• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reflection-based traveltime and waveform inversion with secondorder optimization

    2022-09-23 08:13:46TengFeiWangJiuBingChengJianHuaGeng
    Petroleum Science 2022年4期

    Teng-Fei Wang , Jiu-Bing Cheng ,*, Jian-Hua Geng

    a State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China

    b School of Ocean and Earth Science, Tongji University, Shanghai, 200092, China

    Keywords:Reflection waveform inversion Reflection traveltime inversion Gauss-Newton Hessian

    ABSTRACT Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion (FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion (RTI) and reflection waveform inversion (RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution.To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets.

    1. Introduction

    Complex heterogeneities naturally existing in the Earth’s subsurface lead to the spatial variations of the elastic properties,such as velocity, density and so on. Seismic wavefield propagates in the subsurface and carries important elastic responses that can be used for seismic imaging. In the exploration seismology,seismic tomography and imaging methods are employed to estimate the subsurface elastic properties, with which the type of pore fluid or the distribution of stress field can be predicted for the purpose of hydrocarbon reservoir exploration and geotechnical engineering.

    Exploration seismic imaging is practically applied based on a scale separation of velocity model,i.e.,a smooth background and a rough perturbation (Claerbout,1971). The smooth background velocity is first estimated by the migration velocity analysis(MVA)or ray-based traveltime tomography and then the rough perturbation is obtained by the migration process (Claerbout, 1985). Over the past decades,one of the most important tasks for seismic imaging is to reconstruct a background velocity model that can correctly honor the kinematics of the wave propagation. The standard velocity model building for prestack-depth-migration (PSDM) is based on the reflection traveltime tomography with ray-tracing,in which the migration velocity model is iteratively updated by backprojecting the residual depth or moveout (RMO) on the common image gathers (CIGs) along the ray path (Stork, 1992; Wang and Pratt,1997; Woodward, 2008). Due to the limitation of ray-based theory, the PSDM-based reflection traveltime tomography easily fails in the presence of complex velocity variation and lead to inaccurate imaging of the target. Besides, the generation of CIGs during the PSDM and the picking of RMO are quite expensive and clumsy to support multifold iterations of velocity model building(Alder et al., 2008; Guillum et al., 2008).

    To overcome the limitation of ray-based method, waveequation-based migration and tomography techniques, such as reverse-time migration (RTM) and full-waveform inversion (FWI),have been proved quite effective to improve the accuracy of seismic imaging (Virieux and Operto, 2009; Zhang et al., 2014). Nevertheless, FWI easily suffers from the cycle-skipping problems when starting model is poor and/or low frequency data is unavailable.Therefore, as a model building process, FWI only provides robust velocity update for the shallow part of the model where turning waves are sufficiently available. The velocity update in the deep part remains to be improved, especially in the field data applications. Xu et al. (2012) introduced wave-equation reflection waveform inversion (RWI) which aims to recover the background velocity by minimizing the waveform misfit between synthetic and observed reflections. In the context of wave-equation reflection tomography or waveform inversion, sharp contrasts of the elastic properties or reflectivity in the subsurface medium are prerequisite(provided by seismic migration), with which the reflection wavefields are generated to produce the tomographic misfit kernels(“rabbit-ear”) connecting the shots and receivers to the reflectors.In the past few years, RWI becomes a quite promising method to recover the low-to-intermediate wavenumber components of the velocity model (Zhou et al., 2015; Wu and Alkhalifah, 2015; Wang and Cheng, 2017; Yao and Wu, 2017; Xu et al., 2019; Yao et al.,2020).

    However, RWI still faces many challenges in practice. As a waveform fitting process, it is very likely to fall into the local minima when the initial model is far from the true one.A common strategy is to reformulate the inverse problem using traveltimebased objective function (Ma and Hale, 2013; Wang et al., 2015).Many recent works have shown that wave equation reflection traveltime inversion (RTI) can robustly recover the background velocity and thus allow the RWI starting from a better initial model(Brossier et al.,2015;Wang et al.,2018).The information content of the traveltimes and amplitudes are complementary,being sensitive to different features of the model(Wang and Pratt,1997).Therefore,it is necessary to unite RTI and RWI to improve the reconstruction of the low-to-intermediate wavenumber features of the subsurface velocity model,e.g.,Xu et al.(2019).Besides,all the aforementioned RTI and RWI approaches possess the issue of slow convergence because they only use the gradient-based first-order optimization methods.The second-order derivative of the objective function,i.e.the Hessian, implies the information of acquisition geometry,parameter trade-offs and the resolution ability of the observed data(Pratt et al.,1998; Operto et al., 2013; Pan et al., 2016; Wang and Cheng, 2017); therefore, it is a key point to improve the convergence of RWI.In the context of FWI,people use the diagonal or band diagonal Hessian to compensate the spherical divergence/geometric spreading and mitigate parameter trade-offs (Innanen,2014; Shin et al., 2001; Wang et al., 2016). With full or approximate Hessian matrix,the quasi-Newton,Gauss-Newton or Newton method leads to better convergence (Brossier et al., 2009 Metivier et al. 2014, 2017; Liu et al., 2015; Pan et al., 2017). However, the studies of Hessian-based reflection tomography or waveform inversion are very insufficient. Recently, Wang et al. (2020) introduced the Hessian-based Gauss-Newton method to solve the RWI problem in acoustic media.Their attempt shows promising results for the reconstruction of the deep part velocity model.

