• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of different occurrence types of organic matter on hydrocarbon generation in mudstones

    2022-09-23 08:14:18PengYnDuJinGongCiQingLiuXueJunZhngJunWng
    Petroleum Science 2022年4期

    Peng-Yn Du , Jin-Gong Ci ,*, Qing Liu , Xue-Jun Zhng , Jun Wng

    a State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China

    b Exploration and Development Research Institute of Shengli Oilfield Company, SINOPEC, Dongying, Shandong 257001, China

    Keywords:Soluble organic matter Mineral-bound organic matter Particulate organic matter Hydrocarbon precursor Rock-Eval VI pyrolysis

    ABSTRACT Organic matter (OM) is preserved as different occurrences in mudstones, which can affect the hydrocarbon generation process.However,little research has focused on hydrocarbon generation as a function of different occurrences of OM.This study collected a suite of mudstones in the Dongying Sag,Bohai Bay Basin, and conducted Rock-Eval VI pyrolysis after Soxhlet extraction and Na2S2O8 oxidation, aiming to quantify the OM with different occurrences and figure out the contributions of each occurrence of OM to the hydrocarbon generation. There are three types of occurrences of OM: soluble organic matter (SOM),mineral-bound organic matter(MOM),and particulate organic matter(POM).MOM is the most abundant among the three occurrence types of OM.SOM and MOM are the main hydrocarbon precursors,and their hydrocarbon contributions alternate with different kerogen types and layers. Additionally, MOMcontributed hydrocarbons are numerous at shallow depths; SOM-contributed hydrocarbons mainly occur at deep depths; and POM-contributed hydrocarbons change little with depth. These results demonstrate that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.

    1. Introduction

    Different types of occurrences of OM in source rocks have received much attention in the areas of petroleum generation and the global carbon cycle (Berthonneau et al., 2016; Cai et al., 2007;Jarvie et al.,2007;Kennedy and Wagner,2011;Rahman et al.,2017).Learning the characteristics of different types of occurrences of OM would be significantly useful for further understanding hydrocarbon generation mechanisms in source rocks.

    Various studies have focused on OM classification in source rocks according to the OM occurrence (Kennedy et al., 2002; Zhu et al., 2016), and the physicochemical interactions between OM and clay minerals (Cai et al., 2020; Keil and Maye, 2014; Lützow et al., 2006; Zhu et al., 2020). Soluble and insoluble OM (Durand,1980; Tissot and Welte, 1984), OM combined with minerals and not combined with minerals(Keil and Mayer,2014),and structured and amorphous OM (Sebag et al., 2006; Tyson,1995) demonstrate the diversity of OM.The OM combined with minerals have various bonding mechanisms with mineral surfaces, such as ligand exchange (Kaiser et al., 2007; Kleber et al., 2007), ion exchange(Mikutta et al.,2007,2009),cation bridging(Li et al.,2015;Lützow et al.,2006),etc.Soluble OM is generally in a free state or physically adsorbed in source rocks(Tissot and Welte,1984).As the OM with different occurrences have different structures and hydrocarbon generation mechanisms,they may contribute different volumes of hydrocarbons to source rocks(Kennedy et al.,2014;Rahman et al.,2018;Tissot and Welte,1984;Yuan et al.,2013).However,there are currently few studies on the specific differences in hydrocarbon contributions of the OM with different occurrences.

    Previous studies have employed many methods to separate different occurrences of OM. Soxhlet extraction (Tissot and Welte,1984), density fractionation (Arnarson and Keil, 2001), and size fractionation (Carter et al., 2003) are always used to separate soluble OM. The OM combined with minerals can be removed by oxidizing agents such as H2O2, NaClO, and Na2S2O8(Eusterhues et al., 2003; Kiem et al., 2002; Meier and Menegatti, 1997;Mikutta et al., 2005), among which Na2S2O8is considered to be more efficient(Helfrich et al.,2007;Lützow et al.,2007).However,quantifying OM with different types of occurrences in source rocks is still a difficult problem.

    This work collected a suite of mudstones in the Dongying Sag in the depth range of 1850-5000 m. Soxhlet extraction and Na2S2O8oxidation were used to sequentially remove OM with different occurrences from the mudstones, respectively. Subsequently, the quantification of OM with different occurrences was realized by conducting Rock-Eval VI pyrolysis on raw, Soxhlet extracted, and Na2S2O8oxidized mudstones. Correspondingly, the hydrocarbon generation potential and behavior of OM with different occurrences were investigated in the whole depth profile.

    2. Materials and methods

    2.1. Materials

    2.2. Methods

    The samples were crushed into powder,screened to a 100-mesh(< 0.15 mm), and then dried for 24 h at 60°C. The dried samples were stored in a desiccator for further experiments.

