• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory investigation on hydraulic fracture propagation in sandstone-mudstone-shale layers

    2022-09-23 08:13:54JingChunHeKungShengZhngHnBinLiuMeiRongTngXueLinZhengGungQingZhng
    Petroleum Science 2022年4期

    Jing-Chun He ,Kung-Sheng Zhng ,Hn-Bin Liu ,Mei-Rong Tng ,Xue-Lin Zheng ,Gung-Qing Zhng ,c,*

    a PetroChina Changqing Oilfield Company, Xi′an, 710018, Shaanxi, China

    b College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing,102249, China

    c State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing,102249, China

    Keywords:Sandstone-mudstone-shale Multi-layers Hydraulic fracturing experiments Lithological interface

    ABSTRACT During the stimulating unconventional reservoirs, the vertical propagation of hydraulic fractures is crucial for enlarging the stimulated reservoir volume, especially in multi-layers of sandstone, mudstone and shale (sand-mud-shale). To investigate the effects of lithological interface and fracturing fluid viscosity on the fracture propagation vertically in the multi-layers, hydraulic fracturing experiments in laboratory were performed on the outcrop samples of 30 cm ×30 cm×30 cm collected from Yanchang Formation in Ordos Basin. The results show that hydraulic fractures are multi-branched and zig-zagged when they initiate in shale,simple when they commence in sandstone or mudstone.Hydraulic fractures created with low-viscosity fracturing fluid can only cross sandstone from mudstone, but those induced by high-viscosity fracturing fluid can cross the sand-mud-shale layers. Furthermore, the high-viscosity fracturing fluid reduces the fractures complexity in shale, facilitating vertical fracture propagation. The injection pressure fluctuates slightly as the hydraulic fracture extends from shale to sandstone or mudstone, otherwise it fluctuates significantly. From the laboratory investigation, a hydraulic fracturing scheme for Chang 7 Member was proposed, with its feasibility proved in field tests.

    1. Introduction

    In recent decades, fracture propagating in multi-layer formations is challenging for stimulating unconventional oil shale reservoirs (Barree et al.,2002; Cipolla et al., 2008). One of the crucial issues happens when hydraulic fractures run across the interbedded layers or multi-layers with various lithologies,such as thin layers of sandstone, mudstone and shale (sand-mud-shale) (Wang et al., 2021). Numerous experimental investigations and field applications show that the inference of the interfaces of lithological layers during hydraulic fracture extension mainly includes:crossing through the interface, arresting at the interface and propagating along the interface (Fisher and Warpinski, 2012; Pan et al., 2021; Thiercelin et al., 1987; Tan et al., 2021). When hydraulic fractures propagate along the interface,a new fracture may initiate at a weak point or the end of the interface of less resistance(Potluri et al.,2005; Tan et al., 2020).

    For payzones (such as sandstone) and barriers (such as mudstones) of a large thickness (>5 m), the hydraulic fractures are expected to be contained in the payzones.The laboratory experiments(Warpinski et al.,1982)and mine excavation(Teufel and Warpinski,1983) show that the difference of horizontal stresses among neighboring layers prevail in determining vertical propagation of hydraulic fractures. If the horizontal stress difference among the interlayers is greater than 4 MPa, hydraulic fractures will hardly penetrate the interface into other interlayers. Besides the in-situ stresses, the rock mechanical properties of the layers, such as elastic modulus(El Rabaa,1987)and interface strength(AlTammar et al.,2019),can as well affect the vertical propagation of hydraulic fractures.

    In hydraulic fracturing treatments, it is preferable for hydraulic fractures be contained in the payzone(sandstone),or no significant intrusion into the interlayer (mainly mudstone and shale). However,for multi-payzones of thin thickness,simultaneous fracturing of them was proved advantageous over individual fracturing each payzone(Fu et al.,2019;Yang et al.,2013),resulting in an improved treatment efficiency and reduced cost. So maneuvering hydraulic fractures across multiple thin layers to connect more sweet spots is the priority (Mu et al., 2019; Zhao et al., 2018). Experimental investigation, numerical simulation and field tests show that moderate stress difference and mechanical properties between the layers prompt the fracture to extend across the layers(Beugelsdijk et al.,2000;Liu et al.,2014;Pan and Zhang,2018;Teufel and Clark,1984).Increasing the injection rate or the viscosity of the fracturing fluid can also contribute to fractures crossing the layers (Fan and Zhang, 2014; Llanos et al., 2017; Zhang et al., 2014; van Eekelen,1982). In addition, the large interface friction (Anderson, 1981),excessive interfacial strength (Casas et al., 2006), and extensive cohesive area(Fu et al.,2018)can help the cross-layer propagating of hydraulic fractures.

