• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fast space-time-domain Gaussian beam migration approach using the dominant frequency approximation

    2022-09-23 08:13:46DongLinZhangJianPingHuangJiDongYangZhenChunLiSuBinZhuangQingYangLi
    Petroleum Science 2022年4期

    Dong-Lin Zhang , Jian-Ping Huang ,*, Ji-Dong Yang , Zhen-Chun Li ,Su-Bin Zhuang , Qing-Yang Li

    a School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong 266580, China

    b Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266580, China

    c Geophysical Exploration Research Institute of Zhongyuan Oilfield Company, Puyang, Henan 457001, China

    Keywords:Gaussian beam Space-time-domain Fast Dominant frequency approximation

    ABSTRACT The Gaussian beam migration (GBM) is a steady imaging approach, which has high accuracy and efficiency. Its implementation mainly includes the traditional frequency domain and the recent popular space-time domain.Firstly,we use the upward ray tracing strategy to get the backward wavefields.Then,we use the dominant frequency of the seismic data to simplify the imaginary traveltime calculation of the wavefields,which can cut down the Fourier transform number compared with the traditional GBM in the space-time domain.In addition,we choose an optimized parameter for the take-off angle increment of the up-going and down-going rays. These optimizations help us get an efficient space-time-domain acoustic GBM approach. Typical four examples show that the proposed method can significantly improve the computational efficiency up to one or even two orders of magnitude in different models with different model parameters and produce good imaging results with comparable accuracy and resolution with the traditional GBM in the space-time domain.

    1. Introduction

    The Gaussian beam migration (GBM) method is a research hotspot because it can produce good imaging results and have high computational efficiency (ˇCerveny et al.,1982; Popov,1982, 2002;ˇCerveny and Pˇsenˇcík, 1983, 1984). Its implementation mainly includes the traditional frequency domain and the recent popular space-time domain. Hill (1990, 2001) proposed the GBM methods for zero-offset and prestack Gaussian-beam depth migration,respectively. Nowack et al. (2003) extended the method of Hill(2001) to the gathers of common-receiver in order to meet the requirements for some typical land and submarine cable. Gray(2005) presented a common-shot implementation, which can naturally handle the multipathing. Hu and Stoffa (2009) used the horizontal surface slowness information to get a slowness-driven GBM, which can naturally combine the Fresnel weighting with beam summation. It can suppress the noise caused by the inadequate stacking and produce better migration results.To satisfy the requirement of target-oriented imaging, Zhang et al. (2019)implemented the process of back-wavefelds propagation by shooting the rays from subsurface imaging points to receivers.

    Yue et al. (2010, 2012) extended the GBM to the complex topography. Gray and Bleistein (2009) proposed a true-amplitude GBM method, which can get an expression under crosscorrelation imaging condition and obtain some Amplitude Variation with Offset(AVO)information.Alkhalifah(1995)and Zhu et al.(2007) had extended the GBM to Vertical Transversely Isotropic(VTI) medium. Han et al. (2014) proposed a prestack depth GBM method using the converted wave in TI media. Protasov (2015)extended the method of Alkhalifah (1995) to multiple-component seismic data in anisotropic media. Li et al. (2018) proposed an anisotropic converted wave GBM method in angle-domain. At the same time,it had been implemented in elastic media.Protasov and Tcheverda(2012)proposed a true amplitude elastic GBM using the multicomponent vertical seismic data. Huang et al. (2017) developed the reverse time migration with elastic Gaussian beams.Yang et al.(2018a)extended the elastic GBM to common-shot multiplecomponent seismic records. In order to solve an optimization problem, Bai et al. (2016) proposed a multicomponent Gaussian beam to correct the absorption and dispersion associated with the frequency. In addition, Hu et al. (2016) and Yang et al. (2018b)proposed the least-squares GBM methods, which can improve the fidelity of the amplitude in comparison with the traditional GBM and produce comparable imaging accuracy with the least-squares RTM (Yao et al., 2018; Wu et al., 2021).

    Meanwhile, GBM is implemented in the time domain. ˇZ′aˇcek(2006) obtained the time-wavefields with a series of Gaussian beam packets (Klimeˇs, 1989) and implemented a packet GBM method. Yang et al. (2015) used the Gaussian beams reverse propagation (Popov et al., 2007, 2010) to get a space-time-domain GBM approach, which have higher imaging accuracy than the traditional frequency-domain GBM. Lv et al. (2019) developed an optimized space-time-domain Gaussian beam scheme for seismic depth imaging based on the new beam shape, named as spacetime-domain adaptive Gaussian beam.

