• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Graded Structured HMX/Al to Enhance Combustion and Pressure Output Performance

    2022-09-15 03:44:36HEQianqianMAOYaofengWANGJunNIEFude
    含能材料 2022年9期

    HE Qian-qian,MAO Yao-feng,WANG Jun,NIE Fu-de

    (Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang 621999,China)

    Abstract:Aluminized explosives have been widely applied due to their high energy density and pressure output. To further enhance the secondary combustion reaction and pressure output of aluminized explosives,graded structure is designed inspired by the microstructure of bamboo. In this work,the radially-graded structured HMX/Al(RGS-HMX/Al)cylinders with three layers containing different sizes and content of Al were prepared through 3D direct writing technology. The effects of Al distribution on combustion and pressure output properties of graded HMX/Al were fully studied. For the RGS-HMX/Al cylinder with Al content of 10%,20%,and 30% distributed from inner to outer layer,the combustion reaction and flame propagation of inner layer were faster than that of outer layer. And the pressure(2337.61 kPa)was higher than that of RGS-HMX/Al cylinder with Al content in the reverse distribution. For the RGS-HMX/Al cylinder containing Al of 10 μm,5 μm,and 160 nm distributed from inner to outer layer,a slow combustion process with sparse bright Al droplets was observed. Moreover,the highest peak pressure(1512.65 kPa)was obtained for the RGS-HMX/Al cylinders with nAl in the middle layer,which exhibited much higher pressure output than that homogeneous HMX/Al cylinder. More importantly,bimodal pressure was observed for the RGS-HMX/Al cylinders with Al of 10 μm in the middle layer.

    Key words:bio-inspired;radially-graded structure;HMX/Al composites;combustion reaction;pressure output

    0 Introduction

    Aluminized explosives have been practically applied in space technology and military construction due to significantly enhanced shock waves,bubble energy,and promoted after-burning effect[1-5]. Previous studies have illustrated that the content and size of aluminum(Al)play an essential role in the secondary combustion reaction and pressure output performance of aluminized explosives[6-7].For example,the pressure attenuation and maximal pressure of aluminized explosives can be optimized by Al content[8-10]. Meanwhile,the reduced Al size benefits to pressure output of aluminized explosives owing to the enhanced reaction kinetics[11-13]. However,a few studies have shown that Al powders with small particle size could absorb more energy in the reaction zone,which in turn reduces pressure output[1,14].Therefore,it is still a great challenge to strengthen energy and pressure output by tuning the content and particle size of Al powders within explosives.

    The reaction process,energy and pressure output performances of energetic materials depend on the distribution of components and microstructure at the macro-scale. Constructing new structure is a versatile strategy to improve the combustion reaction and energy performances of energetic materials. MA Xiao-xia et al.[15-16]found that the "father and son"structure of energetic coordination polymers@Al(ECP@Al) thermite could enhance pressure value and lower pressure boost rate. ZHAO Xu et al.[17]revealed that octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3,5-triamino-2,4,6-trinitrobenzene(HMX/TATB)co-particles exhibited higher pressure and detonation speed than that of HMX/TATB composite. WANG Jun et al.[18]designed and prepared the core-shell structured Al/polytetrafluoroethylene(Al/PTFE)to improve combustion reaction with enhanced pressure and energy output due to interfacial interaction. Compared with traditional microstructure design,bio-inspired structures from bamboo,bone,and nacre provide an effective approach to improve the properties of functional materials and devices. Relevant literatures[19-23]show that bio-inspired structures of advanced materials exhibit low density,high strength,and high energy absorption capacities.HUANG Jyun-kai and WANG You-yong et al.[24-25]reported that high strength and great toughness of bamboo stemmed from gradient composition distribution along the radial direction. Inspired by bamboo,component or density with gradient distribution has been applied in many fields,such as flexible electronics[26-27],hydrogels[28-29],and propellants[30]. The graded structure applied in flexible electronics not only enhanced their mechanical properties,but also enabled excellent foldability and electrochemical properties. In hydrogels,the bamboo-inspired structure could show excellent mechanical strength(the mechanical strength increased by 38%) and unique bending characteristics. The polymer composite with graded structure could possess significantly enhanced breakdown strength and energy density.

    In our previous studies[31],based on the excellent properties of graded structure, the axially-graded structured HMX/Al with changed Al content was designed and prepared by additive manufacturing to enhance the pressure output. The results showed that the pressure output and pressurization rate could be divided into three stages,but the improvement of pressure output was not obvious due to limited structured characteristics and Al particle size distribution. In this work,to optimize combustion reaction and pressure output of HMX/Al cylinder, the radially-graded structured HMX/Al(RGS-HMX/Al)cylinder was designed with bamboo as inspiration. The three-layered RGS-HMX/Al cylinders with various content and particle size of Al was prepared by 3D direct writing technology. The combustion reaction and pressure output properties of RGS-HMX/Al cylinders were evaluated.