    In this paper,we will propose a practical workflow by cascading Hessian-based RTI and RWI, and provide some computational strategies to support large-scale applications. This paper is organized as follows: First, we will briefly review the Fr′echet derivatives, functional gradient and Hessian matrix for reflectionbased inversion based on the Born approximation. Then, we will introduce some practical strategies to precondition the Hessianbased inversion and deal with the computational challenges. Afterwards, we will demonstrate the two-stage Gauss-Newton RTI/RWI workflow with a real dataset from East China Sea. Finally, we draw some conclusions.

    2. Reflection-based wave equation inversion

    In the subsurface medium, the traveltime and waveform of seismic waves relate differently to the velocity perturbations. To better understand the reflection-based inverse problems, we first describe the forward problem in the framework of first-order Born approximation, and then review the Fr′echet derivatives of reflection waveform and reflection traveltime.Accordingly,we derive the corresponding functional gradient and approximate Hessian matrices for RWI and RTI, which will be involved in the secondorder optimization methods.

    2.1. The reflection waveform sensitivity kernel

    The constant-density acoustic wave equation in frequency domain can be written as:

    For the RTI and RWI problems, we hope to create the linear relation between the background velocity and reflection wavefield perturbations.Taking the partial derivative of Ψ with respect to v0and making some rearrangements, we have the Fr′echet derivative of reflection data:

    which explains the sensitivity of the reflection data to the change of the background model located at x′. Note that, on the right-hand side of equation (8), there two terms in the bracket of the integration,representing the different branches of the reflection wavepaths. As shown in Fig. 1a, the first term denotes the wavefield emitting from the source is first disturbed by a background velocity perturbation, and then reflected by the reflector. The second term denotes the wavefield is first reflected by the reflectivity and then disturbed by the background velocity perturbation (Fig. 1b). For abbreviation, we define the waveform Fr′echet kernel as:

    2.2. The reflection traveltime sensitivity kernel

    It is well known that the traveltime is more linearly related to the background velocity structure than waveform. Usually, the traveltime misfit is estimated by the cross-correlation between the observed and synthetic data:

    In this way, we can link the traveltime perturbation to the background velocity perturbations. For a given time window, the time integration in equation (11) or (12) is included during the cross-correlation.Accordingly,the frequency bands of the data will not affect the size of Fr′echet derivative because of the crosscorrelation. Thus, the size of Jtwill be greatly reduced by folding the time or frequency axis, which allows the explicit storage of traveltime Fr′echet derivatives if the number of time window is small.

    2.3. The inverse problems solved with second-order optimization

    The reflection-based inversion aims to retrieve the subsurface model through minimizing the misfit between the observed and simulated reflection data. For instance, RWI updates the background model by solving the following nonlinear optimization problem in a least-squares manner:

    where (δv0)krepresents the model update direction, and αkis a step-length that can be computed through a line-search procedure.

    The first-order derivative of the objective function (i.e., the gradient) can be expressed as:

    Fig.1. The schematic illustration of two reflection branches: (a) s→δv0(x′)→R(x)→r, (b).s→R(x)→δv0(x′)→r

    In the context of RTI, we build the objective function with reflection traveltime difference, namely:

    where T denotes the transpose. The widely used first-order optimization methods, such as the steep-descent and nonlinear CG methods, only involves the calculation of the gradient. In the context of RWI or RTI,this can be efficiently implemented by using the adjoint-state method(e.g.,Xu et al.,2012;Ma and Hale,2013).Taking into account the second-order derivative of the objective function(namely the Hessian)and only keeping the linear term,we have the Gauss-Newton equation for RWI and RTI:

    At each nonlinear RWI or RTI iteration,either the second-order adjoint-state method or the improved scattering-integral method is used to solve the linear system 18, as in the context of Gauss-Newton FWI (Clement et al., 2001; Plessix, 2006; Metivier et al.,2014; Liu et al., 2015; Pan et al., 2016). These matrix-free CG methods avoid to explicitly form the Hessian matrix and only the Hessian-vector product is required at each iteration of the CG algorithm. The readers are referred to literature, e.g., Metivier et al.(2014); Liu et al. (2015), for the technical details.

