• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shaly detritus embedded epoxy-resin coated proppants

    2022-09-23 08:14:02ZhoHuiLuXiuPingLnYongYunJinKunZhouSiYunChenFnFnYingChunNiuShouZhenLiKiYiHuYngZhouQunXu
    Petroleum Science 2022年4期

    Zho-Hui Lu , Xiu-Ping Ln , Yong Yun , Jin-Kun Zhou , Si-Yun Chen ,Fn Fn ,Ying-Chun Niu , Shou-Zhen Li , Ki-Yi Hu , Yng Zhou ,*, Qun Xu ,**

    a Key Laboratory of Shale Gas Exploration,Ministry of Natural Resources,Chongqing Institute of Geology and Mineral Resources,Chongqing,401120,China

    b State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing,102249, China

    Keywords:Coated proppant Shaly detritus Hydrophobicity Conductivity

    ABSTRACT Proppant plays a significant role in the hydraulic fracturing process,which can affect the production of oil and gas wells.Due to the high density and low adhesion force,the settling speed of traditional proppants is fast, which will lead to the blockage of a crack channel. In this study, a proppant with double layer structure is fabricated by coating epoxy-resin and shaly detritus on ceramic proppants for the first time,respectively.The epoxy-resin enables the shaly detritus to be coated on the proppant successfully,which can provide a new method for shaly detritus treatment.The adhesive ability of shaly detritus and epoxyresin coated proppants (SEPs) is improved by 10.4% under the load force of 500 nN, which prolongs the time for the fracture to close. At the same time, the suspending ability of SEPs is two times higher than the uncoated proppants.Once the guar gum solution concentration is 0.3 wt%,the settling time of SEPs is 36.7% longer than that of the uncoated proppants, which can effectively reduce the settlement of proppants in the crack.In addition,the hydrophobicity of the SEPs is enhanced,which reduces the wateroil ratio of crude oil and increases the liquid conductivity tested by deionized water. In summary, this new proppant is expected to promote the development of unconventional oil and gas resources.

    1. Introduction

    Shale oil is of unconventional oil and gas resource (Kim, 2020;He et al.,2021).The successful development of shale oil can provide energy continuously, which will reduce the dependence on external energy of China(Xu et al.,2019;Wang et al.,2019;Li et al.,2020).Hydraulic fracturing is considered to be an effective method to improve unconventional oil and gas recovery(Cheng et al.,2020;Zhang, 2014; Hu et al., 2018). It continuously injects viscous fluids into the ground until fluid pressure is sufficient to fracture formation. (Thomas et al., 2019). Proppant is a critical material in hydraulic fracturing, which could withstand high closure stresses to support the fractures from closing (Tang et al., 2018; Wang et al.,2018a; Bandara et al., 2020). The proppants are pumped into the fracture with the fracturing fluid to keep fractures open (Li et al.2018a, 2018b; Osiptsov. 2017). With the development of hydraulic fracturing technology, various materials have been used as proppants such as rounded silica sand,glass balls,and aluminum balls,etc. Due to density, cost, and particle size reasons, glass ball- and aluminum ball-based proppants are rarely used (Reinicke et al.,2010; Mocciaro et al., 2018; Liu et al., 2015). Nowadays, ceramic proppants and resin-coated proppants are currently the most widely used proppants in hydraulic fracturing(Xie et al.,2019;Wu et al., 2017; Zhang et al., 2017a; Yao et al., 2019).

    Ceramic proppants are artificial proppant, which are mainly made by bauxite and kaolin (Feng et al., 2021; Neto et al., 2015).Ceramic proppants have a higher anti-fragmentation rate and better thermal/chemical stability (Li et al., 2018c; Cui et al., 2017;Man and Wong, 2017). However, ceramic proppants have the disadvantages of high density, complex manufacturing process, and high cost,which limits their widespread usage(Wang et al.,2018b;Hao et al., 2018; Ren et al., 2019). Compared with the ceramic proppants,the density of resin-coated proppants is lower,which is easier to be spread to the upper and distal fracture(Wei et al.,2020;Zhang et al., 2017b). At the same time, the resin-coated proppants have larger strength due to the higher sphericity,which can provide high stack density to improve the pack strength. During the hydraulic fracturing process, a small amount of resin-coated proppants will be mixed with normal proppants, which will increase the efficiency of oil and gas exploitation and reduce the usage of normal proppants to reduce the cost of proppant(Xu et al.,2021; Lan et al., 2020; Zhang et al., 2015).