    1 Experimental section

    1.1 Materials

    HMX powders(20 μm)were provided by Institute of Chemical Materials.Al powders(nAl:160 nm,5μAl:5 μm,10μAl:10 μm)and ethyl acetate were purchased from Aladdin without further purification.Fluororubber was available from Zhonghao Chenguang Research Institute of Chemical Industry Co.,Ltd.

    1.2 Design and fabrication of RGS-HMX/Al cylinders

    Bamboo shows high toughness and strength due to the gradient distribution of vascular bundles from the outer wall to the inner wall(Fig. 1a)[24-25]. Inspired by the microstructure of bamboo,RGS-HMX/Al cylinders were designed and prepared by 3D direct writing technology in this work(Fig. 1b).

    Fig.1 (a)Photograph of natural bamboo.(b)The fabrication process of RGS-HMX/Al cylinder with gradient content and size distribution of Al

    For a typical preparation process,HMX,Al particles,and binder solution(ethyl acetate solution of fluororubber) were mixed by acoustic resonance technology to form HMX/Al ink. The rheological properties of HMX/Al composites were controlled by solvent evaporation,where HMX/Al ink obtained the characteristics of shear-thinning and storage modulus was greater than loss modulus. Then,the HMX/Al composites were put into syringe and printed to form the HMX/Al composite lines with the diameter of about 1.21 mm on the slide. On this basis,the HMX/Al composites were printed layer by layer to form the RGS-HMX/Al(Ф10×15 mm)cylinders with an outer layer,a middle layer,and an inner layer. Notably,the volume of each layer was the same,and the quality of cylinder was ~1.5 g. The component distribution of RGS-HMX/Al cylinders was shown in Table 1.

    Table 1 The component distribution of HMX/Al cylinders

    1.3 Characterization

    1.3.1 Morphology and structure analysis

    Field emission scanning electron microscopy(FE-SEM,Ultra-55,Carl Zeiss,Germany)was used to characterize the morphologies of raw materials(Al,HMX)and RGS-HMX cylinders at 3 kV.

    1.3.2 Thermal analysis

    Thermogravimetry-differential scanning calorimetry (TG-DSC, PerkinElmer Diamond, America)was utilized to survey the heat-release characteristics of HMX/Al composites(~1.5 mg). The thermal temperature was conducted from 100 ℃to 800 ℃at a heating rate of 10 ℃·min-1under N2flow rate of 40 mL·min-1.

    1.3.3 Combustion and pressure output measurement

    The HMX/Al composite lines were ignited to study the combustion process by nickel-chrome wire(0.25 mm in diameter)with a direct current in the air atmosphere. The lines were ignited on the right,and the flame of combustion spread to the left. For the RGS-HMX/Al cylinders,the inner layer was ignited to obtain the combustion flame by CO2laser(laser power is 60 W,and spot diameter is 4 mm),and then the flame spread rapidly. The flame propagation images of HMX/Al composite lines and RGS-HMX/Al cylinders were obtained by high-speed camera(Japan,UX50)with 500 fps. The combustion rate of HMX/Al composite lines was the average of calculated values based on three replicates for each sample.

    To evaluate pressure output,the RGS-HMX/Al cylinders were ignited by nickel-chrome wire(about 5 cm in length)in a 330 mL explosion vessel. The signal of pressure change was collected by a pressure sensor with 20 MPa.

    2 Results and Discussion

    2.1 Morphology of RGS-HMX/Al

    In order to better understand the microstructure of aluminized explosives for different formulations,the surface of cylinders is characterized by SEM.Fig. 2a shows the morphologies of Al and HMX powders. Evidently,Al particles present a regular spherical shape with mean particle diameter of 160 nm,5 μm,and 10 μm,while HMX powders are rugged with mean size of 20 μm.

    Fig.2 (a)SEM images of Al particles(160 nm,5 μm,and 10 μm)and HMX in HMX/Al composite.(b)SEM images of HMX/Al composites.(c)The pictures of RGS-HMX/Al cylinder(HnA-123)with three layers from inner to outer.(d)SEM images of interface of different composites in RGS-HMX/Al cylinder(HA30-n510)

    Fig.2b shows that the surface of HMX/Al composite is rugged with many bumps and micropores and becomes denser with increasing nAl content.The pores on the surface of HMX/Al composite are more obvious with the increase of Al particle size from 160 nm to 10 μm at the same content. In addition,the binder is evenly distributed between Al powders and HMX particles,which proves that HMX/Al composites have good uniformity and can well adapt to 3D printing. Fig. 2c shows the picture of bamboo-like RGS-HMX/Al cylinders (HnA-123)with different content distribution of Al manufactured by 3D direct writing technology. The adhesive effect of HMX/Al composites between adjacent formulations is better,and there is no obvious gap. Fig.2d displays obvious interfaces between adjacent layers in HA30-n510 cylinder(marked by white line in the figure),which indicates that the layers in RGS-HMX/Al cylinders contact with each other due to the action of binder.