    3. Practical strategy for large-scale applications

    The application of the second-order optimization method to large-scale RTI or RWI problem faces great challenges. First, the inversion generally requires careful preconditioning to get a reasonable model update due to the ill-posedness of this kind of inverse problem. Second, extensive computational resources are required even for a 2-D real data case. The appropriate strategies,such as the decimation in the data or model domain, have to be taken into consideration to make the Gauss-Newton method feasible for the real data applications, although it may sometimes sacrifice the accuracy. Here, we will design some appropriate preconditioning and computational strategies to balance the accuracy and efficiency for the reflection-based inversion.

    3.1. Precondition the Hessian matrix

    In a layered medium with many interfaces at different depths,the Hessian matrix of RWI may behave very complicated. First, the reflections at different depths and of different offsets experience different geometric spreading during wavefield propagation.Second,the magnitudes of the reflectivity in Born modeling significantly affects the synthetic reflection amplitudes. Therefore, the magnitudes of the Fr′echet kernels for different reflection events could varies in a very wide range. As a result, the elements of Hessian matrix corresponding to the deep locations generally have very small magnitudes.To illustrate this,we use a toy model with two reflectors for the RWI Hessian calculation,which is shown in Fig.2.

    We observe that the elements for the first layer are much larger than those of the second layer in the RWI Hessian matrix(Fig.2b).This kind of imbalance increases the ill-conditioning and may lead to unreasonable model updating in the deeper part,since the very small values in the Hessian matrix are truncated during the inner iterations of the Gauss-Newton method. As M′etivier et al. (2017)discussed in the context of FWI, the truncated Gauss-Newton method will benefit from introducing an appropriate preconditioner for the inner linear system.Here we choose to precondition the Hessian in the presence of many interfaces through normalizing the forward modeled data as well as the reflectivity to balance the Fr′echet derivative wavefields at different depths(see Fig.2c).In the numerical examples, we find that this preconditioning improves the Gauss-Newton RTI and RWI algorithms, although it may sometimes sacrifice the resolving power a little bit.

    3.2. The computational optimization

    Fig. 2. Precondition the RWI Hessian: (a) the modified toy model with two interfaces of the same reflectivity at the depth of 1.8 km and 2.3 km; (b) the original and (c) preconditioned Hessian matrices.

    Fig. 3. Schematic illustration of the computational strategies. The Fr′echet kernel will be stored in the coarse grid (Dx× Dz), while the forward modeling is applied on the fine grid (dx × dz). In the meantime, the neighboring receivers will share one Frechet kernel to save the computational and storage overburden.

    Fig. 4. One common-shot gather of the East China Sea dataset.

    4. Field data example

    Based on the above strategies,we propose a practical two-stage workflow of reflection-based inversion using the Gauss-Newton method to reconstruct the velocity model. First, we apply Gauss-Newton RTI to reconstruct the low-wavenumber parts of the velocity structures.Then,Gauss-Newton RWI is followed to gradually supplement more intermediate wavenumbers to the model. We test the proposed workflow with a real data from East China Sea.

    The 2D dataset of 851 shots was acquired by using air guns and towed streamers in East China Sea.The shot interval is 37.5 m.The spacing of the hydrophones is 12.5 m and the maximum offset is 4 km. Fig. 4 displays one common-shot profile. Conventional data processing, including noise attenuation, designature, deghost and demultiple, have been applied before the inversion. The legacy model for migration is converted from the time-domain root mean square (RMS) velocity, which roughly represents the background features of the target area. However, it is inadequate to correctly honor the kinematics for RTM to provide well-focused migration image and flatten common-image gathers (CIGs)(see Fig. 5).