    2.2.1. Soxhlet extraction

    Fig.1. Location map and development of strata in the Dongying Sag(modified by Zeng et al.(2018)).(a)Study area and structural units of the Dongying Sag in the Bohai Bay Basin,China (the gray dot denotes the Dongying Sag). (b) Development of Paleogene deposits in the Dongying Sag (the gray shading indicates the research strata).

    First, approximately 10 g of sample powder was wrapped with filter paper and weighed, and then refluxed with a mixture of CH2Cl2:CH3OH at a ratio of 9:1 (vol:vol) in a Soxhlet extractor to remove the soluble OM (Cai et al., 2021). Then, the extraction was conducted at 48°C for 72 h.Last,the extraction residues were dried at 60°C for 24 h and weighed.The analytical balance was a Mettler Toledo ME104, its resolution was 0.0001 g, and the maximum permission error(MPE) was 0.0002 g.

    2.2.2. Na2S2O8oxidation

    The Soxhlet extraction residues were then subjected to Na2S2O8oxidation, which could oxidize the OM combined with minerals without damage to the mineral structure (Kiem et al., 2002;Menegatti et al., 1999). The oxidizing solvent was a mixture of Na2S2O8:NaHCO3at a mass ratio of 1:1.1(g:g).The mass ratio of the sample to Na2S2O8is approximately 1:40 (g:g) (Meier and Menegatti,1997; Mikutta et al., 2005). First, approximately 2 g of Soxhlet extraction residue was weighed and dispersed in oxidizing solvent diluted with deionized water to a total volume of 1000 mL with a pH of 7-8.5(Cai et al.,2021).Then,the oxidation treatment was performed in a water bath at 80°C for 48 h.Next,the oxidation residues were washed with deionized water several times to remove sulfate ions.Last,the washed residues were dried at 60°C for 48 h and weighed.

    2.2.3. Rock-Eval VI pyrolysis

    Rock-Eval VI pyrolysis(Vinci Technologies,France)experiments were conducted in the Experimental Research Center of the Wuxi Petroleum Geology Institute, China Petroleum & Chemical Corporation(SINOPEC).The sample was heated at 300°C in helium flow for 2.5 min,then heated from 300°C to 650°C with a heating rate of 25°C/min, and the hydrocarbon released was detected by a hydrogen flame ionization detector. CO2released during pyrolysis was detected by a thermal conductivity detector. Pyrolysis was conducted on all of the raw, extracted and oxidized samples to obtain the pyrolysis parameters of total organic carbon (TOC)content, free hydrocarbons (S1), pyrolysis hydrocarbons (S2), the hydrogen index (HI = S2/TOC), and the temperature of the maximum S2 peak(Tmax) (Behar et al., 2001; Carrie et al., 2012).

    3. Results

    The TOC contents of the raw samples first increased and then decreased with depth(Fig.2a).The TOC contents of approximately 45%of the samples were in the range of 2%-4%,approximately 14%of the samples had TOC contents higher than 4%,31%of the samples had TOC contents in the range of 1%-2%, and only approximately 10%of the samples had TOC contents less than 1%(Fig.2b).The S1 and S2 of the raw samples all increased in shallow formations and then decreased with depth;the S1 values were 0-8 mg/g,and the S2 values were 0-110 mg/g(Fig.2c and d).The kerogen types in the raw samples in each layer were mainly types I and II (Fig. 2e).

    The TOC contents of the extracted samples had a similar evolutionary trend to that of the raw samples (Fig. 2a), but approximately 53% of the TOC contents of the extracted samples were in the 1%-2% range, approximately 27% were in the 2%-4%range,10%were less than 1%and 10%were larger than 4%(Fig.2b).S1 values of the extracted samples were mostly less than 0.1 mg/g(Fig. 2c). S2 values of the extracted samples had a similar trend to the S2 values of the raw samples, and the TOC values of the extracted samples were slightly lower(Fig.2d).The kerogen types of the extracted samples were mainly I and II,while some samples in Echange to type III (Fig. 2f).

    After the subsequent Na2S2O8oxidation,the TOC contents of the oxidized samples generally changed little with depth(Fig.2a),and the TOC values of approximately 76% oxidized samples were less than 1%, approximately 14% were in the 1%-2% range, 7% were in the 2%-4% range, and only 3% were higher than 4% (Fig. 2b). S1 values of the oxidized samples were nearly 0 mg/g(Fig.2c),and S2 values were less than 2 mg/g (Fig. 2d). The kerogen types of the oxidized samples mostly changed to types II and III (Fig. 2g).