    However, when we construct the reverse wavefields using the GBM in the frequency-domain, it could produce some weak imaging in some deep complex structures. For the GBM in the traditional space-time domain, it has better accuracy at the expense of the computational efficiency.In this paper,we come up with a new strategy to balance the time cost and imaging precision in spacetime-domain GBM. First of all, we review the upward ray tracing strategy while constructing the backward wavefields.Then,we use the dominant frequency of the seismic data to simplify the imaginary traveltime calculation of the wavefields. In addition, we choose an optimized parameter of the take-off angle increment for the up-going and down-going rays, and obtain a fast and accurate GBM approach in the space-time domain.

    2. Theory

    2.1. Gaussian beam in the space-time domain

    According to ˇCerveny et al. (1982), in the 2D ray centered coordinate system(s'n)(Fig.1),s is the length of arc along the ray at the reference point,n represents the length in the vertical direction with s. The time of ray propagationg can be written as

    where t is time,τ(s) denotes the traveltime, and v0(s) denotes the initial velocity of seismic wave propagation.

    In 2D acoustic media, we consider the space-time-domain ray method for the constant-density acoustic wave equation with the piont source function f(t) as

    where x0=(x0'z0) denotes the spatial rectangular coordinate at the imaging points, xs=(xs'0) denotes the spatial position coordinate at the shot points,ω is the angular frequency,ε is the initial beam parameter.The scalar fuctions P(s)and Q(s)are complex,and they can be written as

    where(p(1)(s)'q(1)(s)) and (p(2)(s)'q(2)(s)) are two solutions of the dynamic ray tracing equations with spherical and plane-wave initial conditions.Hill(1990)gave the expression of ε and the initial value of q(s0) and p(s0) as

    Fig.1. The 2D ray centered coordinates in the vicinity of a ray.

    We establish the relationship between(s;0)and(s0;0)by Eq.(8)and Eq. (9). If we know one, we can get another.

    2.2. Construction of wavefields

    The forward wavefields W(F)(x0't;xs) could be composed of a series of Gaussian beams from different angles and frequencies(ˇCerveny et al.,1982; Popov,1982), which could be expressed as

    where pzare the vertical ray parameter at receiver points.

    Inserting Eq. (16) and Eq. (17) into Eq. (15), the expression of W(R)(x0't0) can be written as

    Fig. 2. Diagram of the upward ray tracing strategy.

    2.3. Space-time-domain GBM

    Thus,we use the cross-correlation imaging condition to get the imaging results as

    To reduce the coherent noise,we get the final imaging results by stacking the multiple-shot imaging profiles.I(x0)can be expressed as

    2.4. Ray parameter optimization

    For the take-off angle increment of the up-going and downgoing rays, we use the angle spacing of the central rays in the frequency-domain GBM(Hill,1990) as

    Fig. 3. The flowchart.

    Fig. 4. The simple layers model.

    Fig. 5. Multiple-shot migration results for the simple layers model.

    Fig. 7. Multiple-shot migration results for the graben model.

    Fig. 6. The graben model.

    Fig. 8. The buried hill model.

    where amaxis the maximum offset angle, aminis the minimum offset angle, vminis the minimum velocity.

    With the premise of ensuring imaging accuracy,the calculation time of the amplitude and traveltime of the up-going and downgoing rays in the loop algorithm is reduced, further improve the computational efficiency of our method.

    Finally, we give the implementation process of the proposed method (Fig. 3b). Compared with Yang et al. (2015)'s method(Fig.3a),we see that our method realizes one cycle in the algorithm than Yang et al. (2015)'s method and we choose an optimized parameter of the take-off angle increment for the up-going and down-going rays, which can help us obtain a faster space-timedomain GBM approach.

    3. Numerical examples

    In the first example,we use the simple layers model as shown in Fig. 4 to test the correctness of our method. The grid size of this model is 1001 × 501 with the spacing size of 10 m. There are 26 shots,and the shot spacing is 200 m.There are 501 traces per shot,and the trace spacing is 10 m.The recording time length is 5 s,and the sampling interval is 0.5 ms.Fig.5 are the results which we use the frequency-domain GBM, Yang et al. (2015)'s method and our method. In Fig. 5b and c, we see that our new method produces good imaging results with comparable accuracy to the Yang et al.(2015)'s method, indicating that our method is correct for the simple model. Besides, compared with the running time of two space-time-domain GBM methods, our new method can increase the computational efficiency by 211.4 times for the simple layers model (Fig. 4).