    Chang 7 Member in Changqing Oilfield is a typical shale oil reservoir. Conventional horizontal well multi-stage fracturing in this reservoir did not yield satisfactorily, due to the various lithology and thin interbedding, rendering complicated fracture propagation.Therefore,connecting multiple layers with vertical fractures is demanding to improve the fracturing effectiveness. Laboratory experiments of hydraulic fracture propagation in sand-mud-shale complex were carried out to investigate hydraulic fracture propagation,and on-site hydraulic fracturing treatments were suggested.

    2. Compositional, microscopic and mechanical properties of sand-mud-shale complex

    To characterize the sand-mud-shale complex in Chang 7 Member, the mineral composition, microscopic structure and mechanical properties of the sandstone, mudstone and shale were obtained, and fracture paths were analyzed.

    2.1. Mineral composition and microscopic characteristics

    The mineral composition averaged on 30 samples of sandstone,mudstone and shale selected from Chang 7 Member was analyzed by XRD,in Fig.1.A ternary classification was made in terms of QFP(quartz, feldspar, pyrite), carbonates (calcite, dolomite, siderite),and the sum of clay minerals (illite, kaolinite, chlorite and illitemontmorillonite mixed layer) and total organic carbon (TOC).And QFP and carbonates are usually considered as brittle components.According to brittleness indices defined upon the lithologies(Zoback and Kohli, 2019), the content of brittle minerals, the average brittleness for sandstone, mudstone and shale are 0.849,0.573 and 0.603, indicating that sandstone is the most brittle, followed by shale, and mudstone takes the third position.

    Fig.1. Composition of sandstone, mudstone and shale of Chang 7 Member.

    The casting thin section is mostly used to analyze features of micro-pores and cracks. As from Fig. 2, there are two microfractures in shale and one micro-fracture in both sandstone and mudstone.On a microscopic view,micro-fractures in shale are the most developed. The distribution of pre-existing fractures can affect the hydraulic fractures in different layers,especially in shale,which may be reactivated by hydraulic fracturing to form a complex fracture network.

    2.2. Mechanical properties

    The mechanical properties of different lithological formations are the basis for designing hydraulic fracturing experiments. The compressive or tensile strength and elastic properties of sandstone,mudstone and shale of Chang 7 Member are obtained with tri-axial compressions with confining pressure of 20 MPa and Brazil tests.From Tables 1-3, for sandstone, mudstone and shale, their compressive strengths are 202.00, 164.34, and 119.02 MPa, the tensile strength 7.41,6.09,and 5.17 MPa,the elastic modulus 27.71,25.41,and 22.14 GPa,and Poisson's ratio 0.241,0.247,and 0.246.The compressive/tensile strengths and elastic modulus of sandstone are higher than those of mudstone and shale, while Poisson's ratio is lower than that of mudstone and shale.

    The hydraulic fracture is normally dominated by tensile failures,like tensile fracture in Brazil tests,as shown in Fig.3,for sandstone,mudstone and shale. It can be found that in sandstone and mudstone a single fracture is created,in Fig.3(a)and(b).However,several sub-parallel tensile fractures are induced in shale, in Fig.3(c).Therefore,from the above comparisons,it can be inferred that the hydraulic fractures in shale are more complicated than in both sandstone and mudstone.

    3. Specimen preparation and experimental procedure of hydraulic fracturing

    Considering interbedding of sandstone-mudstone and shale in Chang 7 Member (Yang et al., 2013; Fu et al., 2019), perforating schemes and fluid injection, we used the Chang 7 outcrops in our experiments to simulate the hydraulic fracture in sand-mud-shale complex for reservoir conditions.

    3.1. Specimen preparation

    Both sandstone and shale were selected from outcrops,and the mudstone is simulated by concrete with weight ratio of quartz to the cement of 1:1.The selected outcrops were cemented as a sandmud-shale complex as shown in Fig. 4, and it is found the mechanical properties of the selected outcrop and formation rocks are comparable, hence the outcrop can be reckoned as representative of formation rock (Table 4). As shown in Fig. 4, outcrops of sandstone, shale and mudstone were cut into cuboid blocks of 300 mm×300 mm×90 mm,which were cemented into one block of 300 mm × 300 mm × 300 mm. A wellbore 10 mm in diameter and 150 mm deep,is bored,at the bottom of which a notch was precut as the initial fractures. A stainless steel tube was glued in the wellbore for injecting fracturing fluid. The experiments in Table 5 were performed with the large-scale system of hydraulic fracturing under tri-axial stresses.