    We apply the proposed two-stage reflection-based inversion to improve the velocity model. The hierarchical strategy with frequency continuation is implemented for both GN-RTI and GN-RWI.In the RTI stage, the resolution of traveltime estimation will be greatly affected by the frequency bands.Therefore,we select three frequency bands, namely 4-8 Hz, 4-12 Hz and 4-16 Hz, to gradually increase the resolution of traveltime estimation along with adaptively designed sliding windows.While in the RWI stage,three frequency groups, 4-8 Hz, 8-12 Hz and 8-16 Hz with an increment of 1 Hz for each group,are used for inversion.For both RTI and RWI, we set 10 outer loops with a maximum 5 iterations in the inner loop for each frequency groups. In the inner loop of Gauss-Newton algorithm, we precondition the Hessian to guarantee a robust convergence of inversion. For comparison,we also perform the conventional workflow based on RTI and RWI with CG method(i.e.,CG-RTI and CG-RWI)to show the effectiveness of the proposed Gauss-Newton algorithm. In addition, the structure-oriented regularization (Yu et al., 2020) are utilized in the aforementioned inversion process to make velocity update geologically consistent.

    Fig. 5. Migration results with initial model: (a) the initial velocity model, (b) RTM image and (c) Offset-domain CIGs.

    First,we apply the conventional workflow based on CG-RTI and CG-RWI, whose results are shown in Fig. 6. We observe that the velocity update from CG-RTI mainly relates to the strong interfaces,which is not able to flat the CIGs. Starting from CG-RTI model, the velocity is improved after the CG-RWI and thus CIGs are significantly flattened.However,we still observe some residual moveouts on the CIGs,which implies that although the conventional RTI and RWI can provide reasonable migration velocity model,the accuracy of velocity still remains to be improved.For comparison,we use the proposed Gauss-Newton based workflow to update the velocity.After the Gauss-Newton RTI, the velocity is obviously updated for both the shallow and the deep parts (Fig. 7c). The basement imaging of the sedimentary basin is greatly improved with better continuity. The deep faults at the position of 20 km becomes clearer. However, since the multi-window cross-correlation may fail to accurately measure the relatively small traveltime residuals in the latter iterations of this stage, there are still some highwavenumber image footprints on the velocity and the CIGs also exhibit some residual moveouts.Then,starting from the RTI model,we apply the Gauss-Newton RWI, which is sensitive to the waveform misfit, to further improve the recovery of intermediate wavenumbers of the velocity model.As shown in Fig.7b, after the GN-RWI,the velocity anomaly along the strong reflection interface disappears. Some adjustments of velocity model can be observed below the depth of 1.5 km (Fig. 7d), which essentially honors the correct kinematics to flatten the CIGs. The final migrated image based on GN-RWI model shows more continuous sequence boundaries and clear stratigraphic textures.

    5. Discussion

    Fig.6. The results from conventional workflow with CG-RTI and CG-RWI.(a)and(b):the CG-RTI and CG-RWI velocity model.(c)and(d):the RTM image using(a)and(b)overlaid by the total velocity update. (e) and (f): the offset-domain CIGs using (a) and (b).

    In the stage of RTI, the cross-correlation only estimate the traveltime residuals of the dominant event inside the selected time window. In the presence of multi-events with various intensities,the cross-correlation associated with running windows may fail to provide high-resolution measurement of the traveltime misfits.Other methods, such as dynamic image warping (Hale, 2013),frequency-dependent traveltime measurement(Laske and Masters,1996), and instantaneous phase (Bozdag et al., 2011; Choi et al.,2013) and so on, all have their own disadvantages in this situation. This means that the reflection traveltime or phase inversion has limitation in spatial resolution. That is why the waveform inversion is followed to recover the model intermediatewavenumbers. However, waveform fitting highly depends on the accuracy of the estimated reflectivity(or high-wavenumber model perturbations)and seismic wave propagation physics.According to the radiation pattern, e.g., Wang and Cheng (2017), the density perturbation has a remarkable coupling effect with the P-wave velocity perturbation at small scattering angles. This implies that the effect of density needs to be taken into account in estimation of the high-wavenumber model perturbations to improve the amplitude accuracy of the simulated reflection data. For instance,least-squares RTM based on the variable-density acoustic wave propagator(Yang et al., 2016) could be used for this purpose.