    Then,we use the graben model(Fig.6)to test the adaptability of our method for the simple models. It has the grid size with 1801 × 301. The horizontal spacing is 5 m and the vertical grid spacing is 10 m. The shots number is 201 and each shot has 301 traces.The shot and trace spacing are 25 m and 10 m,respectively.The time sampling interval is 1 ms and the number of time sample is 2500. Fig. 7a and b are the migration results of the frequencydomain GBM and the space-time-domain GBM method proposed by Yang et al. (2015). The frequency-domain GBM produces some imaging artifacts(red arrows)in Fig.7a.In Fig.7b and c,we see that they can clearly image all reflectors with good accuracy due to the upward ray tracing strategy for time reversal wavefields. At the same time,the comparisons of the running time of two space-timedomain GBM methods show that our new method can improve the computational efficiency by 136.0 times for the graben model(Fig. 6).

    Fig. 9. Multiple-shot migration results for the buried hill model.

    Fig.10. The Marmousi model.

    Fig.11. Multiple-shot migration results for the Marmousi model.

    In the third example,we use the buried hill model(Fig.8)to test the adaptability of our method for imaging some complex structures.The grid size of this model is 1301×401 and the grid spacing is 10 m.There are 30 shots,and the shot spacing is 300 m.There are 401 traces per shot, and the trace spacing is 10 m. The time sampling interval is 0.5 ms and the number of time sample is 6001.Fig. 9 shows the results of the frequency-domain GBM, Yang et al.(2015)'s method and our method. We can see that frequencydomain GBM produces some shallow wide-angle reflections (red arrows) in Fig. 9a. Compared with Fig. 9a and b, the space-timedomain GBM method produces good imaging quality for the shallow layers.And our method produces the comparable results to the Yang et al.(2015)'s method(Fig.9b and c).Compared with the running time of two space-time-domain GBM methods, our method can improve the computational efficiency by 174.7 times for the buried hill model (Fig. 8).

    Fig.12. Magnification of migration images from Fig.11 (blue rectangle).

    The final example is the 2D Marmousi model in Fig.10.It has the grid size with 737×750.The horizontal grid spacing is 12.5 m and the vertical grid spacing is 4.0 m. Here, the CDP spacing is 25 m.There are 240 shots and each shot has 96 traces.The time sampling interval (4 ms) is much larger than the first three models and the total time record is 2.5 s. Fig.11 are the results which we use the frequency-domain GBM, Yang et al. (2015)'s method and our method. We see that two space-time-domain GBM methods produce better imaging quality for the shallow layers than the frequency-domain GBM in Fig.11(blue and red rectangles).Fig.12 and Fig.13 are the magnification of migration images from the blue and red rectangles in Fig.11, respectively. We see that two spacetime-domain GBM methods approximately have the same imaging accuracy as shown Fig. 11. However, our method slightly decreases the imaging energy at the top of the deep anticline because our approximations may result in less Gaussian beam stacking at some complex areas. Compared with the running time of two space-time-domain GBM methods, our method can improve the computational efficiency by 39.9 times for the Marmousi model(Fig.10).

    Fig.13. Magnification of migration images from Fig.11 (red rectangle).

    4. Discussion

    4.1. The sensitivity of the model parameters

    Fitstly,we're going to focus on what parameters affect the final computational efficiency of our method.

    We define the following formula as

    Table 1 The parameters of two space-time GBM methods.

    Fig.14. The function of T as γ varies.

    Fig. 15. The results of wavelet comparisons for Fig. 5 in Yang et al. (2015)'s method(black) and our method (red).

    Fig.16. The results of wavelet comparisons for Fig.12 in Yang et al. (2015)'s method(black) and our method (red).

    Fig.17. The results of wavelet comparisons for Fig.13 in Yang et al. (2015)'s method(black) and our method (red).

    where Ntdenotes the wavelet length, which is negatively associated with the time sampling interval in the traditional space-timedomain GBM.

    And the running time of two space-time-domain GBM methods of a single shot can be seen in Table 1. We define the ratio of the running time of the traditional space-time-domain GBM to the running time of our method as

    where T1is the running time of the traditional space-time-domain GBM for a single shot, T2is the running time of our method for a single shot.