    2.2 Thermal analysis of HMX/Al composites

    The HMX/Al composites exhibit a complex decomposition process,where two exothermic peaks and two distinct mass loss steps were observed as plotted in Fig. 3. As depicted in the DSC curves(Fig.3a),there are two exothermic peaks. The first exothermic peak at 280 ℃is the thermal decomposition of HMX,and the second exothermic peak is caused by the reaction between decomposition product and Al powders. The first reaction heat with the lowest value of 466.31 J·g-1and the second reaction heat with the highest value of 1700.68 J·g-1are calculated based on the DSC curves of HMX/nAl-30%composite. Table 2 shows the reaction temperature and heat value of HMX/Al composites. The reaction heat of HMX/nAl composites increases from 1767.61 J·g-1to 2167.02 J·g-1with increasing nAlcontent. More nAl powders participating in the reaction could release more heat. As for fixed Al content,HMX/nAl-30% composites have more heat release than that of HMX/5μAl-30% and HMX/10μAl-30% composites. It may be caused by the high specific surface area and activity of nAl powders.

    Fig.3 (a)DSC and(b)TG curves of HMX/Al composites

    Table 2 DSC parameters of HMX/Al composites with various Al

    The TG curves in Fig. 3b show the decomposition process of HMX/Al composites,which contain two obvious mass losses. The first mass loss is initiated by gas release,which is generated from the decomposition of HMX. The second step with an onset temperature of ~460 ℃may be due to the thermal decomposition of fluororubber[32]. Then the reaction between exposed Al core and gaseous products(Al+HF→AlF3+H2)leads to the mass addition[33-34]. Notably,the mass increase of HMX/nAl-30% composites is larger than that of HMX/5μAl-30% and HMX/10μAl-30% composites. It may be due to the high specific surface area of nAl reacting with the oxidizer to form more AlF3. The thermal reaction of HMX/Al provides a foundation to adjust combustion reaction and energy output for RGS-HMX/Al cylinders.

    2.3 The combustion performance of RGS-HMX/Al cylinders

    Combustion offers an important way for energy release of aluminized explosives,and the energy characteristics of aluminized explosives can also be understood through combustion flame. In order to better understand the combustion process of 3D printing gradient structure,the combustion performance of HMX/Al composite lines is firstly discussed. The effect of Al powder content on the combustion rate of HMX/Al composite lines has been discussed in our previous work[31]. With the increase of Al powder content,the combustion rate of HMX/Al composite line decreases. Here,the influence of Al particle size on the combustion performance of composite lines is mainly discussed with the fixed Al content of 30% with different particle sizes. The combustion process and combustion rate of HMX/Al composite lines are shown in Fig. 4.

    From the perspective of combustion flame,the composite line of HMX/10μAl-30% displays the brightest flame and the largest flame area. By contrast,flame area and brightness decrease synchronously with decreasing Al particle size from 10 μm to 160 nm. The main reason is that Al particles with small particle size have fast heat conduction and combustion rate in the combustion process. Therefore,the combustion rate of HMX/Al composite lines decreases from 13 mm·s-1to 11 mm·s-1with increasing particle size of Al powders in the HMX/Al composite because of reduced heat conduction efficiency(Fig. 4d).

    Fig.4 The combustion process of HMX/Al composite lines with different Al particle sizes of(a)160 nm,(b)5 μm,and(c)10 μm.(d)The burning rate of HMX/Al composite lines

    The combustion process and flame propagation of RGS-HMX/Al cylinders are shown in Fig.5. Fig.5a shows the flame propagation process of HnA-123 cylinder with nAl content increasing from 10%(inner)to 30%(outer). Compared with HnA-20 cylinder(Fig.5b),the combustion flame of HnA-123 cylinder is more concentrated in the early stage showing a state of upward jet,and large flame area is obtained at a later stage. It is shown that the combustion reaction and flame propagation of inner layer is faster than that of outer layer,which may be resulted from low thermal decomposition temperature of HMX and the reaction between gaseous products and Al particles. The overall combustion efficiency and combustion time of HnA-123 cylinder are higher and less than that of homogeneous HMX/nAl-20% cylinder(HnA-20),respectively.

    Fig.5c shows the combustion phenomenon of HA30-105 cylinder with a total Al content of 30% and Al sizes of 10 μm,5 μm,and 160 nm from inner to outer layer. When HA30-105 cylinder is ignited by the laser,a wide combustion flame area is obtained in a relatively short time range(about 1.9 s)and continuously propagates until the whole cylinder is completely burned[35]. Combined with the combustion performance of HMX/Al composite lines,it could be known that the bright flame is provided by the combustion of inner layer,and the subsequent continuous combustion depends more on HMX/5μAl-30% composite and HMX/nAl-30% composite with high burning rate in the middle and outer layer. Compared with the cylinder of HA30-mix(Fig.5d),the RGS-HMX/Al cylinder(HA30-105 )owns advantages in flame morphology and combustion efficiency.