    4. Discussion

    4.1. Definition of OM with different occurrences

    The sequential treatment results show that OM in mudstones is mostly removed by Soxhlet extraction and Na2S2O8oxidation(Fig.2a and b).As Soxhlet extraction is a physical action that has no influence on the structure of organic matters, the organic matter that is dissolved in this process is physically adsorbed in mudstones and is defined as soluble organic matter (SOM) (Tissot and Welte,1984). Na2S2O8oxidation is a chemical reaction that can yield SO4-radicals that react with OM (Mikutta et al., 2005; Zhu et al.,2016). As Na2S2O8oxidation was treated sequentially after Soxhlet extraction,the OM removed in this process is bonding to the clay mineral interlayer or mineral surface(Helfrich et al.,2007;Lützow et al., 2007). This kind of OM is mainly an amorphous component(Cai et al., 2007, 2020; Zhu et al., 2020) and is defined as mineralbound organic matter (MOM) in this paper (Fig. 3). Thus, SOM and MOM could be progressively removed by the two sequential treatments. There is also a small amount of OM in the Na2S2O8oxidized sample(Fig.2a).As this kind of OM is mainly clumpy flocs or macromolecule polymers that can barely be physically or chemically removed(Cambardella and Elliott,1992;Keil and Mayer,2014; Lopez-Sangil and Rovira, 2013), it is defined as particulate organic matter(POM) in this work (Fig. 3).

    4.2. Quantification of OM with different occurrences

    The contents of SOM,MOM and POM can be represented by the TOC difference between the raw, extracted and oxidized samples.The hydrocarbons generated from SOM, MOM and POM can be calculated based on S1 and S2 of the raw, extracted and oxidized samples. As the denominators of TOC, S1 and S2 of the raw,extracted and oxidized samples are different, these parameters need to be calculated with the same denominator, and then the abundances and hydrocarbon parameters of SOM, MOM and POM can be calculated.

    The quantification process mainly involves two steps: first, the sample weights of the raw,extracted and oxidized samples are used to calculate the conversion factors(fe,fo),which can convert TOC,S1 and S2 of the raw,extracted,and oxidized samples to have the same denominator; second, the difference between the converted TOC,S1 and S2 of the raw,extracted,and oxidized samples is calculated to obtain the abundances and hydrocarbon contents of SOM and MOM.The calculation equations for the two steps are shown by Eq.(1)-Eq. (5) in Fig. 4.

    The sum of S1 and S2 can be used to represent the total hydrocarbons (TS) generated from each OM with different occurrences(Eq. (6)):

    The relative contents of TOC,S1,S2,and TS(represented by TOCP, S1-P, S2-P, and TS-P, respectively) of SOM, MOM and POM represent the relative abundances and hydrocarbon contributions of OM with the three occurrence types. The calculation equations are shown below(Eq. (7)-Eq.(10)):

    Fig. 2. OM and hydrocarbon characteristics of the raw samples (Raw), Soxhlet extracted samples (Extracted) and Na2S2O8 oxidized samples (Oxidized): (a) variation of TOC with increasing depth,(b)frequency distribution of TOC,(c)variation of S1 with increasing depth,(d)variation of S2 with increasing depth,and(e,f,g)kerogen types determined by HI vs Tmax in the raw, extracted and oxidized samples. The data are given in Table S1 in the Supplementary Data.

    The quantification results are shown in Table S2 in the Supplementary Data.

    4.3. Comparison of the abundances and hydrocarbon contributions of SOM, MOM, and POM

    4.3.1. Relative abundances of SOM, MOM, and POM

    The relative abundances of SOM, MOM, and POM are approximately 17.62%, 54.41%, and 27.97% on average, respectively,revealing that MOM accounts for the largest OM abundance in the source rocks (Fig. 5a).

    For samples with different kerogen types,the relative content of each occurrence type of OM would also be different.For example,in samples with type I kerogen, most of the SOM content is in the range of 0-25%, and the POM and MOM contents are in the 25%-40% and 40%-75% ranges, respectively (Fig. 5d). In samples with type II1and II2kerogen,the SOM content is mainly in the range of 0-25%, the POM content is in the 0-50% range and the MOM content is in the 35%-85% (Fig. 5d). In samples with type III kerogen, it is evident that the MOM content is the largest, with a range of 50%-80% (Fig. 5d). The average abundance of different occurrences of OM shows that TOC-PMOM>TOC-PPOM>TOC-PSOMin samples with kerogen I and II, and TOC-PMOM> TOC-PSOM> TOCPPOMin samples with kerogen III (Fig. 5b). These characteristics indicate that MOM contributes the largest amount of OM, regardless of the type of kerogen in mudstones.

    Fig. 3. Schematic of OM with different occurrences in mudstones (modified from Cai et al. (2020), Keil and Mayer (2014), and Zhu et al. (2016)).