    In Fig.14,the profile suggests that the improved computational efficiency of our method T is positively correlated with γ. It is just the result that we do some approximations and optimizations.

    4.2. The influence of the comlexity of the models

    Secondly, we will discuss the cost difference caused by the different model complexity.In our new algorithm,the running time(Ttotal)can be mainly divided into two parts(Trayand Tmigration).The first part(Tray)is the cost for the ray tracing,which is the same cost between our new method and Yang et al. (2015)'s method. The second part (Tmigration) is the cost of the migration process. In our new method, we first decrease the loop layer from 5 of Yang et al.(2015) to 4; in addition, we also highly improve the computational efficiency by decreasing the up-going and down-going rays density in loop 3 and loop 4 in Fig.3b.For different models with the same paremeters, Trayis basically same with two space-timedomain GBM methods, which mainly depends on the complexity of the models. As the model gets more complex, Traybecomes bigger. At the same time, our approximations and optimizations mainly reduce Tmigration. Thus, it will slightly reduce the improved computational efficiency of our method with more complex models.

    4.3. The quantitative analysis of our method

    Fig.18. Comparisons of wavenumber spectrum for Fig. 5 (all panels are normalized according to their maximum values).

    Fig.19. Comparisons of wavenumber spectrum for Fig.12 (all panels are normalized according to their maximum values).

    Fig. 20. Comparisons of wavenumber spectrum for Fig.13 (all panels are normalized according to their maximum values).

    Finally, we give the quantitative analysis of our method using the simple layers and Marmousi models as the examples. Fig.15,Fig.16 and Fig.17 are the results of wavelet comparisons for Fig.5,Fig. 12 and Fig. 13 in two space-time-domain GBM methods,respectively. We can find that our method has slight influence on the wavelet phase in some locations, which approximately influences 1%-3% for lithology imaging. But it is worth that we significantly improve the computational efficiency up to one or even two orders of magnitude. Fig.18, Fig.19 and Fig. 20 are the comparisons of wavenumber spectrum for Fig.5,Fig.12 and Fig.13 in two space-time-domain GBM methods, respectively. In general,two methods have a nearly same range of wavenumbers because our method only simplifies the computation of the forward and backward wavefields associated with the imaginary traveltime,the real traveltime still contains the information with all frequencies.

    5. Conclusions

    We propose a fast and accurate space-time-domain acoustic GBM method with some approximations and optimizations. Four numerical examples show that the proposed method can significantly reduce the computational cost of the traditional space-timedomain GBM.And different models can improve the computational efficiency differently, it mainly depends on the selections of the parameters of different models. Compared with the frequencydomain GBM, our method produces good imaging quality for the shallow layers and it has better imaging accuracy. In addition, our new method produces good imaging results with comparable accuracy and resolution with the traditional space-time-domain GBM.

    It is difficult to apply the traditional space-time-domain GBM to large-scale field data processing due to the larger computational cost.Experiments show that compared with the traditional spacetime-domain GBM, our new method can improve the computational efficiency by 39.9-211.4 times in different models. It solves the key problem of the development of the space-time-domain GBM and has a good potential. Thus, our method will be a new fast and flexible tool for seismic imaging in geologically complex areas.

    Acknowledgements

    This study is jointly supported by the National Key Research and Development Program of China (2019YFC0605503), the National Natural Science Foundation of China (41821002, 41922028,41874149), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010303), the Major Scientific and Technological Projects of CNPC (ZD2019-183-003). We thank the editors of Petroleum Science and the reviewers,whose constructive comments improve the paper.