    Fig.5 The combustion process and flame morphologies of RGS-HMX/Al cylinders,and the schematic diagram of combustion process.(a)The cylinder of HnA-123(the nAl content are 10%,20%,and 30% from inner to outer in the cylinder),(b)The cylinder of HnA-20,(c)The cylinder of HA30-105 (the particle size of Al is 10 μm,5 μm,and 160 nm from inner to outer layer in the cylinder),(d)The cylinder of HA30-mix with different Al particle size,and the Al particles randomly distribute in the cylinder

    2.4 Pressure output of RGS-HMX/Al cylinders

    Compared with combustion,pressure impact is an efficient and wide-range way in the explosion of energetic materials,which is mainly based on explosion products and a large amount of gas damage to the target formation. The use of gradient structure provides an effective way to regulate the pressure output of aluminized explosives. In order to study pressure output process,HMX/Al cylinders are ignited on the top surface by nickel-chromium wire in a closed constant volume container to obtain pressure-time curve. RGS-HMX/nAl (HnA-123 and HnA-321)cylinders are used to illustrate pressure output performance. Fig.6a shows the component distribution of HnA-123 cylinder. Fig. 6b~6c describe the curves of pressure-time for homogeneous and RGS-HMX/nAl cylinders in the combustion process. Based on the results,the peak pressure and pressurization rate increase with increasing Al content,which may be attributed to the secondary reaction of nAl and more energy release with high Al content.

    Fig.6 (a)The diagrammatic sketch of HnA-123.(b-c)The pressure-time curves,pressurization rate,and depressurization rate of homogeneous and RGS-HMX/nAl cylinders. The RGS-HMX/nAl cylinder with Al content from 10% to 30% shows significantly enhanced pressure output.(d-e)The pressure-time curves,pressurization rate,and depressurization rate of homogeneous HMX/Al with different sizes of Al particle in the combustion process

    The pressure output of RGS-HMX/nAl cylinders is significantly higher than that of homogeneous cylinders(HnA-10,HnA-20,and HnA-30). The results illustrate that the bio-inspired graded structure could enhance combustion reaction and pressure output,which may be due to the combustion propagation front of cylinder increased by different combustion rates between three layers,and the interfacial coupling between the layers driving the combustion of cylinder[36-37]. For RGS-HMX/nAl cylinder with the content of Al from 10% to 30% from inner to outer layer,the pressure peak is 2337.61 kPa and the pressurization rate is 6.09 MPa·s-1. In comparison,RGS-HMX/nAl cylinder with Al content from 30% to 10% shows low values with the pressure peak of 1524.90 kPa and pressurization rate of 5.53 MPa·s-1.The changed pressure peak of RGS-HMX/nAl cylinder with nAl distribution from inner to outer layer indicates that microstructure has a great influence on the combustion reaction and pressure output. The results can be applied to design and regulate combustion reaction and pressure output performance of HMX/Al.

    To further investigate the effect of graded structure on pressure output performance,homogeneous HMX/Al cylinders with Al particle sizes of 160 nm,5 μm,and 10 μm are prepared and tested,respectively. For comparison,we prepare the homogeneous HMX/Al-30% cylinder(HA30-mix)that contain three composite with different Al particle size is used. The pressure output and pressurization rate of cylinders are shown in Figs.6d and Fig.6e. The peak pressure and pressurization rate decrease from 1480.96 kPa and 3.04 MPa·s-1to 729.95 kPa and 0.18 MPa·s-1with Al particle size increasing from 160 nm to 10 μm,respectively. It may be caused by the long reaction time and low reaction kinetics of micron-Al powders[38-39].

    Six typical RGS-HMX/Al-30 cylinders with different Al particle size distributions have been prepared and characterized to further illustrate the pressure output performance. Fig.7a shows the component distribution of HnA30-n510 cylinder. The pressure-time curves of RGS-HMX/Al cylinders show a significant difference. For RGS-HMX/Al cylinders of HA30-n105 and HA30-510 ,bimodal pressures are observed. When outer layer contains 5μ-Al,the first and second pressure peak are 397.48 kPa and 1155.65 kPa(Fig.7b),respectively.When outer layer contains nAl,the two pressure peaks are 1136.02 kPa and 1148.29 kPa,respectively. The bimodal pressures may be attributed to the reactivity of Al. Based on Refs.[40-41],the ignition and combustion of Al can be improved by reducing particle size. For RGS-HMX/Al cylinders of HA30-n105 and HA30-510 ,the ignition and combustion reaction of Al in the inner and outer layer are faster than that of middle layer. Therefore,two peaks are obtained for RGS-HMX/Al cylinder.