    Fig.4. Calculation process of the abundance and hydrocarbon content of SOM,MOM,and POM(Mr,Me:mass of the raw and extracted samples in the Soxhlet extraction experiment;Me’,Mo’:mass of the extracted and oxidized samples in the Na2S2O8 oxidation experiment;Mo:mass of the oxidized samples if all the extracted samples(mass of Me)were used in the Na2S2O8 oxidation experiment;(TOCr,S1r,and S2r),(TOCe,S1e,and S2e),(TOCo,S1o,and S2o):TOC,S1,and S2 of the raw,extracted,and oxidized samples,respectively;(TOCSOM,S1SOM,and S2SOM),(TOCMOM,S1MOM,and S2MOM),(TOCPOM,S1POM,and S2POM):abundance,free hydrocarbons and pyrolysis hydrocarbons of SOM,MOM,and POM,respectively;fe,fo:conversion factor of TOC, S1, and S2 of the extracted and oxidized samples).

    4.3.2. Relative hydrocarbon contents produced by SOM, MOM, and POM

    Fig.5. Characteristics of the abundance of SOM,MOM,and POM in mudstones:(a)average contents of SOM,MOM,and POM in mudstone samples;(b,c)average content of SOM,MOM, and POM in mudstones with different types of kerogen and different layers; (d, e) abundance distribution of SOM, MOM, and POM in mudstones with different types of kerogen and different layers.

    The hydrocarbon quantification results show that the average S1-P of SOM is approximately 92.28%,which is much larger than the S1-P of MOM and POM, which are 5.01% and 2.71%, respectively(Fig.6a).SOM contributes more than 90%S1 on average to samples with each type of kerogen(Fig.6b)and contributes more than 87%S1 to samples in each layer (Fig. 6c). This reveals that SOM is the main contributor of S1,regardless of the type of kerogen or layer of the mudstones.

    The abundances and hydrocarbon characteristics of different occurrence types of OM reveal that SOM and MOM are the main contributors to hydrocarbon generation, S1 is mainly generated from SOM and S2 is mostly generated from MOM. Although the relative abundance of POM is mostly larger than that of SOM,POM still produces the fewest hydrocarbons. Moreover, the total hydrocarbon content of SOM and MOM alternately changes in mudstones with different kerogen types and different layers. In general, the hydrocarbon contributions of OM with the three occurrences in mudstones have great differences.

    4.4. Evolutionary differences of the hydrocarbons generated from SOM, MOM, and POM

    Fig.6. Characteristics of the relative hydrocarbon contents generated by SOM,MOM,and POM.(a)Average contents of S1-P,S2-P,and TS-P of the total mudstone samples;(b,d,f)distribution and average contents of S1-P, S2-P, and TS-P in mudstones with different types of kerogens; (c, e, g) distribution and average contents of S1-P, S2-P, and TS-P in mudstones of different layers.

    Fig. 7. Evolution of S1, S2, and TS of (a, d, g) SOM, (b, e, h) MOM, and (c, f, i) POM.

    In the whole depth profile, S1 is mostly generated from SOM,while little is generated from MOM and POM(Fig.7a,b,c),which is consistent with the trend of the average S1-P content of OM with the three occurrence types mentioned above.S2-P of SOM increases and S2-P of MOM decreases with depth(Fig.7d and e).S2-P of most POM is less than 30% and has no evident change throughout the whole depth(Fig.7f).In addition,at depths less than 3500 m,the S2 content contributed by SOM is less than 30%,and MOM contributes more than 50% of S2. At depths deeper than 3500 m, SOMcontributed S2 increases, even to 80%, and MOM-contributed S2 decreases to 20%.These characteristics suggest that MOM plays the main role in S2 generation at shallow depths,and SOM makes the greatest contribution to S2 generation at deep depths. The evolutionary trend of TS-P is completely similar to that of S2-P(Fig.7g,h,i),which implies that MOM and SOM would be the main precursors of the total hydrocarbons in shallow and deep depths,respectively,and that POM contributes fewer hydrocarbons at the whole depth.

    Fig. 8. Evolution of the relative abundance of (a) SOM, (b) MOM, and (c) POM.

    Fig. 9. Correlations of the relative abundance of OM and the relative hydrocarbon contents of OM with the three occurrence types: (a) SOM, (b) MOM, and (c) POM.