    Fig. 2. Microscopic fractures of Chang 7 Member.

    Table 1 Mechanical properties of Chang 7 sandstone.

    Table 2 Mechanical properties of Chang 7 mudstone.

    Table 3 Mechanical properties of Chang 7 shale.

    Following the lithology features of sand,mud and shale in Chang 7 Member,the perforations can be at sandstone,mudstone or shale,leading to various schemes of fracturing paths.Then, six scenarios of experiments are designed to be the typical models, in Fig. 5,including hydraulic fractures from shale to sandstone,sandstone to shale, shale to mudstone, mudstone to shale, sandstone to mudstone, and mudstone to sandstone.

    Fig. 3. Fractures of sandstone, mudstone and shale in Brazil tests.

    Fig. 4. Specimen preparation and hydraulic fracturing experimental system. (a) Sandstone and shale outcrops of Chang 7 Member. (b) The shale and sandstone cemented in the mold. (c) The finished sand-shale-sand specimen with a borehole in shale. (d) The specimen in the hydraulic fracturing system.

    Table 4 Mechanical properties of outcrop and reservoir rocks of Chang 7 Member.

    Table 5 Experimental schemes of hydraulic fracturing.

    Fig. 5. Six scenarios of sandstone, mudstone and shale from the reservoirs.

    3.2. Experimental procedure

    In this study, the lithological interface and fracturing fluid viscosity in Table 5, and the controlling experiment parameters, are stemmed from the reservoir geology and fracturing treatment trials.In laboratory tests,the triaxial stresses are inferred from the insitu horizontal stress testing,the viscosity of the fracturing fluid is selected as the on-site fracturing fluid.

    The distribution of in-situ stress in Chang 7 Member in Ordos Basin (Shi et al., 2014) indicates that the horizontal in-situ stress difference (Δσ = σH- σh) is from 4 to 8 MPa, and we determined vertical,maximum horizontal and minimum horizontal stresses as 25, 20, and 12 MPa, making stress differences in laboratory work agree with that in the reservoirs. The viscosity of the slickwater used in on-site is below 40 mPa s (Zhu et al., 2013), that with a crosslinking agent is up to 200 mPa s(Sun et al.,2020).Then in the experiments the fluid viscosities of 40 and 230 mPa s are designed for slickwater and gel fracturing fluids. Red dye is added to the fracturing fluid to trace the hydraulic fractures.The injection rate of the fracturing fluid in on-site fracturing is 2-10 m3/min, the laboratory injection rates are specified as 3-15 mL/min from the similarity law(de Pater et al.,1994;Zhou,2020),and the injection rate of 5 mL/min is used in our experiments. Twelve specimens are divided into six schemes in Table 5.

    4. Experimental results and analysis

    Table 6 summarizes the results of six experiment schemes,with changing lithological interface and fracturing fluid viscosity,showing the influence of fracturing fluid viscosity, lithology distribution,perforation location,injection pressure and the interface crossing.

    4.1. Effects of the lithological interface on fracturing fracture

    When hydraulic fractures initiate in sandstone or mudstone,the fractures in all three layers are single,as in Fig.6(b),(d),(e),and(f).When the initiations are in shale, the fractures in shale are significantly complicated,in Fig.6(a)and(c),for low-viscosity fracturing fluids. It is concluded that the vertical extension of hydraulic fractures can be hindered across the interfaces of the multi-fractures,and the hydraulic fractures in sandstone or mudstone are single and simple, but complex in shales. The reason behind may be attributed to the undeveloped micro-fractures in the sandstone or mudstone, while to the extensive bedding plane and microfractures in shales.

    Table 6 Experimental results of the hydraulic fracturing.

    Fig. 6. Hydraulic fractures across the interfaces for two viscosities of fracturing fluids.

    For low-viscosity fracturing fluids, it is worth noting that hydraulic fractures can extend into sandstone when they initiate in mudstone, but contained in the initiation layer in other scenarios.Therefore, initiating in mudstone should be considered to be favorable for fractures propagating vertically for low-viscosity fracturing fluids.