    久久精品国产亚洲av香蕉五月 | 在线免费观看的www视频| 亚洲性夜色夜夜综合| 久久久久久久国产电影| 久久精品亚洲精品国产色婷小说| 欧美亚洲 丝袜 人妻 在线| 热99国产精品久久久久久7| 亚洲九九香蕉| 99久久人妻综合| 色尼玛亚洲综合影院| 亚洲黑人精品在线| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区免费| 性色av乱码一区二区三区2| 国产精品免费视频内射| 免费av中文字幕在线| 在线观看免费午夜福利视频| 国产免费现黄频在线看| 日韩欧美三级三区| 99re在线观看精品视频| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 黄色 视频免费看| 亚洲色图综合在线观看| 在线观看日韩欧美| 90打野战视频偷拍视频| 国产深夜福利视频在线观看| 欧美性长视频在线观看| 国产精品欧美亚洲77777| 久久午夜亚洲精品久久| 91成年电影在线观看| 精品一区二区三卡| 老司机在亚洲福利影院| 水蜜桃什么品种好| 热99国产精品久久久久久7| 亚洲va日本ⅴa欧美va伊人久久| 曰老女人黄片| 久久国产精品男人的天堂亚洲| 高清欧美精品videossex| 国产精品自产拍在线观看55亚洲 | 国产成人一区二区三区免费视频网站| 亚洲人成电影观看| 国产精品成人在线| 精品一品国产午夜福利视频| 国产精品免费视频内射| 黄色a级毛片大全视频| 午夜老司机福利片| 免费观看人在逋| 两个人免费观看高清视频| 久久香蕉精品热| 国产精品电影一区二区三区 | 女同久久另类99精品国产91| 高潮久久久久久久久久久不卡| 操出白浆在线播放| 国内毛片毛片毛片毛片毛片| 精品国产一区二区三区四区第35| 国产精品1区2区在线观看. | 欧美 亚洲 国产 日韩一| 首页视频小说图片口味搜索| 国产91精品成人一区二区三区| 国产欧美日韩一区二区三区在线| 国产1区2区3区精品| 欧美中文综合在线视频| 精品一区二区三区四区五区乱码| 国产单亲对白刺激| 精品欧美一区二区三区在线| 最近最新中文字幕大全免费视频| 黑丝袜美女国产一区| 叶爱在线成人免费视频播放| 成人亚洲精品一区在线观看| tube8黄色片| 国产精品一区二区精品视频观看| xxxhd国产人妻xxx| 女人被狂操c到高潮| 国产精品久久视频播放| 黄色视频不卡| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 免费观看a级毛片全部| 性色av乱码一区二区三区2| 天天操日日干夜夜撸| 久久精品91无色码中文字幕| 久久久久久久精品吃奶| 日韩熟女老妇一区二区性免费视频| 国产在线观看jvid| 亚洲欧美激情在线| 色播在线永久视频| 欧美另类亚洲清纯唯美| 别揉我奶头~嗯~啊~动态视频| 国产成人精品久久二区二区91| 亚洲精品粉嫩美女一区| av在线播放免费不卡| 亚洲av成人不卡在线观看播放网| 国产精品98久久久久久宅男小说| 精品福利观看| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 国产成人免费观看mmmm| 99riav亚洲国产免费| 国产精品自产拍在线观看55亚洲 | 成人黄色视频免费在线看| 欧美日韩乱码在线| 一本一本久久a久久精品综合妖精| 99国产极品粉嫩在线观看| 一级a爱视频在线免费观看| 黄色毛片三级朝国网站| 国产男女内射视频| 免费在线观看黄色视频的| 电影成人av| 国产精品一区二区在线观看99| 两个人免费观看高清视频| 国产在线一区二区三区精| 精品少妇一区二区三区视频日本电影| 啦啦啦视频在线资源免费观看| 色综合欧美亚洲国产小说| 中文字幕另类日韩欧美亚洲嫩草| videos熟女内射| 免费在线观看影片大全网站| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 日韩精品免费视频一区二区三区| 亚洲全国av大片| 侵犯人妻中文字幕一二三四区| 真人做人爱边吃奶动态| 国产精品永久免费网站| 很黄的视频免费| 欧美成狂野欧美在线观看| av超薄肉色丝袜交足视频| 免费观看人在逋| 亚洲av日韩精品久久久久久密| 国产精品免费一区二区三区在线 | 久久精品国产清高在天天线| 少妇被粗大的猛进出69影院| 午夜福利,免费看| 日韩三级视频一区二区三区| 香蕉丝袜av| 91麻豆精品激情在线观看国产 | 国产亚洲av高清不卡| 在线观看免费视频日本深夜| 日韩免费av在线播放| 丁香欧美五月| 欧美黑人欧美精品刺激| 99热只有精品国产| 免费黄频网站在线观看国产| 精品电影一区二区在线| 水蜜桃什么品种好| 无限看片的www在线观看| 丁香六月欧美| xxx96com| 国产成人啪精品午夜网站| 亚洲一区高清亚洲精品| 99久久国产精品久久久| 成年人黄色毛片网站| 