    The abundance of each occurrence type of OM would be an important factor affecting the differences in hydrocarbon evolution.At depths less than 3500 m, the relative content of SOM increases and MOM decreases, which coincides with the evolution of SOMcontributed and MOM-contributed hydrocarbons (Fig. 7g and h and Fig.8a and b).TOC-P and TS-P also show a positive correlation for SOM and MOM, respectively (Fig. 9a and b). At depths deeper than 3500 m, the relative content of SOM decreases and MOM increases, which evolves oppositely to the TS-P of SOM and MOM(Fig. 7g and h and Fig. 8a and b), and the correlation of TOC-P and TS-P is poor for SOM and MOM(Fig.9a and b).This reveals that the abundance of SOM and MOM would be an important factor influencing the hydrocarbon content at shallow depths, while there must be other important factors that mainly influence the hydrocarbon content contributed by SOM and MOM in deep depths. As the TOC-P and TS-P of POM have the same evolutionary trend(Figs. 7i and 8c) and the two parameters have high correlations in both shallow and deep depths (Fig. 9c), the abundance of POM would also be an important factor in its hydrocarbon content.

    5. Conclusions

    This work quantified OM with the three types of occurrences,namely, SOM, MOM, and POM, in mudstones by using Soxhlet extraction and Na2S2O8oxidation sequentially and conducting Rock-Eval VI pyrolysis on the raw,extracted,and oxidized samples,respectively.

    MOM-contributed hydrocarbons are numerous at shallow depths and decrease to nearly zero at greater depths; the trend for SOMcontributed hydrocarbons is in the other direction, with these hydrocarbons occurring at great depths;POM-contributed hydrocarbons show little change throughout the entire depth range. This demonstrates that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.Moreover,the abundance of each occurrence type of OM is related to the local stratigraphy, and burial evolution plays a considerable role in thetransformationof each hydrocarbonprecursor.

    Acknowledgement

    This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 41672115 and 41972126),and the National Science and Technology Major Project of China(Grant No.2016ZX05006001-003).

    Appendix A. Supplementary data

    Supplementary Data to this article can be found online at https://doi.org/10.1016/j.petsci.2022.02.006.