    4.2. Effect of fracturing fluid viscosity on fractures

    For the samples of sandstone, mudstone, and shale, the breakdown pressures are increased from 25.0,32.4,and 23.0 MPa at the fluid viscosity of 40 mPa s to 32.1,34.7,and 24.9 MPa at 230 mPa s.Among them,the breakdown pressure for mudstone is the highest,whereas shale breaks down the most easily.

    As in Fig.6,the viscosity of the fracturing fluid has a significant impact on the vertical propagation of the hydraulic fracture.For the fracturing fluid with viscosity of 40 mPa s, the hydraulic fractures can only penetrate into sandstone from mudstone,however as the viscosity increases from 40 to 230 mPa s, hydraulic fractures can cross multiple layers for all lithologic combinations and initiating layer.

    As the viscosity of the fracturing fluid increased from 40 to 230 mPa s,the hydraulic fractures cross as many layers as possible,with significantly reduced fracture complexity,as in Fig.7.The main reason is that for the fracturing fluid of high viscosity,there will be much increased frictional resistance of the fracturing fluid along with bedding and micro-fractures, whose activation are impeded.Then the reduction of fracture complexity is conducive to the vertical propagation of hydraulic fractures.

    In Fig. 8, pressure records were shown for hydraulic fractures from one layer to another among mudstone, sandstone and shale,with the fracturing fluid viscosity of 230 mPa s. These pressure records can help us to infer the fracture extensions inside the samples, comparing with fracture paths in Fig. 6.

    Fig. 7. Diagrams of vertical propagation of hydraulic fractures for two fracturing fluid viscosities.

    Fig. 8. Injection pressures for initiating layers with the fracturing fluid viscosity of 230 mPa s.

    For fractures from shale to sandstone and mudstone,in Fig.8(a),the pressure records are stable, only with minor fluctuations, suggesting a stable fracture extension. The hydraulic fractures initiate in shales, across it after extending along the interface, into sandstone and mudstone, in Fig. 6(a2) and (c2).

    The pressure records for the cases from sandstone to shale and mudstone change abruptly and frequently, as in Fig. 8(b). Though the final fracture seems simple and straight, in Fig.6(b2)and (e2),scrutinizing red dyes along the interfaces reveals the interfaces were activated multiple times by hydraulic fractures, corresponding to the abrupt fluctuations of injection pressures.

    The fluctuations along the pressure records in Fig.8(c)for those from mudstone to shale and sandstone are in amplitude similar to that in Fig. 7(b), but with less frequency, and the hydraulicfractures,in Fig.6(d2)and(f2),become curved after entering shale and sandstone layers.

    Table 7 Properties of sandstone and mudstone of Chang 7 Member.

    5. Suggested fracturing treatments based on lab fracturing

    In hydraulic fracturing,perforations were preferably positioned in sandstone other than in mudstone and shale layers. With our laboratory fracturing work, it is found that hydraulic fractures initiated from mudstone can extend into the adjacent sandstone with increased fracturing fluid viscosity,they can penetrate shale to reach sandstone. For the cases of multiple thin sandstones interbedded with thick shale or mudstone, fracturing each sandstone may not be easy and costly, which demands fracturing multiple sandstones at one time,perforating either in mudstone or in shale.

    Fig. 9. Simulation results of hydraulic fracture morphology crossing multi-layers.

    Conforming Chang 7 Member(Feng et al.,2020),a finite element model is built to simulate fracture extension initiated in mudstone.The properties of sandstone and mudstone are in Table 7, and the fracturing fluid rate and the viscosity are 5 m3/min and 230 mPa s.The simulated hydraulic fracture from the mudstone to the adjacent sandstone is in Fig. 9, showing that hydraulic fractures initiated from mudstone can propagate into the adjacent sandstone layers, and suggesting a practical fracturing treatment for Chang 7 Member.

    Thus, high-viscosity fracturing fluid and perforating in the mudstone and shale are suitable for Chang 7 Member. We integrated such a conclusion into the fracturing scheme of H21-4 well in the Changqing Oilfield,the well trajectory in the reservoir shown in Fig.10. In fracturing, most stimulation stages are in sandstone,some in mudstone. High-viscosity fracturing is used for all stages.After fracturing,the well produces 20 tons of oil each day,in Fig.11.

    Fig.10. Perforation positioning along well H21-4 (some parts of the well trajectory are not in sandstone).

    Fig.11. Production curves of well H21-4.

    Fig.12. Production of Hua 21-4 and Zhaoping 6 with initiation in mudstone.