    The adjoint-state method plays an important role in the seismic waveform tomography,through which the functional gradient can be efficiently calculated by cross-correlating the forward propagated wavefields with the back-propagated adjoint wavefields(Plessix, 2006; Virieux and Operto, 2009; Fichtner and Trampert,2011). In the context of FWI, both the first- and second-order adjoint-state method are closely related to the scattering-integral method (Tromp et al., 2005; Chen et al., 2007; Epanomeritakis et al., 2008; Liu et al., 2015), but which one is better relies on the acquisition geometry, particularly on the ratio of sources to receivers, as well as the trade-offs between computing cost and file input/output operations (Chen et al., 2007). In this paper, we employ the scattering-integral to calculate the Hessian-vector product in the nested inner loops of Gauss-Newton RWI or RTI.However, for the modern marine and land acquisition system in seismic exploration, the number of receivers is far more than the number of sources,which means that the calculation and storage of Fr′echet derivatives will be extremely resource-demanding without proper computational strategies as aforementioned in the previous sections. Therefore, the second-order adjoint-state method for Gauss-Newton RWI or RTI,which can calculate the Hessian-vector product without explicitly storing the Fr′echet derivatives(Fichtner and Tramper, 2011; Metivier et al., 2017), will be an appropriate alternative in the real data applications (Wang et al., 2021).

    Fig.7. The results from proposed workflow with GN-RTI and GN-RWI.(a)and(b):the GN-RTI and GN-RWI velocity model.(c)and(d):the RTM image using(a)and(b)overlaid by the total velocity update. (e) and (f): the offset-domain CIGs using (a) and (b).

    6. Conclusions

    To improve velocity model building using precritical seismic reflection data, we have reviewed the reflection waveform and traveltime Fr′echet derivatives, and demonstrated Hessian-based second-order optimization methods in the context of RWI and RTI.Accordingly,we have proposed a practical workflow cascading Gauss-Newton RTI and Gauss-Newton RWI, in which Hessian preconditioning and computational strategies, such as coarse grid sampling, receiver decimation and frequency grouping are suggested to make the workflow robust and efficient. The application to a towed-streamer data set with limited offsets has demonstrated that the two-stage workflow is qualified to improve the velocity model and structural imaging in the deep part of the sedimentary basin.

    Acknowledgements

    This work is supported by National Natural Science Foundation of China (42074157), the National Key Research and Development Program of China (2018YFC0310104) and the Strategic Priority Research Program of the Chinese Academy of Science(XDA14010203).