    In this work,for the first time,we have fabricated shaly detritus coated proppants successfully. Shaly detritus is a kind of drilling waste, traditional drilling waste treatment methods, such as calcination and landfill, will pollute land and air. This preparation method of SEPs makes the shaly detritus was flowed back to the ground with proppants without polluting the environment. SEPs have a two-layer structure,the resin layer acts a shell coated on the ceramic proppant core, and the shaly detritus layer is adhered on the surface of the resin layer. The adhesion force of the coated proppant increased by 10.4%when the load force is 500 nN,which makes the SEPs easier to adhere to the surface of the fractures.The suspending ability of SEPs is twice that of the uncoated proppants,which will improve the liquid conductivity. At the same time, the settling time of the SEPs is longer 36.7% than that of the uncoated proppants under the guar gum solution concentration is 0.3%,which will make the SEPs migrate farther in the shale fractures.Besides,the contact angle of the SEPs increased by 13.0%and 13.4%in water and the guar gum solution, respectively, which will improve the permeability of the oil phase and ultimately improve the liquid conductivity.

    2. Materials and methods

    2.1. Materials

    The experimental materials mainly include ceramic proppants(40/60 mesh), guar gum, epoxy-resin e51, curing agent T31, and absolute ethanol.

    2.2. Preparation of SEPs

    Fig.1 shows the preparation process of SEPs (see Video: preparation process of SEPs.mp4).The ceramic proppants were added to the epoxy-resin liquid prepared in a fixed mass proportion(epoxyresin e51: curing agent = 3:1) and stirred at 300 rpm for 3 min.Then the shaly detritus was added to the mixed liquid in a fixed mass proportion(shaly detritus:epoxy-resin e51=3:7).The mixed liquid was heated in an oven at 60°C for 10 min.After heating,the mixed liquid was taken out and dried at room temperature for 1 h.Finally, the cooled block-shaped proppant was ground and screened.

    Fig.1. Schematic diagram of preparation process of SEPs.

    2.3. Adhesive experiment

    The adhesion force of proppant was measured by an atomic force microscope(AFM).The SEPs was placed on the sample stage.The AFM probe was manipulated to contact the surface of the proppant, which can test the adhesion force of the proppant at different conditions.

    2.4. Suspending experiment

    A total of 5 g SEPs was added to the guar gum solution. The solution was stirred at a stirring rate of 400 r/min for 10 min. The SEPs floated on the surface of the solution were collected and dried after stirring. The suspending ability (proppant weight on the surface/proppant weight at the bottom)of SEPs was calculated.And the suspending ability of ceramic proppant was calculated under the same condition.

    2.5. Characterization

    SEM and EDX images of the samples were captured using a scanning electron microscope (SEM, Zeiss sigma 500) and an energy dispersive X-ray spectrometer (EDS, Bruker Xflash 6/30).Optical contact angle measuring instrument(SDC-200)was used to measure the contact angle between proppant and water and guar gum solution (0.2 wt%). The test accuracy of the optical contact angle measuring instrument (SDC-200) is 0.1°. The test temperature and pressure of the contact angle are 25°C and 101.325 kPa,respectively.The liquid conductivity of the proppant was measured by the liquid conductivity tester FCS-842.

    3. Results and discussion

    The structure of shaly detritus and epoxy-resin coated proppants has been shown in Fig. 2a. Epoxy-resin was coated on the surface of commercial ceramic proppants, then shaly detritus was coated on the epoxy-resin surface. The scanning electron microscope(SEM)images and diagram of the surface morphology of the ceramic proppant, epoxy-resin, and shaly detritus are shown in Figs. S1-S2 (see electronic supplementary material). As shown in Fig. 2b, the scanning electron microscope (SEM) image of the surface morphology indicates that the surface of ceramic proppants is uneven. Fig. 2c and d displays the SEM images of epoxy-resin coated proppant and SEP. It can be seen from the results that the shaly detritus successfully adhered to the proppant.

    Fig. 2. (a) Diagrammatic sketch of the coating. SEM images of ceramic proppant (b), epoxy resin-coated proppant (c) and SEP (d), respectively.