    Particularly, for the hydraulic fracturing initiated in mudstone,the production of oil and water is analyzed for the wells Zhaoping 6 and Hua 21-4, in Fig.12. For the both wells,the fractures are initiated in mudstone, Well Zhaoping 6 with low-viscosity fluid producing oil one sixtieth of Hua 21-4 in the second stage,which was fractured with high-viscosity fluid. This comparison proved the effectiveness of fracturing initiated from mudstone to propagate into the adjacent sandstone with high-viscosity fluid.

    6. Conclusions

    Based on laboratory experiments, effects of sandstone/shale/mudstone interfaces and fracturing fluid viscosity on hydraulic fractures in sand-mud-shale complex are studied,and a fracturing treatment for Chang 7 Member is proposed and verified by field applications. The main conclusions are as follows:

    (1) Hydraulic fractures initiated in mudstone layers can easily extend into the adjacent sandstones. The hydraulic fracture path is complex when it initiates in shale,and is single when it initiates in sandstone or mudstone. This is mainly controlled by the interfaces and natural fractures in shales and sandstones.

    (2) Increasing the fracturing fluid viscosity helps hydraulic fractures propagate through multiple layers of sandstone/mudstone/shale. Hydraulic fractures created by lowviscosity fracturing fluid can only extend into sandstone from mudstone, but hydraulic fractures induced by highviscosity fracturing fluid can cross all the layers of sandmud-shale. High-viscosity fracturing fluid can also reduce the complexity of fractures in shale.

    (3) The injection pressure fluctuates slightly when the hydraulic fracture propagates from shale to sandstone and mudstone,otherwise it fluctuates significantly.This is mainly attributed to multiple interfaces activations and natural fractures.

    (4) In Chang 7 Member,high-viscosity fracturing fluid as well as perforating mudstone/shale was recommended to connect sandstones, and proven feasible.

    Acknowledgments

    This work was sponsored by the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-02), the National Science Fund for Distinguished Young Scholars (Grant No.51925405) and the National Natural Science Foundation of China(Grant no. 51774299).

