在线天堂最新版资源| 一区二区三区四区激情视频 | 18禁黄网站禁片免费观看直播| 桃色一区二区三区在线观看| 男人舔奶头视频| 国产精品嫩草影院av在线观看 | 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 成人三级黄色视频| 三级毛片av免费| 一区二区三区高清视频在线| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频| 精品福利观看| 国产精品久久视频播放| 三级男女做爰猛烈吃奶摸视频| 性插视频无遮挡在线免费观看| 日本熟妇午夜| 极品教师在线免费播放| 波多野结衣巨乳人妻| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 精品日产1卡2卡| 最好的美女福利视频网| 99精品久久久久人妻精品| 黄色日韩在线| 久久亚洲真实| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 亚洲av电影在线进入| 看免费av毛片| 亚洲av.av天堂| 久久伊人香网站| 成人三级黄色视频| 热99re8久久精品国产| 99视频精品全部免费 在线| av视频在线观看入口| 在线播放无遮挡| 欧美精品国产亚洲| 国产在视频线在精品| 日韩中字成人| 欧美色欧美亚洲另类二区| 日韩欧美 国产精品| 性色avwww在线观看| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 午夜视频国产福利| 99热只有精品国产| 亚洲人成网站在线播| 日韩成人在线观看一区二区三区| 国产成人aa在线观看| 91字幕亚洲| 99riav亚洲国产免费| 亚洲av五月六月丁香网| 毛片一级片免费看久久久久 | 精品人妻偷拍中文字幕| 亚洲男人的天堂狠狠| 国产一区二区在线av高清观看| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 国产午夜精品久久久久久一区二区三区 | 在线免费观看的www视频| 欧美高清成人免费视频www| 中亚洲国语对白在线视频| 午夜福利高清视频| 欧美极品一区二区三区四区| 国产三级黄色录像| 国产白丝娇喘喷水9色精品| 精品熟女少妇八av免费久了| 精品国产三级普通话版| 看黄色毛片网站| 一区二区三区免费毛片| 日韩人妻高清精品专区| 精品久久久久久成人av| 国产三级黄色录像| 欧美最新免费一区二区三区 | 悠悠久久av| 欧美极品一区二区三区四区| 成年女人永久免费观看视频| 亚洲专区国产一区二区| 国产视频内射| 亚洲,欧美精品.| 国产探花极品一区二区| av女优亚洲男人天堂| 国产一区二区在线观看日韩| 国产伦精品一区二区三区四那| 日本 欧美在线| av天堂在线播放| 中文在线观看免费www的网站| 乱人视频在线观看| 中文亚洲av片在线观看爽| 成人鲁丝片一二三区免费| www.999成人在线观看| 久久久久国产精品人妻aⅴ院| av女优亚洲男人天堂| 精品国产三级普通话版| 9191精品国产免费久久| 桃红色精品国产亚洲av| 美女免费视频网站| 99久久精品一区二区三区| 亚洲精品影视一区二区三区av| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 男女之事视频高清在线观看| 91久久精品电影网| 99久久成人亚洲精品观看| 偷拍熟女少妇极品色| 日本黄色视频三级网站网址| 久久草成人影院| 国产三级黄色录像| 欧美区成人在线视频| 免费看日本二区| 成年女人永久免费观看视频| 国产老妇女一区| 国产精品伦人一区二区| 国产一区二区亚洲精品在线观看| 一级黄色大片毛片| 美女高潮的动态| 国产国拍精品亚洲av在线观看| 伦理电影大哥的女人| 久久久久性生活片| 欧美黄色片欧美黄色片| 757午夜福利合集在线观看| 无人区码免费观看不卡| 久久久久久久久久黄片| 成人国产综合亚洲| 精品无人区乱码1区二区| 国产精品免费一区二区三区在线| 亚洲最大成人中文| 日韩 亚洲 欧美在线| 国产精品一及| 在线十欧美十亚洲十日本专区| 午夜激情欧美在线| 欧美黑人欧美精品刺激| 网址你懂的国产日韩在线| 亚洲欧美清纯卡通| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 色综合亚洲欧美另类图片| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 久久久色成人| 亚洲精品日韩av片在线观看| 黄色丝袜av网址大全|