    Fig.7 (a)The diagrammatic sketch of HA30-n510 cylinder.(b-d)The pressure-time curves of RGS-HMX/Al-30 cylinders.(e)The pressurization rate and depressurization rate of RGS-HMX/Al-30 cylinders

    For RGS-HMX/Al cylinders of HA30-5 10 and HA30-10 5,a variable pressurization rate is observed(Fig.7c). In the case of outer layer containing 10μ-Al,the pressurization rate reduces from 5.21 MPa·s-1to 3.26 MPa·s-1,and the pressure peak is 1512.65 kPa. When outer layer contains 5μ-Al,the pressurization rate increases from 2.63 MPa·s-1to 3.59 MPa·s-1,and the pressure peak is 1327.40 kPa.This phenomenon is caused by the fastest ignition and combustion reaction of nAl in the middle layer,which enable both inner and outer layers to expose in the air.

    For RGS-HMX/Al cylinders of HA30-105 ,the depressurization rate decreases from 0.38 MPa·s-1to 0.28 MPa·s-1and the pressure peak is 1230.68 kPa(Fig 7d). Meanwhile,the pressurization rate from 0.14 MPa·s-1to 2.17 MPa·s-1and the peak pressure of 1422.46 kPa are observed for RGS-HMX/Al cylinders of HA30-n510. It is also caused by gradually changing ignition and combustion reaction and the reactivity of Al powders. Above all,the pressure peak(1512.65 kPa)and the total pressurization rate(4.17 MPa·s-1)of RGS-HMX/Al cylinder with the size of 5 μm,160 nm,and 10 μm from inner to outer layer are the highest. The pressure peak and pressurization rate of homogeneous HMX/Al cylinder are 963.27 kPa and 0.21 MPa·s-1(Fig.6),respectively,which is lower than that of RGS-HMX/Al cylinders.

    3 Conclusion

    The bio-inspired graded structure prepared by 3D direct writing technology could provide an effective approach to reinforce the combustion reaction and pressure output performances of HMX/Al for applications,and the experimental conclusions were as follows:

    (1)The combustion reaction and flame propagation of HMX/Al composite cylinders could be improved by controlling the size and content distribution of Al from inner to outer layer.

    (2)Significantly enhanced pressure values and gradient pressure output processes were obtained due to the graded structure of HMX/Al. The maximum pressure(2337.61 kPa)was obtained for the graded structure of HMX/nAl with content from 10%(inner layer)to 30%(outer layer).

    (3) Bimodal pressures were observed for RGS-HMX/Al cylinders of HA30-n105 and HA30-510 . The graded structured HMX/Al with particle sizes of 5 μm,160 nm,and 10 μm from inner to outer layer showed the highest peak pressure(1512.65 kPa)and pressurization rate(4.17 MPa·s-1).