    Fig. 3. SEM images of ceramic proppant(a),epoxy-resin coated proppant(g) and SEP(m).Distributions of silicon (b,h, n), aluminum (c, i,o), carbon (d,j,p), sulfur (e,k,q),and calcium (f, l, r) on the surface of ceramic proppant, epoxy-resin coated proppant and SEP, respectively.

    Fig.3a-r shows the energy-dispersive X-ray spectroscopy(EDX)results of ceramic proppant,epoxy-resin coated proppant,and SEP.It is found that the surface of ceramic proppant is silicon element(Fig. 3b) and aluminum element (Fig. 3c). Once the epoxy resin is coated to the surface of the proppant,carbon element can be found on the surface(Fig.3j),the silicon element(Fig.3h)and aluminum element (Fig. 3i) are almost disappeared, while the sulfur element(Fig.3k)and calcium element(Fig.3l)remained almost unchanged.Once the shaly detritus is coated, the silicon (Fig. 3n), aluminum(Fig. 3o), sulfur (Fig. 3q), and calcium element (Fig. 3r) are on the surface of the SEP increase, while the carbon element (Fig. 3p)decrease. This result proves that shaly detritus is successfully coated to the surface of the proppant.

    3.1. Adhesive ability

    Fig. 4a shows the diagrammatic sketch of the adhesion force test. Adhesion force is the ability of a material to adhere to the surface of another material. As shown in Fig. 4b, the typical AFM force curve illustrates that the adhesion force is determined by the difference between extended and retracted force curves. The adhesion force of SEPs is larger than that of uncoated proppants,which will make the proppants easier to adhere to fractures and enhance the ability of liquid conductivity.

    Fig. 5a shows the variations of adhesion forces between SEPs and uncoated proppants in different load force conditions. The adhesion force of SEPs and uncoated proppants keep the same growth trend when the load force increased from 500 to 2000 nN,which illustrates that the shaly detritus did not change the relationship between the adhesion force and the load force. As the adhesion force of the SEPs is larger than that of the uncoated proppants under the same conditions, which is 10.4%, 1.9%, 4.8%,4.1%higher,respectively.Fig.5b displays the relationship between contact time and adhesion force. Once the contact time increased from 0.5 to 3.0 s,the adhesion force of SEPs was kept at 124 nN.The statistics show that there was no obvious change in adhesion force of SEPs and uncoated proppant with the increased contact time.However,the adhesion force of SEPs is larger than that of uncoated proppants under the same condition, which is 47.7%, 60.7%, 71.9%,14.06%, 104.5%, 108.7%, 99.0% higher, respectively. This demonstrates that the adhesion force of SEPs is enhanced,which prolongs the timeliness of the fracture crack. Meanwhile, proppants are easier to agglutinate together, which will improve the effect of supporting fractures.

    Fig. 4. (a) Diagrammatic sketch of the adhesion force test. (b) Typical AFM force curve in adhesion force measurement for a load force of 2 μN(yùn) and contact time of 2.5 s.

    Fig. 5. Adhesion performance of the uncoated proppants and SEPs at different load forces (a) and contact time (b).

    Fig. 6. Adhesion mechanism diagram of the uncoated proppants and SEPs.

    The ceramic proppant contains aluminum and silicon, which can form covalent bonds with sulfur and silicon element of rock(Fu et al., 2016;Wu and Wu, 2012). The main force between the crack surface and proppant is the van der Waals force (Hansson et al.,2013; Ma et al. 2019, 2020). Due to the weak van der Waals force,the uncoated proppants cannot adhere to the crack surface stably.The carbon element would have free electron pairs when the proppants were coated,which can form chemical bonds with sulfur on the surface crack including cohesive bonds and hydrogen bonds(Horadam et al.,2018;Xu et al.,2014;Wu et al.,2013).In addition,as the temperature of underground rock fractures rises, the chemical bonding force between carbon and sulfur further increases with the increase(Guo et al.,2017;Tan et al.,2017;Tong and Mohanty,2016).Because the chemical bond strength is higher than van der Waals force, the adhesion force of the SEPs is improved compared with the uncoated proppants, which will improve the fractures supporting ability (Fig. 6e) (Bandara et al., 2018; Barbati et al.,2016; Liu et al., 2016; Wang et al. 2018c, 2021).