    久久精品国产99精品国产亚洲性色| 每晚都被弄得嗷嗷叫到高潮| 久热这里只有精品99| 嫩草影院精品99| 久久久国产成人免费| www.精华液| 99国产精品一区二区三区| 自线自在国产av| 日本 av在线| 国产一区在线观看成人免费| 午夜福利高清视频| 老司机深夜福利视频在线观看| 色综合婷婷激情| 国产99久久九九免费精品| 亚洲成国产人片在线观看| 热99re8久久精品国产| 午夜精品久久久久久毛片777| 中亚洲国语对白在线视频| 久久精品91无色码中文字幕| 青草久久国产| bbb黄色大片| www.www免费av| 久久午夜亚洲精品久久| 日本三级黄在线观看| 欧美乱码精品一区二区三区| 国产亚洲av高清不卡| 欧美不卡视频在线免费观看 | 美国免费a级毛片| 免费在线观看视频国产中文字幕亚洲| 欧美绝顶高潮抽搐喷水| 曰老女人黄片| 亚洲中文字幕日韩| 国产99白浆流出| 好男人电影高清在线观看| 午夜福利18| 亚洲精品久久成人aⅴ小说| 免费电影在线观看免费观看| 久久久久久久午夜电影| 国内精品久久久久久久电影| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 大香蕉久久成人网| 可以在线观看毛片的网站| 老司机靠b影院| 岛国视频午夜一区免费看| 国产精品久久视频播放| 国产精品一区二区免费欧美| ponron亚洲| 免费高清视频大片| 中文字幕人妻熟女乱码| 精品国产国语对白av| 韩国精品一区二区三区| 国产成年人精品一区二区| 国内毛片毛片毛片毛片毛片| 国产精品精品国产色婷婷| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美精品济南到| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 黄色a级毛片大全视频| 看黄色毛片网站| 在线国产一区二区在线| 777久久人妻少妇嫩草av网站| 国产午夜福利久久久久久| 午夜福利在线在线| 午夜a级毛片| 哪里可以看免费的av片| 黄色视频,在线免费观看| 日本a在线网址| 91国产中文字幕| 欧美色欧美亚洲另类二区| www.熟女人妻精品国产| 99国产精品99久久久久| 女同久久另类99精品国产91| 亚洲久久久国产精品| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| av中文乱码字幕在线| 长腿黑丝高跟| 国产成人一区二区三区免费视频网站| 中文字幕高清在线视频| 色在线成人网| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 亚洲成人久久性| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 黑人欧美特级aaaaaa片| 欧美成狂野欧美在线观看| 中文字幕人成人乱码亚洲影| 亚洲自拍偷在线| 在线观看一区二区三区| 男女床上黄色一级片免费看| 亚洲无线在线观看| av视频在线观看入口| bbb黄色大片| 国产精品九九99| 亚洲自拍偷在线| 啦啦啦免费观看视频1| 成人三级黄色视频| 日韩欧美 国产精品| 国产亚洲av高清不卡| 亚洲中文字幕日韩| 欧美av亚洲av综合av国产av| 国产私拍福利视频在线观看| 久久香蕉国产精品| 老鸭窝网址在线观看| 1024手机看黄色片| 国产v大片淫在线免费观看| 怎么达到女性高潮| 免费在线观看视频国产中文字幕亚洲| 亚洲成人久久性| av欧美777| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 日韩欧美在线二视频| 亚洲天堂国产精品一区在线| 精品人妻1区二区| 午夜免费观看网址| 午夜免费激情av| 观看免费一级毛片| 黑人巨大精品欧美一区二区mp4| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女| 久久香蕉激情| 亚洲欧美日韩高清在线视频| 在线观看66精品国产| 两个人免费观看高清视频| 午夜视频精品福利| 亚洲片人在线观看| 十八禁网站免费在线| 日本 欧美在线| 色综合欧美亚洲国产小说| 免费一级毛片在线播放高清视频| 婷婷精品国产亚洲av| 神马国产精品三级电影在线观看 | 午夜免费成人在线视频| 一区福利在线观看| 国产精品,欧美在线| 日韩 欧美 亚洲 中文字幕| 亚洲真实伦在线观看| 长腿黑丝高跟| 久久久久久久午夜电影| 亚洲人成77777在线视频| 一夜夜www| 一区二区三区精品91| 国产高清有码在线观看视频 | 99热只有精品国产| 久久久久久久午夜电影| 亚洲精华国产精华精| 亚洲成人久久爱视频| 亚洲第一电影网av| 99热这里只有精品一区 | 黄色女人牲交| 一个人观看的视频www高清免费观看 | 91国产中文字幕| 欧美中文日本在线观看视频| 一级毛片女人18水好多| 国产精品99久久99久久久不卡| 亚洲成人久久性| 国产高清激情床上av| a级毛片a级免费在线| 69av精品久久久久久| 久久久精品国产亚洲av高清涩受| 欧美国产日韩亚洲一区| 一本综合久久免费| 国产爱豆传媒在线观看 | 免费高清视频大片| 亚洲av成人av| 精品国产亚洲在线| 国产又爽黄色视频| 成人免费观看视频高清| 又大又爽又粗| 婷婷丁香在线五月| 在线播放国产精品三级| 黄频高清免费视频| 色播亚洲综合网| 中文字幕人妻熟女乱码| 精品久久蜜臀av无| www日本在线高清视频| 少妇粗大呻吟视频| 精华霜和精华液先用哪个| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 可以免费在线观看a视频的电影网站| 久久久久久久久免费视频了| 欧美精品亚洲一区二区| 久久欧美精品欧美久久欧美| 亚洲精品美女久久久久99蜜臀| 一个人观看的视频www高清免费观看 | www国产在线视频色| 色综合婷婷激情| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 国产av不卡久久| 欧美中文日本在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 三级毛片av免费| 欧美不卡视频在线免费观看 | 精品欧美国产一区二区三| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 日韩欧美国产在线观看| 男人舔奶头视频| 亚洲黑人精品在线| 波多野结衣巨乳人妻| 两个人免费观看高清视频| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区 | 