    美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 亚洲第一欧美日韩一区二区三区 | 无限看片的www在线观看| 欧美日韩亚洲高清精品| 捣出白浆h1v1| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 高清欧美精品videossex| 51午夜福利影视在线观看| 欧美成狂野欧美在线观看| 久久ye,这里只有精品| 欧美激情久久久久久爽电影 | 美女扒开内裤让男人捅视频| 国产成人精品久久二区二区免费| 精品人妻1区二区| 大香蕉久久网| 日韩一卡2卡3卡4卡2021年| 脱女人内裤的视频| 亚洲 国产 在线| 精品人妻熟女毛片av久久网站| 亚洲人成电影观看| 人人妻人人添人人爽欧美一区卜| 亚洲午夜精品一区,二区,三区| 色在线成人网| 亚洲一码二码三码区别大吗| 亚洲精品国产一区二区精华液| 国产成+人综合+亚洲专区| www.自偷自拍.com| 女性生殖器流出的白浆| 久久精品国产亚洲av高清一级| 韩国精品一区二区三区| 在线播放国产精品三级| 欧美中文综合在线视频| 高清av免费在线| 777米奇影视久久| 别揉我奶头~嗯~啊~动态视频| 18在线观看网站| 国产精品av久久久久免费| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区三| 91成人精品电影| 每晚都被弄得嗷嗷叫到高潮| 黑人巨大精品欧美一区二区mp4| 午夜精品国产一区二区电影| 91成人精品电影| 亚洲成人国产一区在线观看| 女人久久www免费人成看片| 久久精品人人爽人人爽视色| 欧美激情 高清一区二区三区| 在线天堂中文资源库| 国产精品久久久久久人妻精品电影 | 俄罗斯特黄特色一大片| 高清黄色对白视频在线免费看| 免费看十八禁软件| 国产极品粉嫩免费观看在线| 黑人猛操日本美女一级片| 一级毛片精品| 色老头精品视频在线观看| 亚洲国产成人一精品久久久| 日韩视频在线欧美| 黄色视频不卡| 国产成人精品无人区| 国产av又大| 精品久久蜜臀av无| 免费在线观看日本一区| 欧美激情久久久久久爽电影 | 成人黄色视频免费在线看| 我的亚洲天堂| 欧美日韩亚洲高清精品| 视频区欧美日本亚洲| 99热国产这里只有精品6| 免费一级毛片在线播放高清视频 | 高清av免费在线| 欧美日韩av久久| 日韩欧美一区视频在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频 | 一本色道久久久久久精品综合| 一区二区三区乱码不卡18| 国产日韩欧美亚洲二区| 色精品久久人妻99蜜桃| 亚洲色图综合在线观看| 老熟女久久久| 一夜夜www| 精品午夜福利视频在线观看一区 | 国产精品av久久久久免费| 一本色道久久久久久精品综合| 欧美精品啪啪一区二区三区| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频| 久久 成人 亚洲| 丝瓜视频免费看黄片| 国产成人精品在线电影| 国产激情久久老熟女| 一级a爱视频在线免费观看| 他把我摸到了高潮在线观看 | 人人妻,人人澡人人爽秒播| 91av网站免费观看| 亚洲精品国产色婷婷电影| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 欧美 亚洲 国产 日韩一| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| av天堂久久9| 国产一区二区三区视频了| 成年人免费黄色播放视频| 99久久国产精品久久久| 免费日韩欧美在线观看| 欧美午夜高清在线| 成人黄色视频免费在线看| 国产成人精品久久二区二区免费| 在线观看免费视频网站a站| 1024视频免费在线观看| 日韩中文字幕视频在线看片| 色视频在线一区二区三区| 9191精品国产免费久久| 一级a爱视频在线免费观看| 黄色 视频免费看| 丝瓜视频免费看黄片| 人妻 亚洲 视频| 黑人欧美特级aaaaaa片| 国产区一区二久久| 亚洲免费av在线视频| 正在播放国产对白刺激| 国产成人精品久久二区二区免费| 欧美日韩av久久| 亚洲成人免费av在线播放| 日韩三级视频一区二区三区| av网站免费在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 我的亚洲天堂| 亚洲五月色婷婷综合| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 久久精品亚洲av国产电影网| 高清av免费在线| 欧美乱码精品一区二区三区| 亚洲全国av大片| 一二三四社区在线视频社区8| 男女边摸边吃奶| 国产人伦9x9x在线观看| 国产亚洲精品第一综合不卡| 精品福利永久在线观看| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| tocl精华| 久久久久网色| 国产精品二区激情视频| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 五月开心婷婷网| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费 | 中文字幕最新亚洲高清| 午夜日韩欧美国产| 手机成人av网站| 精品国产超薄肉色丝袜足j| 蜜桃国产av成人99| 国产日韩欧美亚洲二区| 国产又色又爽无遮挡免费看| 亚洲,欧美精品.| 久久中文字幕人妻熟女| 男女下面插进去视频免费观看| 桃红色精品国产亚洲av| 久久久精品国产亚洲av高清涩受| 2018国产大陆天天弄谢| 久久人妻av系列| 精品卡一卡二卡四卡免费| 悠悠久久av| 欧美激情 高清一区二区三区| 久久免费观看电影| svipshipincom国产片| 亚洲av成人一区二区三| 下体分泌物呈黄色| 三上悠亚av全集在线观看| 人妻一区二区av| 日韩大码丰满熟妇| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 成人亚洲精品一区在线观看| 桃花免费在线播放| 老司机在亚洲福利影院| avwww免费| 国产精品九九99| 老鸭窝网址在线观看| 国产国语露脸激情在线看| 777米奇影视久久| 中文字幕高清在线视频| 亚洲精品中文字幕在线视频| 亚洲熟妇熟女久久| 精品国产一区二区久久| 一级毛片精品| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区三区久久久樱花| 成年女人毛片免费观看观看9 | 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 久久亚洲精品不卡| 夜夜爽天天搞| 正在播放国产对白刺激| 中文亚洲av片在线观看爽 | 国产欧美亚洲国产| 无人区码免费观看不卡 | 99精品欧美一区二区三区四区| 亚洲人成电影观看| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲| 国产在线观看jvid| 电影成人av| 操出白浆在线播放| 一级毛片电影观看| 青青草视频在线视频观看| 天天躁日日躁夜夜躁夜夜| 精品少妇一区二区三区视频日本电影| 男女无遮挡免费网站观看| 18在线观看网站| 欧美精品av麻豆av| 在线观看免费视频日本深夜| 亚洲av美国av| 久久性视频一级片| 窝窝影院91人妻| 18禁观看日本| 亚洲,欧美精品.