丝袜人妻中文字幕| 免费人成视频x8x8入口观看| 一个人免费在线观看的高清视频| 宅男免费午夜| 久久精品aⅴ一区二区三区四区| 波多野结衣av一区二区av| 亚洲成人免费av在线播放| 国产乱人伦免费视频| 国产精品一区二区精品视频观看| 亚洲五月色婷婷综合| 老熟女久久久| 日韩欧美一区二区三区在线观看 | 午夜福利欧美成人| 亚洲精品国产区一区二| 亚洲国产欧美日韩在线播放| 天天影视国产精品| 中文字幕人妻丝袜一区二区| 91麻豆精品激情在线观看国产 | 国产亚洲精品第一综合不卡| 国产在线观看jvid| 国产免费av片在线观看野外av| 欧美 日韩 精品 国产| 中文亚洲av片在线观看爽 | 成在线人永久免费视频| 宅男免费午夜| 久久天堂一区二区三区四区| 久久精品aⅴ一区二区三区四区| 亚洲第一av免费看| 一进一出好大好爽视频| 91麻豆精品激情在线观看国产 | 国产亚洲精品第一综合不卡| 少妇被粗大的猛进出69影院| 大香蕉久久网| 欧美午夜高清在线| 一进一出好大好爽视频| 国产一区在线观看成人免费| 国产在线一区二区三区精| 午夜精品国产一区二区电影| 动漫黄色视频在线观看| 777久久人妻少妇嫩草av网站| 国产精品1区2区在线观看. | 精品亚洲成a人片在线观看| 十八禁高潮呻吟视频| 村上凉子中文字幕在线| 久热这里只有精品99| 黄片小视频在线播放| 岛国毛片在线播放| 91成年电影在线观看| 亚洲中文av在线| 成人亚洲精品一区在线观看| 午夜福利免费观看在线| 日韩熟女老妇一区二区性免费视频| 美女高潮到喷水免费观看| 国产精品九九99| 欧美日韩中文字幕国产精品一区二区三区 | 人人妻人人添人人爽欧美一区卜| 欧美久久黑人一区二区| 久久人妻av系列| 91老司机精品| 黄色怎么调成土黄色| 日日爽夜夜爽网站| 中文字幕av电影在线播放| 午夜日韩欧美国产| 女人爽到高潮嗷嗷叫在线视频| 91九色精品人成在线观看| 欧美人与性动交α欧美软件| 美女国产高潮福利片在线看| 岛国在线观看网站| 亚洲国产欧美日韩在线播放| 一a级毛片在线观看| 午夜福利在线免费观看网站| 大香蕉久久成人网| 婷婷丁香在线五月| 欧美中文综合在线视频| 在线播放国产精品三级| 50天的宝宝边吃奶边哭怎么回事| xxxhd国产人妻xxx| 在线国产一区二区在线| 日韩免费高清中文字幕av| 欧美精品啪啪一区二区三区| 精品一区二区三区视频在线观看免费 | 国产精品九九99| 最近最新免费中文字幕在线| 无人区码免费观看不卡| 精品久久蜜臀av无| 国产精品免费大片| 亚洲成人手机| 久久久精品区二区三区| 一a级毛片在线观看| 精品久久久久久久毛片微露脸| 国产精华一区二区三区| 久9热在线精品视频| 久9热在线精品视频| 色婷婷av一区二区三区视频| 欧美黄色淫秽网站| 免费av中文字幕在线| 黄色怎么调成土黄色| 9191精品国产免费久久| 在线十欧美十亚洲十日本专区| 九色亚洲精品在线播放| 国产成人欧美| 午夜影院日韩av| 久久狼人影院| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线观看99| 免费女性裸体啪啪无遮挡网站| av网站免费在线观看视频| 99精品久久久久人妻精品| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人免费av在线播放| 亚洲伊人色综图| 国产日韩欧美亚洲二区| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 国产激情久久老熟女| 人妻丰满熟妇av一区二区三区 | 午夜成年电影在线免费观看| 夜夜躁狠狠躁天天躁| 色综合婷婷激情| 9热在线视频观看99| 12—13女人毛片做爰片一| 亚洲国产精品sss在线观看 | 午夜91福利影院| 在线观看66精品国产| 男人舔女人的私密视频| 亚洲国产看品久久| 国产欧美日韩精品亚洲av| 久久中文字幕人妻熟女| 又大又爽又粗| 午夜老司机福利片| 色尼玛亚洲综合影院| 国产99久久九九免费精品| 热99国产精品久久久久久7| 精品一区二区三区视频在线观看免费 | 亚洲欧美一区二区三区黑人| 在线观看免费日韩欧美大片| 亚洲成a人片在线一区二区| 正在播放国产对白刺激| 王馨瑶露胸无遮挡在线观看| 亚洲专区国产一区二区| tube8黄色片| 人人妻人人爽人人添夜夜欢视频| 亚洲九九香蕉| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线 | 国产男女内射视频| 国产成人av激情在线播放| 国产免费男女视频| 国产精品综合久久久久久久免费 | 99久久国产精品久久久| 亚洲精品国产色婷婷电影| 久久精品国产综合久久久| 国产精品综合久久久久久久免费 | 免费高清在线观看日韩| 操出白浆在线播放| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 