    国产成人av教育| 欧美激情极品国产一区二区三区| 婷婷精品国产亚洲av在线 | 久久香蕉激情| 美女扒开内裤让男人捅视频| 欧美乱码精品一区二区三区| 一进一出抽搐gif免费好疼 | 午夜免费观看网址| 亚洲精品自拍成人| 黄色丝袜av网址大全| 亚洲中文日韩欧美视频| 水蜜桃什么品种好| 欧美黑人精品巨大| 99国产综合亚洲精品| 免费高清在线观看日韩| 51午夜福利影视在线观看| 51午夜福利影视在线观看| 国产精品九九99| 久久中文字幕一级| 欧美成狂野欧美在线观看| 亚洲成a人片在线一区二区| 国产男女内射视频| 亚洲av成人一区二区三| 国产99白浆流出| 久久久久久久国产电影| 黄色女人牲交| 久久天堂一区二区三区四区| 亚洲av美国av| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲高清精品| av在线播放免费不卡| 91麻豆精品激情在线观看国产 | 人人妻人人添人人爽欧美一区卜| 咕卡用的链子| 国产99白浆流出| 亚洲国产毛片av蜜桃av| 亚洲精品粉嫩美女一区| 91av网站免费观看| 欧美精品一区二区免费开放| 91大片在线观看| 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 亚洲国产欧美日韩在线播放| 欧美+亚洲+日韩+国产| 日本欧美视频一区| 人人妻人人澡人人爽人人夜夜| 日本a在线网址| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 午夜91福利影院| 天天躁夜夜躁狠狠躁躁| 一二三四社区在线视频社区8| 高清视频免费观看一区二区| 亚洲五月婷婷丁香| 欧美中文综合在线视频| 国产在视频线精品| 飞空精品影院首页| 日韩熟女老妇一区二区性免费视频| 亚洲七黄色美女视频| 国产欧美日韩一区二区精品| 国产成人免费无遮挡视频| 水蜜桃什么品种好| 精品久久久久久,| 国产精品一区二区在线观看99| 99精品久久久久人妻精品| 久久久久久久久免费视频了| 久久久久国产精品人妻aⅴ院 | 国产片内射在线| 美女福利国产在线| 黑人巨大精品欧美一区二区mp4| 精品视频人人做人人爽| 欧美激情高清一区二区三区| 老司机午夜十八禁免费视频| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 大型黄色视频在线免费观看| 国产不卡av网站在线观看| 欧美激情极品国产一区二区三区| 久久午夜亚洲精品久久| 亚洲精品久久午夜乱码| 国产亚洲av高清不卡| 999久久久国产精品视频| 少妇被粗大的猛进出69影院| 丝袜美腿诱惑在线| 欧美成狂野欧美在线观看| 国产成人免费观看mmmm| 久久久久精品国产欧美久久久| 国产1区2区3区精品| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 亚洲熟妇中文字幕五十中出 | 欧美精品人与动牲交sv欧美| 国产精品秋霞免费鲁丝片| 日韩欧美在线二视频 | 亚洲性夜色夜夜综合| 久久性视频一级片| 国产成人av激情在线播放| 欧美精品亚洲一区二区| 久久久国产欧美日韩av| 91成年电影在线观看| 欧美精品一区二区免费开放| 黑人欧美特级aaaaaa片| 欧美日韩瑟瑟在线播放| 99国产极品粉嫩在线观看| 亚洲久久久国产精品| a级毛片在线看网站| 在线观看日韩欧美| 91麻豆av在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av又大| √禁漫天堂资源中文www| 一本综合久久免费| 在线观看www视频免费| 99在线人妻在线中文字幕 | 国产精品免费视频内射| 亚洲少妇的诱惑av| 视频区欧美日本亚洲| 日韩视频一区二区在线观看| 亚洲成a人片在线一区二区| 日日夜夜操网爽| 欧美成人午夜精品| 精品一区二区三卡| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 欧美国产精品一级二级三级| 亚洲欧美一区二区三区久久| 精品久久久久久,| 国产男女超爽视频在线观看| 亚洲成a人片在线一区二区| 免费一级毛片在线播放高清视频 | √禁漫天堂资源中文www| 一本大道久久a久久精品| 嫩草影视91久久| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 亚洲aⅴ乱码一区二区在线播放 | 色94色欧美一区二区| 99精品久久久久人妻精品| 怎么达到女性高潮| 在线视频色国产色| 日韩人妻精品一区2区三区| 99久久精品国产亚洲精品| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 免费女性裸体啪啪无遮挡网站| 精品欧美一区二区三区在线| 亚洲五月色婷婷综合| 免费黄频网站在线观看国产| 性色av乱码一区二区三区2| 99热国产这里只有精品6| 夜夜躁狠狠躁天天躁| av线在线观看网站| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 精品国产一区二区三区四区第35| 男女下面插进去视频免费观看| 中文字幕色久视频| 人人澡人人妻人| 亚洲熟女毛片儿| 丰满的人妻完整版| 亚洲五月天丁香| 免费久久久久久久精品成人欧美视频| 亚洲色图av天堂| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 大码成人一级视频| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 99国产精品一区二区蜜桃av | 国产乱人伦免费视频| 国产视频一区二区在线看| 91精品三级在线观看| 1024视频免费在线观看| 黄片播放在线免费| 亚洲成人免费电影在线观看| 日韩视频一区二区在线观看| 欧美精品一区二区免费开放| 成熟少妇高潮喷水视频| 一二三四在线观看免费中文在| 亚洲精品在线观看二区| 国产精品久久视频播放| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| a在线观看视频网站| 久久ye,这里只有精品| 国产亚洲精品久久久久久毛片 | 精品一区二区三区av网在线观看| 中文字幕制服av| 日韩三级视频一区二区三区| 亚洲欧美激情综合另类| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 久99久视频精品免费| 国产成人精品久久二区二区免费| tube8黄色片| 99精国产麻豆久久婷婷| 日本wwww免费看| 人人妻人人添人人爽欧美一区卜| 婷婷精品国产亚洲av在线 | 激情在线观看视频在线高清 | 亚洲综合色网址| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美不卡视频在线免费观看 | 国产精品国产高清国产av | 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 日本精品一区二区三区蜜桃| 精品久久蜜臀av无| 色老头精品视频在线观看| 美女午夜性视频免费| 狠狠狠狠99中文字幕| 99久久综合精品五月天人人| 欧美日韩av久久| avwww免费| 精品福利永久在线观看| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| 91av网站免费观看| xxx96com| av中文乱码字幕在线| 国产伦人伦偷精品视频| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 一边摸一边抽搐一进一小说 | 日韩精品免费视频一区二区三区| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 激情视频va一区二区三区| 一二三四社区在线视频社区8| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 黄片小视频在线播放| 在线观看免费午夜福利视频| 久久久精品区二区三区| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 免费日韩欧美在线观看| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 黄频高清免费视频| 最新在线观看一区二区三区| 成人国语在线视频| 丝袜美足系列| 在线观看一区二区三区激情| 国产精品久久视频播放| 亚洲成人手机| 亚洲av电影在线进入| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 性少妇av在线| 丝瓜视频免费看黄片| 男人的好看免费观看在线视频 | av超薄肉色丝袜交足视频| 精品久久久久久久久久免费视频 | 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 婷婷丁香在线五月| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 国产成人免费无遮挡视频| 自线自在国产av| 亚洲精品乱久久久久久| 人妻丰满熟妇av一区二区三区 | 精品卡一卡二卡四卡免费| 男女午夜视频在线观看| 亚洲av日韩在线播放| 久久久国产成人精品二区 | 免费日韩欧美在线观看| 亚洲第一青青草原| 又大又爽又粗| 国产在线精品亚洲第一网站| 国产欧美日韩一区二区三区在线| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 超碰成人久久| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 国产视频一区二区在线看| 色94色欧美一区二区| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 超色免费av| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 久久香蕉激情| 亚洲国产欧美网| av欧美777| 香蕉国产在线看| 怎么达到女性高潮| 国产精品综合久久久久久久免费 | 国产99久久九九免费精品| 嫩草影视91久久| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 欧美精品高潮呻吟av久久| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色 | 91麻豆av在线| 亚洲专区中文字幕在线| 亚洲av欧美aⅴ国产| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| a级毛片在线看网站| 丁香六月欧美| 国产野战对白在线观看| 国产精品美女特级片免费视频播放器 | 久9热在线精品视频| 一本大道久久a久久精品| 亚洲精品一二三| 中文字幕人妻熟女乱码| 侵犯人妻中文字幕一二三四区| 久久人人97超碰香蕉20202| 18禁观看日本| 国产av又大| 亚洲av电影在线进入| 国产欧美日韩精品亚洲av| 这个男人来自地球电影免费观看| 男女高潮啪啪啪动态图| 亚洲va日本ⅴa欧美va伊人久久| 999精品在线视频| 成年动漫av网址| 精品乱码久久久久久99久播| 18禁美女被吸乳视频| 电影成人av| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 国产aⅴ精品一区二区三区波| 精品卡一卡二卡四卡免费| 在线观看66精品国产| 80岁老熟妇乱子伦牲交| 国产免费av片在线观看野外av| 中文字幕人妻丝袜制服| 99久久国产精品久久久| 色综合婷婷激情| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 免费女性裸体啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 成人精品一区二区免费| 在线观看66精品国产| 80岁老熟妇乱子伦牲交| 最近最新免费中文字幕在线| 少妇的丰满在线观看| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 又紧又爽又黄一区二区| 国产不卡一卡二| 亚洲av熟女| 久久久精品国产亚洲av高清涩受| www.精华液| 午夜日韩欧美国产| 每晚都被弄得嗷嗷叫到高潮| 宅男免费午夜| av超薄肉色丝袜交足视频| 成人国语在线视频| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播| 大香蕉久久网| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美精品济南到| 久99久视频精品免费| 欧美成狂野欧美在线观看| 精品一区二区三区四区五区乱码| 在线av久久热| 99久久99久久久精品蜜桃| 手机成人av网站| av欧美777| 国产亚洲精品久久久久5区| 三级毛片av免费| 成年女人毛片免费观看观看9 | 女人久久www免费人成看片| 99在线人妻在线中文字幕 | 欧美激情高清一区二区三区| 19禁男女啪啪无遮挡网站| 欧美 日韩 精品 国产| 美女视频免费永久观看网站| 国产亚洲av高清不卡| 啦啦啦视频在线资源免费观看| 亚洲色图 男人天堂 中文字幕| 欧美激情极品国产一区二区三区| 欧美av亚洲av综合av国产av| 欧美日韩亚洲综合一区二区三区_| 亚洲第一欧美日韩一区二区三区| 一二三四在线观看免费中文在| 99国产精品免费福利视频| 欧美日韩视频精品一区| 制服人妻中文乱码| av天堂在线播放| 人人妻人人澡人人爽人人夜夜| 