    国产精品乱码一区二三区的特点| 亚洲成人免费电影在线观看| 亚洲一区高清亚洲精品| 欧美日韩乱码在线| 精品久久国产蜜桃| 色综合亚洲欧美另类图片| 亚洲av中文av极速乱 | 国产精品自产拍在线观看55亚洲| 丰满的人妻完整版| 久久国产乱子免费精品| 日韩精品青青久久久久久| 人妻夜夜爽99麻豆av| 亚洲成人免费电影在线观看| 国产免费男女视频| av专区在线播放| 亚洲av中文字字幕乱码综合| 国产探花在线观看一区二区| 乱码一卡2卡4卡精品| 九色国产91popny在线| 亚洲第一电影网av| 极品教师在线视频| 久久精品国产99精品国产亚洲性色| 成人av在线播放网站| 99精品久久久久人妻精品| 国产精品嫩草影院av在线观看 | 又爽又黄无遮挡网站| 欧美3d第一页| 日本撒尿小便嘘嘘汇集6| 麻豆av噜噜一区二区三区| 桃色一区二区三区在线观看| 亚洲人与动物交配视频| 色视频www国产| 午夜精品在线福利| 一个人观看的视频www高清免费观看| 一夜夜www| 校园人妻丝袜中文字幕| 国产精品日韩av在线免费观看| 成年女人永久免费观看视频| 国产精品三级大全| 有码 亚洲区| 长腿黑丝高跟| 午夜影院日韩av| 网址你懂的国产日韩在线| 久久久久久久久久成人| 欧美丝袜亚洲另类 | 十八禁国产超污无遮挡网站| 天堂影院成人在线观看| 天堂网av新在线| 亚洲男人的天堂狠狠| 99久国产av精品| 成熟少妇高潮喷水视频| 欧美日韩亚洲国产一区二区在线观看| 欧美高清性xxxxhd video| 99久久成人亚洲精品观看| 日韩欧美国产在线观看| 男女那种视频在线观看| 男人狂女人下面高潮的视频| xxxwww97欧美| 亚洲成a人片在线一区二区| 国产麻豆成人av免费视频| 韩国av在线不卡| 成人鲁丝片一二三区免费| 老司机福利观看| 人妻久久中文字幕网| 亚洲美女搞黄在线观看 | 老司机福利观看| 国产精品久久电影中文字幕| 精品日产1卡2卡| 亚洲久久久久久中文字幕| 亚洲精品乱码久久久v下载方式| 男人狂女人下面高潮的视频| 蜜桃久久精品国产亚洲av| 一本精品99久久精品77| 成人美女网站在线观看视频| 天堂网av新在线| 午夜日韩欧美国产| 欧美高清成人免费视频www| 国产精品不卡视频一区二区| 麻豆一二三区av精品| 午夜视频国产福利| 日日摸夜夜添夜夜添av毛片 | 哪里可以看免费的av片| 日韩强制内射视频| 噜噜噜噜噜久久久久久91| 淫秽高清视频在线观看| 最近视频中文字幕2019在线8| 免费观看人在逋| 男女视频在线观看网站免费| 成年人黄色毛片网站| 我要看日韩黄色一级片| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 欧美日本亚洲视频在线播放| 成人三级黄色视频| 搡女人真爽免费视频火全软件 | 一区二区三区激情视频| ponron亚洲| 亚洲美女黄片视频| 热99在线观看视频| 亚洲一级一片aⅴ在线观看| 长腿黑丝高跟| 嫩草影院新地址| 一个人观看的视频www高清免费观看| 色精品久久人妻99蜜桃| 国产成人影院久久av| 乱系列少妇在线播放| 久久99热6这里只有精品| 亚洲av电影不卡..在线观看| 午夜久久久久精精品| 久久久久久久亚洲中文字幕| 国产av麻豆久久久久久久| 人人妻人人看人人澡| 国产精品乱码一区二三区的特点| 精品不卡国产一区二区三区| 亚洲 国产 在线| www日本黄色视频网| 男女做爰动态图高潮gif福利片| 国产亚洲91精品色在线| 18禁在线播放成人免费| 91久久精品国产一区二区成人| 18禁裸乳无遮挡免费网站照片| 久久久久九九精品影院| 在现免费观看毛片| 亚洲成人久久爱视频| 蜜桃亚洲精品一区二区三区| 亚洲第一电影网av| 国产av一区在线观看免费| 啦啦啦韩国在线观看视频| 国内精品一区二区在线观看| 国产午夜福利久久久久久| 国产精品久久久久久亚洲av鲁大| 少妇丰满av| 丰满人妻一区二区三区视频av| 九九久久精品国产亚洲av麻豆| 亚洲精品在线观看二区| 97人妻精品一区二区三区麻豆| 精品一区二区免费观看| 久久久久久国产a免费观看| 99国产精品一区二区蜜桃av| 麻豆国产av国片精品| 啦啦啦啦在线视频资源| 午夜久久久久精精品| 欧美性猛交╳xxx乱大交人| 一区二区三区四区激情视频 | 国产熟女欧美一区二区| 亚洲专区中文字幕在线| 亚洲精品成人久久久久久| 国产精品,欧美在线| 久久久久久国产a免费观看| 琪琪午夜伦伦电影理论片6080| 免费观看人在逋| 男人的好看免费观看在线视频| 在线看三级毛片| 国产综合懂色| 国产精品99久久久久久久久| 亚洲成人免费电影在线观看| 日日啪夜夜撸| 久久久久久伊人网av| 欧美日韩中文字幕国产精品一区二区三区| 噜噜噜噜噜久久久久久91| 久久午夜福利片| 欧美色欧美亚洲另类二区| 99久久成人亚洲精品观看| 搡老熟女国产l中国老女人| 在线a可以看的网站| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 免费观看人在逋| 国产人妻一区二区三区在| 精品午夜福利视频在线观看一区| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 午夜福利欧美成人| 久久久久久国产a免费观看| 性色avwww在线观看| 免费看av在线观看网站| 啦啦啦韩国在线观看视频| 伦理电影大哥的女人| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 男女之事视频高清在线观看| 在现免费观看毛片| 欧美3d第一页| 国产aⅴ精品一区二区三区波| 国产亚洲精品av在线| 国产午夜福利久久久久久| 色噜噜av男人的天堂激情| 欧美性猛交黑人性爽| 亚洲色图av天堂| 一进一出抽搐gif免费好疼| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性xxxx在线观看| 桃红色精品国产亚洲av| 一级av片app| 国产精品一区二区免费欧美| 国产精品亚洲美女久久久| 身体一侧抽搐| 他把我摸到了高潮在线观看| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器| 精品久久久久久久久久久久久| 尾随美女入室| 精品一区二区三区视频在线观看免费| 久久精品久久久久久噜噜老黄 | 岛国在线免费视频观看| 日韩 亚洲 欧美在线| 久久久久久久久久久丰满 | 无遮挡黄片免费观看| 国产精品国产三级国产av玫瑰| 岛国在线免费视频观看| 别揉我奶头~嗯~啊~动态视频| 