| 69av精品久久久久久 | 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 亚洲国产精品一区二区三区在线| 亚洲成国产人片在线观看| 黄色怎么调成土黄色| 久热爱精品视频在线9| 美女视频免费永久观看网站| 午夜免费成人在线视频| 精品少妇黑人巨大在线播放| 纵有疾风起免费观看全集完整版| 黄色片一级片一级黄色片| 在线播放国产精品三级| 超碰成人久久| 国产精品影院久久| 十八禁网站免费在线| 午夜福利在线观看吧| 女人久久www免费人成看片| 一区二区三区精品91| 老司机福利观看| 午夜91福利影院| 婷婷成人精品国产| 少妇被粗大的猛进出69影院| 天堂中文最新版在线下载| 黄色片一级片一级黄色片| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 亚洲精品久久成人aⅴ小说| 电影成人av| 久久青草综合色| 新久久久久国产一级毛片| 精品免费久久久久久久清纯 | 99国产精品99久久久久| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 2018国产大陆天天弄谢| 国产精品98久久久久久宅男小说| 考比视频在线观看| 18在线观看网站| 国产aⅴ精品一区二区三区波| 久久国产精品影院| 宅男免费午夜| 亚洲人成电影观看| 黄色a级毛片大全视频| 国产成人欧美| 在线天堂中文资源库| 国产国语露脸激情在线看| 国产亚洲精品一区二区www | 午夜视频精品福利| 岛国毛片在线播放| 成人国产av品久久久| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 日日夜夜操网爽| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密| 国产精品 国内视频| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 91字幕亚洲| 欧美日本中文国产一区发布| 国产欧美日韩一区二区精品| 搡老乐熟女国产| 99国产精品一区二区三区| 亚洲美女黄片视频| 18禁美女被吸乳视频| av片东京热男人的天堂| av不卡在线播放| 少妇精品久久久久久久| 成在线人永久免费视频| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 免费高清在线观看日韩| 亚洲欧洲日产国产| 成人av一区二区三区在线看| 肉色欧美久久久久久久蜜桃| svipshipincom国产片| 老汉色∧v一级毛片| 国产一卡二卡三卡精品| 亚洲熟女精品中文字幕| 久久 成人 亚洲| 搡老岳熟女国产| 久久久久久久精品吃奶| 国产精品久久电影中文字幕 | 精品欧美一区二区三区在线| 亚洲专区字幕在线| 久久精品国产亚洲av香蕉五月 | 亚洲av国产av综合av卡| 色视频在线一区二区三区| 国产在线一区二区三区精| 国产伦人伦偷精品视频| 久久ye,这里只有精品| 日本黄色视频三级网站网址 | 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 精品卡一卡二卡四卡免费| 欧美亚洲日本最大视频资源| 精品乱码久久久久久99久播| av福利片在线| 精品国产国语对白av| 国产男靠女视频免费网站| 夜夜爽天天搞| 日本av手机在线免费观看| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 国产又爽黄色视频| 久9热在线精品视频| 高清欧美精品videossex| 久久av网站| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 亚洲全国av大片| 久久久久久久久久久久大奶| 亚洲精品av麻豆狂野| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟女乱码| 久久久久网色| 久久精品人人爽人人爽视色| svipshipincom国产片| 老熟女久久久| 在线观看免费日韩欧美大片| 亚洲精品av麻豆狂野| 亚洲精品在线观看二区| 亚洲七黄色美女视频| 精品少妇久久久久久888优播| 91成人精品电影| 日本a在线网址| 午夜成年电影在线免费观看| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 日韩视频在线欧美| 麻豆国产av国片精品| 成年人午夜在线观看视频| 国产午夜精品久久久久久| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美一区二区综合| 男男h啪啪无遮挡| 久久久欧美国产精品| av片东京热男人的天堂| 动漫黄色视频在线观看| 18禁美女被吸乳视频| 黄色毛片三级朝国网站| 80岁老熟妇乱子伦牲交| 满18在线观看网站| 精品国内亚洲2022精品成人 | 最新美女视频免费是黄的| 丝瓜视频免费看黄片| 久久亚洲真实| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 一级片'在线观看视频| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 免费久久久久久久精品成人欧美视频| 热re99久久精品国产66热6| 五月开心婷婷网| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 国产精品自产拍在线观看55亚洲 | 一本色道久久久久久精品综合| 久久久久网色| 精品视频人人做人人爽| av福利片在线| 国产精品一区二区精品视频观看| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 日本一区二区免费在线视频| 国产视频一区二区在线看| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区| 