69av精品久久久久久| 热99re8久久精品国产| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 亚洲av成人av| 香蕉国产在线看| 成人国语在线视频| 精品国产国语对白av| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 乱人伦中国视频| 在线永久观看黄色视频| 久久久精品免费免费高清| 国产精品二区激情视频| cao死你这个sao货| 三级毛片av免费| 中文字幕色久视频| 国产精品久久久久成人av| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 极品人妻少妇av视频| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 久久精品国产亚洲av高清一级| 99热国产这里只有精品6| 性少妇av在线| 色综合婷婷激情| e午夜精品久久久久久久| 1024香蕉在线观看| 成人av一区二区三区在线看| 热re99久久精品国产66热6| 伊人久久大香线蕉亚洲五| 欧美午夜高清在线| 成人亚洲精品一区在线观看| 一边摸一边抽搐一进一小说 | 嫁个100分男人电影在线观看| 777米奇影视久久| 咕卡用的链子| 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲| 久久精品人人爽人人爽视色| 成人手机av| 在线播放国产精品三级| 国产精品国产高清国产av | 精品久久久久久久毛片微露脸| 自线自在国产av| 波多野结衣av一区二区av| 亚洲七黄色美女视频| 国产成人免费观看mmmm| 麻豆成人av在线观看| 免费在线观看完整版高清| 后天国语完整版免费观看| 看片在线看免费视频| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 午夜久久久在线观看| 久久久久久久国产电影| 久久久久久久久久久久大奶| 啦啦啦视频在线资源免费观看| 日韩 欧美 亚洲 中文字幕| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 成人永久免费在线观看视频| 12—13女人毛片做爰片一| 高清黄色对白视频在线免费看| 欧美日韩视频精品一区| 香蕉久久夜色| 人妻一区二区av| 免费不卡黄色视频| 欧美不卡视频在线免费观看 | 午夜精品国产一区二区电影| 老司机影院毛片| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| 国产不卡一卡二| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 丰满人妻熟妇乱又伦精品不卡| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 露出奶头的视频| 成人国语在线视频| 色老头精品视频在线观看| 丰满的人妻完整版| 一区二区三区精品91| 久久草成人影院| 欧美日韩黄片免| 久久久久久久精品吃奶| 精品高清国产在线一区| 精品一区二区三卡| 国产精品久久视频播放| 两个人看的免费小视频| 女人被躁到高潮嗷嗷叫费观| 亚洲男人天堂网一区| 午夜精品在线福利| 欧美乱码精品一区二区三区| 日本欧美视频一区| a级毛片在线看网站| 丰满迷人的少妇在线观看| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女 | 一区二区日韩欧美中文字幕| 久久九九热精品免费| 亚洲 欧美一区二区三区| 欧美+亚洲+日韩+国产| 中文字幕人妻丝袜制服| 日韩欧美在线二视频 | 日韩欧美三级三区| 精品欧美一区二区三区在线| 自线自在国产av| 18禁美女被吸乳视频| 正在播放国产对白刺激| 精品一区二区三区视频在线观看免费 | 黑丝袜美女国产一区| 成人影院久久| 老司机靠b影院| 99精国产麻豆久久婷婷| 国产区一区二久久| 精品国产国语对白av| 亚洲少妇的诱惑av| а√天堂www在线а√下载 | 丝袜美足系列| 国产男靠女视频免费网站| 交换朋友夫妻互换小说| 亚洲情色 制服丝袜| 激情视频va一区二区三区| 国产免费现黄频在线看| 久久久久国产一级毛片高清牌| 日韩欧美在线二视频 | 男女免费视频国产| 1024视频免费在线观看| 欧美久久黑人一区二区| 丰满的人妻完整版| 极品人妻少妇av视频| 日本黄色视频三级网站网址 | 国产成人欧美在线观看 | 18禁裸乳无遮挡免费网站照片 | 波多野结衣一区麻豆| 成年版毛片免费区| 99国产综合亚洲精品| 色播在线永久视频| 久久久久久久午夜电影 | 50天的宝宝边吃奶边哭怎么回事| 欧美老熟妇乱子伦牲交| www.熟女人妻精品国产| 国产一卡二卡三卡精品| 黄色丝袜av网址大全| 亚洲av美国av| 久久 成人 亚洲| 91精品三级在线观看| 国产激情欧美一区二区| 国产成人精品在线电影| 午夜福利影视在线免费观看| cao死你这个sao货| 又紧又爽又黄一区二区| 午夜精品在线福利| 男人舔女人的私密视频| aaaaa片日本免费| 精品一区二区三卡| 高清在线国产一区| a级片在线免费高清观看视频| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 色老头精品视频在线观看| 一边摸一边抽搐一进一小说 | 69精品国产乱码久久久| 国产男靠女视频免费网站| 老司机福利观看| 免费在线观看完整版高清| 啦啦啦视频在线资源免费观看| 叶爱在线成人免费视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 在线十欧美十亚洲十日本专区| av网站免费在线观看视频| 久久久精品区二区三区| 后天国语完整版免费观看| 日韩免费av在线播放| aaaaa片日本免费| 久久狼人影院| 免费av中文字幕在线| 欧美黄色片欧美黄色片| 看片在线看免费视频| 国产亚洲精品久久久久5区| 国产乱人伦免费视频| 91国产中文字幕| 丝瓜视频免费看黄片| 中出人妻视频一区二区| 久久精品aⅴ一区二区三区四区| 成人三级做爰电影| 国产免费av片在线观看野外av| 久久人妻av系列| 亚洲av成人av| 男男h啪啪无遮挡| 精品免费久久久久久久清纯 | 亚洲欧美一区二区三区黑人| 午夜激情av网站| 亚洲黑人精品在线| 欧美激情久久久久久爽电影 | 一本大道久久a久久精品| 18禁美女被吸乳视频| 高清欧美精品videossex| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 中亚洲国语对白在线视频| 亚洲色图av天堂| 中亚洲国语对白在线视频| 黄网站色视频无遮挡免费观看| 欧美日韩视频精品一区| 三上悠亚av全集在线观看| 日本一区二区免费在线视频| 亚洲少妇的诱惑av|