热99re8久久精品国产| www日本在线高清视频| 亚洲av美国av| 精品欧美一区二区三区在线| 不卡一级毛片| 一夜夜www| 久久青草综合色| 巨乳人妻的诱惑在线观看| 青草久久国产| 午夜激情av网站| 午夜福利免费观看在线| 久久热在线av| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 变态另类丝袜制服| 制服人妻中文乱码| 午夜a级毛片| 人人妻人人澡人人看| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 精品国产乱子伦一区二区三区| 精品久久久久久,| 十八禁人妻一区二区| 一本综合久久免费| 欧美激情极品国产一区二区三区| 久久国产精品人妻蜜桃| 久久狼人影院| 亚洲免费av在线视频| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 亚洲国产欧美网| 日韩欧美三级三区| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 丝袜人妻中文字幕| 不卡av一区二区三区| 亚洲中文av在线| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 日韩有码中文字幕| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 国产精品香港三级国产av潘金莲| 久久草成人影院| 999久久久国产精品视频| 免费搜索国产男女视频| 亚洲国产精品合色在线| 亚洲av日韩精品久久久久久密| 观看免费一级毛片| 午夜福利一区二区在线看| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 亚洲熟妇中文字幕五十中出| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三| 亚洲一区高清亚洲精品| 久久久久久人人人人人| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| or卡值多少钱| 久久 成人 亚洲| 国产一卡二卡三卡精品| 校园春色视频在线观看| 搡老岳熟女国产| 国产极品粉嫩免费观看在线| 老汉色∧v一级毛片| 国产精品 国内视频| 亚洲专区字幕在线| 久久人妻福利社区极品人妻图片| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 高清在线国产一区| 亚洲国产看品久久| 成熟少妇高潮喷水视频| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 制服丝袜大香蕉在线| 亚洲av成人一区二区三| 亚洲无线在线观看| 99精品在免费线老司机午夜| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 非洲黑人性xxxx精品又粗又长| 免费在线观看影片大全网站| 黄片大片在线免费观看| 一区二区三区激情视频| 这个男人来自地球电影免费观看| 国产黄片美女视频| 亚洲精华国产精华精| 欧美性长视频在线观看| 欧美日韩乱码在线| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 亚洲天堂国产精品一区在线| 黄色女人牲交| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| www国产在线视频色| 亚洲真实伦在线观看| 在线观看免费午夜福利视频| 亚洲 国产 在线| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 一本久久中文字幕| 麻豆成人av在线观看| 亚洲欧美一区二区三区黑人| 757午夜福利合集在线观看| 丝袜美腿诱惑在线| 韩国av一区二区三区四区| 亚洲av电影在线进入| 国产99久久九九免费精品| 亚洲av美国av| 黄色a级毛片大全视频| 香蕉av资源在线| www.熟女人妻精品国产| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 午夜a级毛片| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 成人亚洲精品av一区二区| 国产成人系列免费观看| 91麻豆av在线| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面| 精华霜和精华液先用哪个| 成人国语在线视频| 成人三级黄色视频| 亚洲avbb在线观看| 草草在线视频免费看| 99热这里只有精品一区 | 少妇熟女aⅴ在线视频| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| 一个人观看的视频www高清免费观看 | 午夜福利视频1000在线观看| 亚洲国产高清在线一区二区三 | 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 欧美日韩精品网址| 久久精品成人免费网站| 亚洲专区国产一区二区| 精品久久久久久久末码| 黄网站色视频无遮挡免费观看| 精品久久久久久久末码| 又黄又粗又硬又大视频| 哪里可以看免费的av片| 脱女人内裤的视频| 久久久水蜜桃国产精品网| 精品日产1卡2卡| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 国产av在哪里看| 精品无人区乱码1区二区| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| av欧美777| 国产成人啪精品午夜网站| 草草在线视频免费看| 国产精品 欧美亚洲| avwww免费| 国产av一区在线观看免费| 久久婷婷人人爽人人干人人爱| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区| 久热这里只有精品99| 久久伊人香网站| 国产精品久久久人人做人人爽| www.