    3.2. Suspending ability

    Fig. 7a shows the suspending effect of the uncoated proppants and SEPs. In the suspending experiments, the proppants were added to the guar gum solution (0.2 wt%) and constantly stirred.After standing for 15 min,17.7 wt%of the SEPs were suspended on the surface of the guar gum solution,and 72.3 wt%of the SEPs sank to the bottom of the solution. The suspending ability (proppant weight on the surface/proppant weight at the bottom) of SEPs is 0.245. However, the weight of the uncoated proppants suspended on the surface and sank to the bottom of the guar gum solution was just 10.1% and 89.9%, respectively (Fig. 7b). The suspending ability of uncoated proppants is just 0.112.The suspending ability of SEPs is twice that of uncoated proppants.There are many pits and pores on the surface of ceramic proppants. Once the resin-epoxy is coated,the pits and pores of ceramic proppant are filled with resinepoxy, which results in reduced proppant density. Therefore, the suspending ability of SEPs is better than the uncoated proppant.The photographs of SEPs settling experiments are shown in Fig.7c.In settling experiments,the proppants were added to the guar gum solution of different concentrations. The settling time of the proppants in the guar gum solution was recorded. As shown in Fig.7d,the results of settling experiments indicate that the settling time of the uncoated proppants and SEPs increased when the concentration of the guar gum solution increases.The reason is that the resistance of the solution increases with the increase in the guar gum content.Compared with the uncoated proppants,the settling time of the SEPs increased by 17.2%, 13.7%, 4%, 36.7%, 33.3%,respectively,which suggests that the SEPs migrate long distances in the fractures.

    3.3. Wettability and conductivity

    The contact angle experiment is conducted to evaluate the wettability of the proppants.Fig.8a shows that the contact angle of the uncoated proppants is 91.81°between water and the uncoated proppant.The contact angle is 103.66°between water and the SEPs(Fig.8b).The contact angles of the uncoated proppants and SEPs are 94.03°and 106.60°in the guar gum solution, respectively (Fig. 8c and d).The contact angle of the SEPs increased by 13.0%and 13.4%in water and the guar gum solution, respectively, which will improve the abilities of preventing water passing through, ultimately will promote the separation of water and oil phases.

    Fig. 9 shows the result of the liquid conductivity experiment of uncoated and SEPs in deionized water.The proppant concentration and the flow rate of deionized water are 5 kg/m2and 5 mL/min,respectively. With the increase in effective closure pressure, the liquid conductivity of uncoated proppants and SEPs reduced. The liquid conductivity of the SEPs is 17.2%,12.5%,7.1%,and 5.0%higher than that of the uncoated proppant,respectively.This indicates that SEPs could improve the liquid conductivity.

    Fig.10a and b shows the diagrammatic sketch of the migration and distribution of proppants in the fractures. Ceramic proppants are difficult to migrate long distances and easy to deposit at the entrance of the fracture crack,which will affect the liquid transport efficiency of proppants. The suspending and settling experiments could prove that the SEPs can migrate a longer distance in the crack,easier adhere to the fractures,which achieves better migrating and supporting effects.

    The results of adhesive ability test show that the SEPs shows higher adhesion force compared with the uncoated proppant,which can improve the effect of supporting fractures.The improved suspending ability of proppant reduces the dosage and cost of proppant. The contact angle of the SEPs increased by 13.0% and 13.4% in water and the guar gum solution, respectively, which can improve the permeability of the oil phase. Moreover, the liquid conductivity of SEPs is enhanced by 17.2%at 5 MPa effective closure pressure,which can improve oil and gas transportation efficiency.

    Fig.7. (a)Suspending effect of the uncoated proppants and SEPs.(b)Results of suspending experiments of the uncoated proppants and SEPs.(c)Settling distance of the SEPs in the guar gum solution. (d) Settling time of the uncoated proppants and SEPs in the guar gum solution.

    Fig. 8. Photographs of contact angles of uncoated proppants (a) and SEPs (b) in water. Photographs of contact angles of uncoated proppants (c) and SEPs (d) in the guar gum solution.

    Fig. 9. Liquid conductivity of uncoated proppant and SEPs under different pressure.