日韩视频在线欧美| bbb黄色大片| 国产视频一区二区在线看| 十八禁网站网址无遮挡| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一出视频| 捣出白浆h1v1| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 国产成人一区二区三区免费视频网站| 丰满少妇做爰视频| 女性生殖器流出的白浆| 国产精品电影一区二区三区 | 99精国产麻豆久久婷婷| 久久久久久久久免费视频了| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美在线一区二区| 色播在线永久视频| 高清黄色对白视频在线免费看| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 亚洲精品粉嫩美女一区| 一本综合久久免费| 母亲3免费完整高清在线观看| 国产日韩欧美视频二区| 国产精品 欧美亚洲| 久久精品国产a三级三级三级| 首页视频小说图片口味搜索| 国产高清激情床上av| 9色porny在线观看| 精品久久久久久久毛片微露脸| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品麻豆人妻色哟哟久久| 久久久国产一区二区| 国产一卡二卡三卡精品| 黑人猛操日本美女一级片| 国产淫语在线视频| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 90打野战视频偷拍视频| 成人18禁在线播放| 一个人免费看片子| 99香蕉大伊视频| 欧美精品亚洲一区二区| 免费高清在线观看日韩| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 热99久久久久精品小说推荐| aaaaa片日本免费| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 成年动漫av网址| 狂野欧美激情性xxxx| 另类精品久久| 一级,二级,三级黄色视频| 美国免费a级毛片| 岛国毛片在线播放| 亚洲欧洲日产国产| 久久婷婷成人综合色麻豆| 免费观看av网站的网址| 天天躁日日躁夜夜躁夜夜| 人成视频在线观看免费观看| 欧美日韩黄片免| 日本vs欧美在线观看视频| 男女无遮挡免费网站观看| 天堂8中文在线网| 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 青草久久国产| 国产日韩欧美亚洲二区| 正在播放国产对白刺激| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 操出白浆在线播放| 国产淫语在线视频| 亚洲 欧美一区二区三区| 老司机影院毛片| 国产精品99久久99久久久不卡| tocl精华| 国产精品麻豆人妻色哟哟久久| 制服人妻中文乱码| 亚洲人成77777在线视频| 水蜜桃什么品种好| bbb黄色大片| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 国产麻豆69| 久久精品国产亚洲av香蕉五月 | 18禁观看日本| 国产成人啪精品午夜网站| 成年人免费黄色播放视频| 免费在线观看视频国产中文字幕亚洲| 国产精品成人在线| 日韩成人在线观看一区二区三区| 国产一区二区 视频在线| 极品教师在线免费播放| 久久国产精品影院| 日韩一卡2卡3卡4卡2021年| 欧美变态另类bdsm刘玥| 精品少妇内射三级| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 视频区欧美日本亚洲| 老司机在亚洲福利影院| 18禁黄网站禁片午夜丰满| 久久亚洲精品不卡| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 三上悠亚av全集在线观看| 美女扒开内裤让男人捅视频| 美女高潮到喷水免费观看| 激情在线观看视频在线高清 | 中文字幕高清在线视频| 午夜福利在线观看吧| 99久久人妻综合| av一本久久久久| 老司机影院毛片| 欧美成人午夜精品| 国产成人免费观看mmmm| 人妻一区二区av| 亚洲自偷自拍图片 自拍| 免费人妻精品一区二区三区视频| 亚洲成人免费av在线播放| 国产一区二区 视频在线| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| av网站在线播放免费| 国产在线免费精品| 一二三四在线观看免费中文在| 亚洲成国产人片在线观看| 精品乱码久久久久久99久播| 中文字幕精品免费在线观看视频| 久久性视频一级片| 99国产极品粉嫩在线观看| 搡老乐熟女国产| 精品国产乱码久久久久久男人| 一区二区三区激情视频| 久久久久视频综合| 国产欧美亚洲国产| 国产精品1区2区在线观看. | av一本久久久久| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 大码成人一级视频| 亚洲熟妇熟女久久| 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 十八禁高潮呻吟视频| 女警被强在线播放| 韩国精品一区二区三区| 夜夜夜夜夜久久久久| 亚洲伊人色综图| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 国产成人av教育| 久久久久久久国产电影| 精品熟女少妇八av免费久了| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久人妻综合| 桃花免费在线播放| 男女午夜视频在线观看| 无人区码免费观看不卡 | 一本一本久久a久久精品综合妖精| av天堂久久9| 一进一出好大好爽视频| 777米奇影视久久| 亚洲伊人色综图| 久久这里只有精品19| 丁香六月天网| 成年女人毛片免费观看观看9 | 人人澡人人妻人| 99re6热这里在线精品视频| 色视频在线一区二区三区| 国产在线免费精品| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 久久人妻av系列| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 深夜精品福利| av国产精品久久久久影院| 五月开心婷婷网| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 免费在线观看视频国产中文字幕亚洲| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| 电影成人av| 在线观看www视频免费|