精华液| 男女下面进入的视频免费午夜 | 精品久久久久久,| 欧美中文日本在线观看视频| 男人舔女人下体高潮全视频| 正在播放国产对白刺激| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人| 成人免费观看视频高清| av电影中文网址| 精品免费久久久久久久清纯| 成年版毛片免费区| 久久久久九九精品影院| 身体一侧抽搐| 美女 人体艺术 gogo| 国产av在哪里看| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 亚洲国产精品久久男人天堂| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 90打野战视频偷拍视频| 成人永久免费在线观看视频| 亚洲五月天丁香| 中文亚洲av片在线观看爽| 国产色视频综合| 国内少妇人妻偷人精品xxx网站 | 国产熟女午夜一区二区三区| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 正在播放国产对白刺激| 欧美激情极品国产一区二区三区| 国产亚洲精品综合一区在线观看 | 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看完整版高清| 夜夜躁狠狠躁天天躁| 国产成年人精品一区二区| 日日夜夜操网爽| 天堂√8在线中文| 中文字幕高清在线视频| 久久中文字幕人妻熟女| 少妇熟女aⅴ在线视频| 视频在线观看一区二区三区| 国产一级毛片七仙女欲春2 | 久久狼人影院| 九色国产91popny在线| 亚洲精品色激情综合| 中文字幕久久专区| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站 | 精品电影一区二区在线| av片东京热男人的天堂| 亚洲国产看品久久| 黄色a级毛片大全视频| 国产亚洲欧美在线一区二区| 国产成+人综合+亚洲专区| 成人午夜高清在线视频 | 亚洲欧美激情综合另类| 国产不卡一卡二| 久久国产精品人妻蜜桃| 视频区欧美日本亚洲| 欧美 亚洲 国产 日韩一| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播放欧美日韩| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| www.熟女人妻精品国产| 久久久久久久午夜电影| 亚洲一区中文字幕在线| 欧美色视频一区免费| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 久久精品国产清高在天天线| 人人妻人人看人人澡| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 久久狼人影院| 欧美一级a爱片免费观看看 | 少妇的丰满在线观看| 国产蜜桃级精品一区二区三区| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 手机成人av网站| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 亚洲国产欧洲综合997久久, | 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 久久国产精品男人的天堂亚洲| 中文字幕最新亚洲高清| 黄色视频不卡| 成人国产综合亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 男女午夜视频在线观看| 欧美大码av| 亚洲av日韩精品久久久久久密| 婷婷亚洲欧美| 两性夫妻黄色片| 91成人精品电影| www.精华液| 国产午夜精品久久久久久| 搞女人的毛片| 香蕉国产在线看| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 天堂√8在线中文| 熟妇人妻久久中文字幕3abv| 日韩高清综合在线| av天堂在线播放| 国产成人啪精品午夜网站| АⅤ资源中文在线天堂| 不卡av一区二区三区| 一区二区三区精品91| 人人妻,人人澡人人爽秒播| 丰满人妻熟妇乱又伦精品不卡| 欧美激情极品国产一区二区三区| 757午夜福利合集在线观看| 欧美色视频一区免费| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 女生性感内裤真人,穿戴方法视频| 欧美日韩瑟瑟在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲自拍偷在线| 男女那种视频在线观看| 亚洲性夜色夜夜综合| 侵犯人妻中文字幕一二三四区| 一进一出抽搐动态| 国产主播在线观看一区二区| 国产精品野战在线观看| 最近最新免费中文字幕在线| 18禁观看日本| √禁漫天堂资源中文www| 亚洲精品国产精品久久久不卡| 欧美性长视频在线观看| 一本一本综合久久| 国产成人系列免费观看| 欧美一级a爱片免费观看看 | 精品午夜福利视频在线观看一区| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 午夜精品久久久久久毛片777| 国产又爽黄色视频| 丁香六月欧美| 色播亚洲综合网| 男人舔女人的私密视频| 黄色丝袜av网址大全| 最近在线观看免费完整版| 2021天堂中文幕一二区在线观 | 露出奶头的视频| av免费在线观看网站| 女警被强在线播放| 亚洲片人在线观看| 99国产精品99久久久久| 丝袜人妻中文字幕| 91成人精品电影| 日本一本二区三区精品| 国产高清有码在线观看视频 | 亚洲第一av免费看| 国产99久久九九免费精品| 大型av网站在线播放| 欧美+亚洲+日韩+国产| svipshipincom国产片| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 亚洲成国产人片在线观看| 亚洲成av片中文字幕在线观看| 熟妇人妻久久中文字幕3abv| 别揉我奶头~嗯~啊~动态视频| 国产精品香港三级国产av潘金莲| 国产激情偷乱视频一区二区| 亚洲精品久久国产高清桃花| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| 69av精品久久久久久| 亚洲全国av大片| 日本在线视频免费播放| 亚洲九九香蕉| 身体一侧抽搐| svipshipincom国产片| 亚洲狠狠婷婷综合久久图片| 午夜两性在线视频| 人妻久久中文字幕网| 琪琪午夜伦伦电影理论片6080| 一级a爱视频在线免费观看| 人人妻人人澡人人看| 久久天堂一区二区三区四区| 久久精品亚洲精品国产色婷小说| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 午夜精品在线福利| 18禁黄网站禁片免费观看直播| 波多野结衣巨乳人妻| a在线观看视频网站| 国产在线观看jvid| 热re99久久国产66热| 久久久久国内视频| 2021天堂中文幕一二区在线观 | 最近最新中文字幕大全免费视频| 天天躁夜夜躁狠狠躁躁| 午夜久久久久精精品| 51午夜福利影视在线观看| 999精品在线视频| 日本在线视频免费播放|