    4. Conclusions

    A new double layer proppant is prepared by caoting resin-epoxy and shaly detritus on the surface of ceramic proppant, shaly detritus and epoxy-resin coated proppants (SEPs), which has improved performance compared with the traditional ceramic proppant. The suspending ability of SEPs is two times more than that of the uncoated proppants. The liquid conductivity of SEPs is 17.2% higher than the uncoated proppants at 5 MPa. Besides, the adhesive ability and wettability of SEPs are better than that of the uncoated proppants. The preparation process of SEPs provides a new shaly detritus method for shaly detritus treatment without environmental pollution.

    Fig.10. Diagrammatic sketch of uncoated proppants (a) and SEPs (b).

    Acknowledgments

    This research was supported by the National Key Research and Development Program of China (Grant No. 2020YFC1808102), National Natural Science Foundation of China (No. 52074059),Chongqing Science Foundation for Distinguished Young Scholars(cstc2021jcyj-jqX0007)and Science Foundation of China University of Petroleum, Beijing (Nos. 2462019BJRC007, 2462019QNXZ02).

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.petsci.2022.03.022.

    国产精品久久久久久人妻精品电影 | 午夜影院在线不卡| 欧美少妇被猛烈插入视频| 亚洲在久久综合| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 乱人伦中国视频| 日韩欧美一区视频在线观看| tube8黄色片| 国产精品久久久av美女十八| kizo精华| 性高湖久久久久久久久免费观看| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区黑人| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 韩国高清视频一区二区三区| 国产成人一区二区在线| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 欧美人与善性xxx| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 国产探花极品一区二区| 国产精品偷伦视频观看了| 久久久久精品国产欧美久久久 | 大片电影免费在线观看免费| 水蜜桃什么品种好| 午夜福利一区二区在线看| 国产成人精品久久久久久| 极品人妻少妇av视频| 久久青草综合色| 另类精品久久| 岛国毛片在线播放| 国产一区二区在线观看av| 啦啦啦在线免费观看视频4| 一边摸一边做爽爽视频免费| 亚洲成人国产一区在线观看 | 国产人伦9x9x在线观看| 妹子高潮喷水视频| 国产成人精品福利久久| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜一区二区 | 嫩草影视91久久| 五月开心婷婷网| 国产熟女午夜一区二区三区| 色播在线永久视频| 亚洲欧美色中文字幕在线| 肉色欧美久久久久久久蜜桃| 美女扒开内裤让男人捅视频| 97人妻天天添夜夜摸| 亚洲国产看品久久| 亚洲精品视频女| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 亚洲第一青青草原| 在线观看免费午夜福利视频| 亚洲欧美一区二区三区久久| 日韩 欧美 亚洲 中文字幕| 国产福利在线免费观看视频| 久久ye,这里只有精品| 久久久久国产精品人妻一区二区| 亚洲在久久综合| 观看av在线不卡| 啦啦啦在线免费观看视频4| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 一级毛片电影观看| 欧美亚洲日本最大视频资源| 欧美最新免费一区二区三区| 啦啦啦在线观看免费高清www| av电影中文网址| 久久久国产欧美日韩av| 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 欧美成人精品欧美一级黄| 五月开心婷婷网| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 黑人欧美特级aaaaaa片| 国产精品蜜桃在线观看| 99精国产麻豆久久婷婷| 午夜久久久在线观看| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码 | 9热在线视频观看99| 久久久精品免费免费高清| 久久天躁狠狠躁夜夜2o2o | 狂野欧美激情性bbbbbb| 国产淫语在线视频| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 中文天堂在线官网| 在线观看国产h片| 热re99久久精品国产66热6| 啦啦啦 在线观看视频| 日韩不卡一区二区三区视频在线| 成年人午夜在线观看视频| av视频免费观看在线观看| 超色免费av| 午夜免费鲁丝| 一个人免费看片子| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 飞空精品影院首页| 精品国产露脸久久av麻豆| 亚洲成国产人片在线观看| 五月天丁香电影| 午夜免费男女啪啪视频观看| 成人国产麻豆网| 美国免费a级毛片| 国产又爽黄色视频| 国产精品一国产av| 美女福利国产在线| 精品人妻在线不人妻| 亚洲人成电影观看| 久久精品久久精品一区二区三区| 亚洲欧美色中文字幕在线| av网站免费在线观看视频| 久久午夜综合久久蜜桃| av在线app专区| 在线看a的网站| 欧美另类一区| 亚洲伊人色综图| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 搡老岳熟女国产| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 热re99久久国产66热| 国产亚洲av片在线观看秒播厂| 高清黄色对白视频在线免费看| 国产视频首页在线观看| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 最近中文字幕高清免费大全6| 国产亚洲精品第一综合不卡| 在线观看免费日韩欧美大片| 亚洲精品国产av成人精品| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 老汉色∧v一级毛片| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 在线观看www视频免费| 十八禁网站网址无遮挡| 2018国产大陆天天弄谢| 亚洲精品国产av蜜桃| 欧美激情高清一区二区三区 | 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 在现免费观看毛片| 五月开心婷婷网| 在线观看三级黄色| 丰满饥渴人妻一区二区三| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久免费观看电影| 嫩草影院入口| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 啦啦啦啦在线视频资源| 亚洲av日韩在线播放| 在线观看国产h片| 乱人伦中国视频| 国产精品 国内视频| 日韩成人av中文字幕在线观看| 精品亚洲成a人片在线观看| 色精品久久人妻99蜜桃| 啦啦啦在线免费观看视频4| 日本欧美视频一区| 成人手机av| 99久久99久久久精品蜜桃| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 久久久精品区二区三区| 午夜福利网站1000一区二区三区| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 亚洲 欧美在线| 精品人妻熟女毛片av久久网站| 国产成人欧美在线观看 | 男女床上黄色一级片免费看| 久久久久视频综合| 热re99久久精品国产66热6| 精品国产乱码久久久久久男人| 久久ye,这里只有精品| 老熟女久久久| 国产精品 国内视频| 欧美日韩视频高清一区二区三区二| 亚洲国产精品成人久久小说| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 晚上一个人看的免费电影| 蜜桃国产av成人99| 黄色视频在线播放观看不卡| 午夜福利乱码中文字幕| 成人亚洲精品一区在线观看| 男女边摸边吃奶| 青青草视频在线视频观看| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 人人妻人人澡人人看| 美国免费a级毛片| 久久久精品免费免费高清| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 蜜桃国产av成人99| 看免费成人av毛片| 日韩一卡2卡3卡4卡2021年| 91精品伊人久久大香线蕉| 青春草国产在线视频| 亚洲,欧美精品.| 波多野结衣一区麻豆| 好男人视频免费观看在线| 波多野结衣av一区二区av| 满18在线观看网站| 黑人猛操日本美女一级片| 免费看av在线观看网站| 国产在线免费精品| bbb黄色大片| 久久久国产一区二区| 又黄又粗又硬又大视频| 国产深夜福利视频在线观看| 中文字幕人妻丝袜一区二区 | 观看美女的网站| 一级a爱视频在线免费观看| 免费黄频网站在线观看国产| 日韩熟女老妇一区二区性免费视频| 亚洲免费av在线视频| av女优亚洲男人天堂| 久久天堂一区二区三区四区| 中文字幕人妻熟女乱码| 国产在视频线精品| 一区福利在线观看| 欧美亚洲 丝袜 人妻 在线| 丁香六月欧美| 国产在线一区二区三区精| 女人久久www免费人成看片| 国产1区2区3区精品| 久久人人爽人人片av| 免费黄网站久久成人精品| 五月开心婷婷网| av免费观看日本| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区久久久樱花| 啦啦啦在线观看免费高清www| 九色亚洲精品在线播放| 国产一卡二卡三卡精品 | 日本av手机在线免费观看| 午夜精品国产一区二区电影| 捣出白浆h1v1| 久久这里只有精品19| netflix在线观看网站| 搡老岳熟女国产| 视频在线观看一区二区三区| 久久99热这里只频精品6学生| 精品亚洲乱码少妇综合久久| 