欧美国产日韩亚洲一区| 日日摸夜夜添夜夜添av毛片 | 春色校园在线视频观看| 久久精品国产99精品国产亚洲性色| 亚洲在线自拍视频| 精品福利观看| 日韩欧美国产一区二区入口| 丰满的人妻完整版| 日日干狠狠操夜夜爽| x7x7x7水蜜桃| 精品久久久久久久久久免费视频| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 免费av毛片视频| 91久久精品国产一区二区成人| xxxwww97欧美| 国产在线男女| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 舔av片在线| 久久久色成人| 一本精品99久久精品77| 日本熟妇午夜| 精品人妻偷拍中文字幕| 国产高清视频在线观看网站| 91久久精品国产一区二区成人| 很黄的视频免费| 精品久久久噜噜| 伦精品一区二区三区| 午夜福利高清视频| 亚洲av美国av| 色播亚洲综合网| 国产单亲对白刺激| 国产精品野战在线观看| 中文资源天堂在线| 国产精品99久久久久久久久| 欧美一区二区精品小视频在线| 精华霜和精华液先用哪个| 少妇丰满av| 麻豆国产97在线/欧美| 亚洲av免费在线观看| 日本 欧美在线| 极品教师在线视频| 亚洲,欧美,日韩| 村上凉子中文字幕在线| 天堂动漫精品| 日本 欧美在线| 欧美高清性xxxxhd video| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 亚洲国产欧美人成| 久久九九热精品免费| 国产69精品久久久久777片| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 国产男人的电影天堂91| 日本一二三区视频观看| 乱码一卡2卡4卡精品| 精品不卡国产一区二区三区| 久久久久久伊人网av| 在线观看午夜福利视频| 日韩欧美在线二视频| 99久久九九国产精品国产免费| 亚洲专区中文字幕在线| 精品乱码久久久久久99久播| www.www免费av| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 午夜福利18| 观看美女的网站| 久久久久性生活片| 国产在线男女| 男人舔奶头视频| 我要看日韩黄色一级片| 桃色一区二区三区在线观看| 久久久久免费精品人妻一区二区| av天堂在线播放| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 伦精品一区二区三区| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 国产日本99.免费观看| 亚洲成av人片在线播放无| 神马国产精品三级电影在线观看| 亚洲无线在线观看| 熟女人妻精品中文字幕| 窝窝影院91人妻| 22中文网久久字幕| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 九色国产91popny在线| 精品一区二区三区视频在线观看免费| 美女黄网站色视频| 亚洲四区av| 黄色欧美视频在线观看| 国产爱豆传媒在线观看| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 亚洲成人久久性| 99热只有精品国产| 久久久久国内视频| 亚洲人成网站高清观看| 国内精品美女久久久久久| 成年女人永久免费观看视频| 国产日本99.免费观看| 欧美日韩国产亚洲二区| 美女免费视频网站| 亚洲精华国产精华精| 十八禁国产超污无遮挡网站| 在线a可以看的网站| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频 | 中文在线观看免费www的网站| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| www.www免费av| 又爽又黄a免费视频| 一区二区三区高清视频在线| 国产私拍福利视频在线观看| 亚洲七黄色美女视频| 99热这里只有是精品在线观看| 成人永久免费在线观看视频| 赤兔流量卡办理| 亚洲一区二区三区色噜噜| 国产国拍精品亚洲av在线观看| 天天躁日日操中文字幕| 十八禁国产超污无遮挡网站| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 日本一本二区三区精品| 国产高清视频在线播放一区| 少妇的逼好多水| 国内精品久久久久久久电影| 国产探花在线观看一区二区| 波多野结衣高清无吗| 亚洲熟妇中文字幕五十中出| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 两个人的视频大全免费| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 亚洲国产色片| 国产探花在线观看一区二区| 亚洲无线观看免费| 日日摸夜夜添夜夜添av毛片 | 国产高清视频在线播放一区| 欧美日韩中文字幕国产精品一区二区三区| 国产黄色小视频在线观看| 欧美丝袜亚洲另类 | 精品久久久久久久久久免费视频| 伊人久久精品亚洲午夜| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 观看美女的网站| 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 一级av片app| 精品国内亚洲2022精品成人| 啦啦啦观看免费观看视频高清| 国产午夜精品久久久久久一区二区三区 | 午夜a级毛片| 搡老妇女老女人老熟妇| 久久久色成人| 天堂av国产一区二区熟女人妻| 亚洲av中文av极速乱 | 一进一出抽搐动态| 免费在线观看日本一区| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 亚洲美女搞黄在线观看 | 成人性生交大片免费视频hd| 尤物成人国产欧美一区二区三区| 在线观看免费视频日本深夜| 亚洲内射少妇av| 午夜老司机福利剧场| netflix在线观看网站| 1000部很黄的大片| 两个人视频免费观看高清| 久久99热6这里只有精品| 国产精品野战在线观看| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 99热网站在线观看| 成年人黄色毛片网站| 真实男女啪啪啪动态图| 老熟妇仑乱视频hdxx| 女生性感内裤真人,穿戴方法视频| 中亚洲国语对白在线视频| 久久久久久久亚洲中文字幕| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 