黄色成人免费大全| 日本五十路高清| 亚洲男人天堂网一区| 亚洲七黄色美女视频| 在线观看免费午夜福利视频| 多毛熟女@视频| 天天躁日日躁夜夜躁夜夜| 精品国产超薄肉色丝袜足j| 国产在线观看jvid| 亚洲人成77777在线视频| 满18在线观看网站| 成人国语在线视频| av国产精品久久久久影院| 黄色 视频免费看| 免费在线观看完整版高清| 国产精品久久视频播放| 操美女的视频在线观看| 人人澡人人妻人| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 精品国产亚洲在线| 午夜福利乱码中文字幕| 狠狠婷婷综合久久久久久88av| 操出白浆在线播放| www.熟女人妻精品国产| 曰老女人黄片| 精品一品国产午夜福利视频| 亚洲国产欧美一区二区综合| 国产成人啪精品午夜网站| 久久国产精品影院| 国产xxxxx性猛交| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| 午夜日韩欧美国产| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 亚洲精品乱久久久久久| av电影中文网址| 亚洲专区中文字幕在线| 一本一本久久a久久精品综合妖精| 夜夜爽天天搞| 欧美丝袜亚洲另类 | 午夜免费观看网址| 麻豆av在线久日| svipshipincom国产片| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线 | 国产单亲对白刺激| 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 久99久视频精品免费| 色综合婷婷激情| 成人国产一区最新在线观看| 亚洲视频免费观看视频| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 亚洲色图综合在线观看| 精品一区二区三区视频在线观看免费 | 午夜福利在线观看吧| 高清av免费在线| 欧美人与性动交α欧美软件| 日韩 欧美 亚洲 中文字幕| 99精国产麻豆久久婷婷| 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲美女黄片视频| 美女高潮到喷水免费观看| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| 欧美日韩av久久| 久久狼人影院| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 午夜福利乱码中文字幕| a级毛片在线看网站| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 久久久精品免费免费高清| 丝袜人妻中文字幕| 一级毛片精品| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲 | 久久久久国产精品人妻aⅴ院 | 中文字幕人妻熟女乱码| 91老司机精品| 身体一侧抽搐| 成年人免费黄色播放视频| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| 久久精品国产清高在天天线| 久久99一区二区三区| 亚洲欧美激情综合另类| 黑人操中国人逼视频| 精品久久久久久,| 亚洲五月天丁香| 国产在线精品亚洲第一网站| 中文字幕制服av| 成人免费观看视频高清| e午夜精品久久久久久久| 9191精品国产免费久久| 91成人精品电影| 午夜福利在线免费观看网站| 日本wwww免费看| 午夜福利影视在线免费观看| 亚洲国产精品sss在线观看 | 国产亚洲一区二区精品| 男女午夜视频在线观看| 老司机在亚洲福利影院| 午夜福利一区二区在线看| a级毛片在线看网站| 久久ye,这里只有精品| av免费在线观看网站| 国产91精品成人一区二区三区| 久久九九热精品免费| 精品国内亚洲2022精品成人 | 精品视频人人做人人爽| 麻豆av在线久日| 我的亚洲天堂| www.自偷自拍.com| 欧美激情高清一区二区三区| 777米奇影视久久| 黄色成人免费大全| 人人妻人人爽人人添夜夜欢视频| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 一进一出好大好爽视频| 美女 人体艺术 gogo| 欧美人与性动交α欧美软件| 亚洲精品一二三| 国产成人一区二区三区免费视频网站| 激情在线观看视频在线高清 | 在线观看免费午夜福利视频| 午夜福利影视在线免费观看| 日韩欧美一区二区三区在线观看 | 人人澡人人妻人| av线在线观看网站| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 精品国产亚洲在线| 