亚洲第一区二区三区不卡| av一本久久久久| 极品少妇高潮喷水抽搐| 成人手机av| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 超碰成人久久| 国产伦人伦偷精品视频| 亚洲精品国产av成人精品| 国产一区二区三区综合在线观看| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 国产精品 欧美亚洲| 精品亚洲成国产av| 亚洲国产av新网站| 亚洲图色成人| 久久这里只有精品19| 国产一级毛片在线| 两性夫妻黄色片| 久热爱精品视频在线9| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看 | 精品人妻在线不人妻| 亚洲一级一片aⅴ在线观看| 久久人人97超碰香蕉20202| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 老司机影院成人| 美女脱内裤让男人舔精品视频| 国产片内射在线| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 美女主播在线视频| 在线观看三级黄色| 国产精品99久久99久久久不卡 | 国产精品 欧美亚洲| 丰满饥渴人妻一区二区三| 欧美人与善性xxx| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区乱码不卡18| 欧美黑人精品巨大| 观看av在线不卡| 不卡av一区二区三区| 亚洲成人国产一区在线观看 | 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 精品人妻熟女毛片av久久网站| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区 | 高清黄色对白视频在线免费看| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| 在线看a的网站| 亚洲精品久久午夜乱码| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品国产亚洲av高清涩受| 99久久人妻综合| 日本一区二区免费在线视频| 免费黄网站久久成人精品| 美女主播在线视频| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 午夜精品国产一区二区电影| 亚洲欧美成人综合另类久久久| 女的被弄到高潮叫床怎么办| 别揉我奶头~嗯~啊~动态视频 | 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区国产| 18在线观看网站| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 亚洲熟女毛片儿| 又大又爽又粗| 另类精品久久| 看非洲黑人一级黄片| 欧美精品亚洲一区二区| 成年动漫av网址| 国产精品秋霞免费鲁丝片| 午夜激情av网站| 男女免费视频国产| 午夜激情av网站| 美女大奶头黄色视频| 男人爽女人下面视频在线观看| 精品免费久久久久久久清纯 | 欧美97在线视频| 国产一区亚洲一区在线观看| 日韩精品免费视频一区二区三区| svipshipincom国产片| 日韩欧美一区视频在线观看| 国产高清国产精品国产三级| 亚洲在久久综合| 两个人看的免费小视频| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 亚洲欧美成人精品一区二区| 精品少妇久久久久久888优播| 深夜精品福利| 久久 成人 亚洲| 看十八女毛片水多多多| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 天天躁日日躁夜夜躁夜夜| 国产男女超爽视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲欧美精品自产自拍| 国产精品99久久99久久久不卡 | 免费黄网站久久成人精品| 久久久精品国产亚洲av高清涩受| 日本91视频免费播放| 女人精品久久久久毛片| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频| 国产午夜精品一二区理论片| 精品第一国产精品| 国产欧美亚洲国产| 丰满少妇做爰视频| 永久免费av网站大全| 水蜜桃什么品种好| 国产精品成人在线| 晚上一个人看的免费电影| 国产极品粉嫩免费观看在线| 国产亚洲av片在线观看秒播厂| 亚洲成国产人片在线观看| 国产免费又黄又爽又色| 久久久久精品国产欧美久久久 | 性色av一级| 国产熟女午夜一区二区三区| 日日啪夜夜爽| 欧美日韩亚洲国产一区二区在线观看 | 国产精品99久久99久久久不卡 | 亚洲专区中文字幕在线 | 国产av一区二区精品久久| 51午夜福利影视在线观看| 欧美日韩国产mv在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美中文字幕日韩二区| 亚洲精品,欧美精品| 精品免费久久久久久久清纯 | 精品亚洲成a人片在线观看| 一级毛片 在线播放| 欧美精品高潮呻吟av久久| 高清av免费在线| 日韩欧美一区视频在线观看| 国产精品女同一区二区软件| 大香蕉久久网| 免费在线观看视频国产中文字幕亚洲 | 丝袜喷水一区| www.精华液| 宅男免费午夜| 日本av手机在线免费观看| 国产在线视频一区二区| 天天躁日日躁夜夜躁夜夜| 肉色欧美久久久久久久蜜桃| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| www.