亚洲av二区三区四区| 日韩中字成人| 亚洲七黄色美女视频| 国产单亲对白刺激| 99热这里只有精品一区| 国内少妇人妻偷人精品xxx网站| 在线观看66精品国产| 色噜噜av男人的天堂激情| 在线观看午夜福利视频| 精品久久久久久久久久久久久| 中文字幕久久专区| 91麻豆av在线| 中文在线观看免费www的网站| 国产高清视频在线播放一区| 亚洲国产欧美人成| 校园春色视频在线观看| 免费av不卡在线播放| 国产精品三级大全| 亚洲人成伊人成综合网2020| av在线亚洲专区| 我的女老师完整版在线观看| 国内精品宾馆在线| 国产精品野战在线观看| 99久久精品一区二区三区| 乱系列少妇在线播放| 亚洲av成人精品一区久久| 欧美日韩亚洲国产一区二区在线观看| 欧美精品啪啪一区二区三区| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 亚洲七黄色美女视频| 免费看av在线观看网站| 麻豆成人av在线观看| 精品午夜福利在线看| 免费看日本二区| 日本成人三级电影网站| 少妇人妻一区二区三区视频| 1024手机看黄色片| 亚洲av中文字字幕乱码综合| 色噜噜av男人的天堂激情| 久久午夜福利片| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 久久精品影院6| 亚洲av不卡在线观看| av天堂中文字幕网| 丰满乱子伦码专区| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 日本黄大片高清| 欧美成人性av电影在线观看| 成年人黄色毛片网站| 成年版毛片免费区| 日本 av在线| 韩国av在线不卡| 伊人久久精品亚洲午夜| 国产女主播在线喷水免费视频网站 | 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看 | 国语自产精品视频在线第100页| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 成人特级黄色片久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 日韩欧美一区二区三区在线观看| 午夜福利视频1000在线观看| 免费av观看视频| 色综合亚洲欧美另类图片| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| av中文乱码字幕在线| 性色avwww在线观看| 成人综合一区亚洲| 91狼人影院| 波多野结衣高清无吗| 亚洲性夜色夜夜综合| 日本欧美国产在线视频| 美女高潮的动态| 亚洲成a人片在线一区二区| 桃色一区二区三区在线观看| 国产高清三级在线| 日日摸夜夜添夜夜添av毛片 | 国产91精品成人一区二区三区| 亚洲黑人精品在线| 国产伦一二天堂av在线观看| av在线观看视频网站免费| av视频在线观看入口| 午夜视频国产福利| 国产不卡一卡二| 97超级碰碰碰精品色视频在线观看| 搞女人的毛片| 少妇的逼好多水| 99热这里只有精品一区| 久久久午夜欧美精品| 色播亚洲综合网| 亚洲性久久影院| 欧美日韩精品成人综合77777| 美女 人体艺术 gogo| 小说图片视频综合网站| 制服丝袜大香蕉在线| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月| 俺也久久电影网| 国产精品不卡视频一区二区| 精品久久国产蜜桃| 九九爱精品视频在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 久久精品人妻少妇| 欧美成人性av电影在线观看| 在线播放无遮挡| 亚洲国产欧美人成| 欧美高清性xxxxhd video| 国产 一区精品| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 热99re8久久精品国产| 日韩,欧美,国产一区二区三区 | 精品一区二区免费观看| 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 亚洲一区高清亚洲精品| 成人三级黄色视频| 99热6这里只有精品| 亚洲乱码一区二区免费版| 成人av在线播放网站| 国产精品久久久久久亚洲av鲁大| 国产真实乱freesex| 亚洲专区中文字幕在线| 精品一区二区三区视频在线| 亚洲成人久久性| 亚洲黑人精品在线| 中文亚洲av片在线观看爽| 欧美激情在线99| 变态另类成人亚洲欧美熟女| 夜夜爽天天搞| 在线天堂最新版资源| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 丝袜美腿在线中文| 在线观看免费视频日本深夜| 九九久久精品国产亚洲av麻豆| 久久精品国产鲁丝片午夜精品 | 国产精品嫩草影院av在线观看 | 一区二区三区激情视频| 精品一区二区免费观看| 99热这里只有是精品在线观看| 男人舔奶头视频| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 午夜福利成人在线免费观看| 国产爱豆传媒在线观看| 69人妻影院| 人人妻人人看人人澡| 少妇的逼好多水| 欧美日本视频| 69人妻影院| 成人永久免费在线观看视频| 少妇猛男粗大的猛烈进出视频 | 午夜视频国产福利| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 国产av不卡久久| 亚洲精品乱码久久久v下载方式| 日本 av在线| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 日本撒尿小便嘘嘘汇集6| 美女免费视频网站| 美女高潮的动态| 久久精品久久久久久噜噜老黄 | 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 欧美xxxx性猛交bbbb| 一区二区三区高清视频在线| 欧美色欧美亚洲另类二区| 精品人妻1区二区| 国产亚洲欧美98| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 22中文网久久字幕| 蜜桃亚洲精品一区二区三区| 国产精品一及| 久久精品国产鲁丝片午夜精品 | 三级毛片av免费| av国产免费在线观看| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 日韩 亚洲 欧美在线| 身体一侧抽搐| 欧美中文日本在线观看视频|