视频区欧美日本亚洲| 久久久国产成人精品二区 | 亚洲国产欧美网| 国产不卡一卡二| 国产色视频综合| 国产精品久久久久成人av| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 又黄又爽又免费观看的视频| 久久久水蜜桃国产精品网| 性少妇av在线| 精品一区二区三区视频在线观看免费 | 亚洲人成伊人成综合网2020| 亚洲一区中文字幕在线| 国产精品二区激情视频| 日韩一卡2卡3卡4卡2021年| 一边摸一边抽搐一进一出视频| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 法律面前人人平等表现在哪些方面| 欧美 日韩 精品 国产| 日本a在线网址| 人妻丰满熟妇av一区二区三区 | 亚洲男人天堂网一区| 欧美丝袜亚洲另类 | 满18在线观看网站| 亚洲情色 制服丝袜| 丁香欧美五月| 久99久视频精品免费| 免费在线观看视频国产中文字幕亚洲| 欧美老熟妇乱子伦牲交| 后天国语完整版免费观看| av不卡在线播放| 1024香蕉在线观看| 免费女性裸体啪啪无遮挡网站| 欧美大码av| 日韩三级视频一区二区三区| 国产人伦9x9x在线观看| 在线观看免费午夜福利视频| 手机成人av网站| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 亚洲中文字幕日韩| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 一级黄色大片毛片| 久久香蕉国产精品| av天堂久久9| 村上凉子中文字幕在线| 久久久久国内视频| 色综合婷婷激情| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 久久香蕉精品热| 精品国产一区二区三区久久久樱花| 国产精品免费大片| 久久人人97超碰香蕉20202| 国产精品 国内视频| 亚洲成人手机| 天天躁日日躁夜夜躁夜夜| 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 亚洲全国av大片| 视频区图区小说| 91字幕亚洲| 午夜老司机福利片| 一进一出抽搐gif免费好疼 | 一进一出好大好爽视频| 成人18禁在线播放| 欧美人与性动交α欧美软件| av线在线观看网站| 波多野结衣一区麻豆| 中文亚洲av片在线观看爽 | 在线播放国产精品三级| 成年动漫av网址| 人妻久久中文字幕网| 久久久国产欧美日韩av| 成人国语在线视频| 极品少妇高潮喷水抽搐| 午夜老司机福利片| 亚洲伊人色综图| 国产97色在线日韩免费| 亚洲成人免费av在线播放| 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 国产97色在线日韩免费| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av| 欧美丝袜亚洲另类 | netflix在线观看网站| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 精品一区二区三区视频在线观看免费 | 国产av精品麻豆| 麻豆乱淫一区二区| 欧美丝袜亚洲另类 | 大型黄色视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 视频区欧美日本亚洲| 黄色成人免费大全| aaaaa片日本免费| 国产一卡二卡三卡精品| 一本综合久久免费| 香蕉国产在线看| 午夜免费成人在线视频| 久久ye,这里只有精品| 久久中文字幕人妻熟女| 丰满饥渴人妻一区二区三| 亚洲成国产人片在线观看| 天堂动漫精品| 国产精品乱码一区二三区的特点 | 满18在线观看网站| 午夜精品国产一区二区电影| 国产男女内射视频| 午夜福利免费观看在线| 又紧又爽又黄一区二区| 国产97色在线日韩免费| 91精品三级在线观看| 欧美性长视频在线观看| 亚洲熟女精品中文字幕| 国产又色又爽无遮挡免费看| 真人做人爱边吃奶动态| 视频在线观看一区二区三区| 涩涩av久久男人的天堂| 9色porny在线观看| 男女免费视频国产| 纯流量卡能插随身wifi吗| 国产精品久久电影中文字幕 | 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 不卡一级毛片| 美女扒开内裤让男人捅视频| 成人免费观看视频高清| 久久香蕉精品热| 中文字幕色久视频| 成年人免费黄色播放视频| 国产精品98久久久久久宅男小说| 色婷婷av一区二区三区视频| 黄片小视频在线播放| 亚洲自偷自拍图片 自拍| 成人黄色视频免费在线看| 一a级毛片在线观看| 久久国产亚洲av麻豆专区| av网站免费在线观看视频| 十八禁高潮呻吟视频| 精品久久久久久久久久免费视频 | 视频在线观看一区二区三区| 村上凉子中文字幕在线|