自偷自拍.com| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 一区二区日韩欧美中文字幕| 男女国产视频网站| 欧美激情极品国产一区二区三区| 最近手机中文字幕大全| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区| av免费观看日本| 人人妻,人人澡人人爽秒播 | 黄色怎么调成土黄色| 90打野战视频偷拍视频| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 999久久久国产精品视频| 色婷婷av一区二区三区视频| 在线观看免费视频网站a站| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 另类精品久久| 亚洲av男天堂| 精品人妻在线不人妻| 午夜免费鲁丝| 99国产综合亚洲精品| 亚洲一区中文字幕在线| 国产精品一国产av| 伊人久久国产一区二区| 夫妻午夜视频| 啦啦啦 在线观看视频| 午夜福利影视在线免费观看| 午夜日本视频在线| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 国产不卡av网站在线观看| av国产精品久久久久影院| 老司机影院毛片| 国产片特级美女逼逼视频| 久久性视频一级片| 男女午夜视频在线观看| 久久久久精品国产欧美久久久 | av线在线观看网站| 免费久久久久久久精品成人欧美视频| 久久精品国产亚洲av涩爱| 一级毛片我不卡| a级毛片在线看网站| 欧美亚洲日本最大视频资源| 亚洲成国产人片在线观看| 国产又色又爽无遮挡免| 久久韩国三级中文字幕| 午夜福利网站1000一区二区三区| 老汉色∧v一级毛片| 中国三级夫妇交换| 亚洲第一青青草原| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 亚洲av成人不卡在线观看播放网 | 中国三级夫妇交换| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 亚洲一码二码三码区别大吗| 国产一级毛片在线| 精品午夜福利在线看| 国产毛片在线视频| 午夜福利影视在线免费观看| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 久久ye,这里只有精品| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 欧美日韩视频精品一区| 在线观看人妻少妇| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 狂野欧美激情性bbbbbb| 午夜老司机福利片| 久久久精品免费免费高清| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 国产无遮挡羞羞视频在线观看| 最新在线观看一区二区三区 | 老司机影院毛片| 一级a爱视频在线免费观看| 国产欧美日韩综合在线一区二区| 一区福利在线观看| 国产免费视频播放在线视频| 老鸭窝网址在线观看| 国产精品蜜桃在线观看| 国产精品人妻久久久影院| 国产毛片在线视频| 超碰成人久久| 一区在线观看完整版| 午夜福利视频在线观看免费| 久久午夜综合久久蜜桃| 在线天堂最新版资源| 青春草国产在线视频| 桃花免费在线播放| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 两性夫妻黄色片| 国产成人系列免费观看| 久久精品久久精品一区二区三区| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| 一本—道久久a久久精品蜜桃钙片| 免费在线观看完整版高清| 亚洲欧美清纯卡通| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 天堂8中文在线网| 国产免费福利视频在线观看| 欧美亚洲日本最大视频资源| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 国产精品99久久99久久久不卡 | 午夜免费观看性视频| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 极品少妇高潮喷水抽搐| 黄片播放在线免费| 欧美xxⅹ黑人| 纯流量卡能插随身wifi吗| 国产亚洲午夜精品一区二区久久| 久久女婷五月综合色啪小说| 亚洲熟女毛片儿| 久久久久视频综合| 黄色视频不卡| 九色亚洲精品在线播放| 99热网站在线观看| 欧美黑人欧美精品刺激| 亚洲精品日本国产第一区| 看非洲黑人一级黄片| 成人午夜精彩视频在线观看| 精品久久久精品久久久| 黄片无遮挡物在线观看| 日韩电影二区| 久久韩国三级中文字幕| 亚洲人成电影观看| 天天影视国产精品| 国产免费视频播放在线视频| 又大又爽又粗| 一级爰片在线观看| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 丝袜喷水一区| 亚洲精品av麻豆狂野| 午夜日本视频在线| 亚洲国产毛片av蜜桃av| 免费观看性生交大片5| 日韩人妻精品一区2区三区| av在线app专区| 精品少妇久久久久久888优播| av网站免费在线观看视频| 十八禁高潮呻吟视频| 日韩成人av中文字幕在线观看| 中文天堂在线官网| 极品少妇高潮喷水抽搐| 日韩成人av中文字幕在线观看| 久久久久久久久久久久大奶| 极品少妇高潮喷水抽搐| 免费观看性生交大片5| 久久天躁狠狠躁夜夜2o2o | 亚洲国产精品一区二区三区在线| 免费黄网站久久成人精品| 成人18禁高潮啪啪吃奶动态图| 亚洲七黄色美女视频| 黑人巨大精品欧美一区二区蜜桃| 久久综合国产亚洲精品| 欧美精品一区二区大全| 新久久久久国产一级毛片| 看免费av毛片| 国产黄色免费在线视频| 巨乳人妻的诱惑在线观看| 99久久综合免费| 日本av免费视频播放| 一区二区日韩欧美中文字幕| 国产在视频线精品| 久久久久精品久久久久真实原创| 久久毛片免费看一区二区三区|