• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Peripapillary vessel density and retinal nerve fiber layer thickness changes in early diabetes retinopathy

    2022-09-14 06:50:56XiangNingWangXuanCaiTingTingLiDaLongQiangWu
    關(guān)鍵詞:數(shù)據(jù)量制圖女性主義

    INTRODUCTION

    Diabetic retinopathy (DR) is a potentially fatal complication with diabetes mellitus (DM) and the primary cause of blindness worldwide

    . Previous studies have shown that early diagnosis of type 2 diabetes mellitus (T2DM) and screening for retinopathy is associated with a lower incidence and severity of retinopathy

    . However, when retinal lesions become clinically evident, it is impossible to reverse the injury, and the likelihood of DR progression increases

    . The present DR management is focused on the late stages, where retinal systems and vision acuity have also been compromised

    . Thus, understanding the pathogenesis of neurovascular impairments could lead to novel and efficient preventive strategies. As a result, diagnosis and tracking slight neurovascular changes that are in the early stages of DR are essential.

    The tomography/OCTA volumes of optical coherence were obtained covering a 6×6 mm

    retinal region and were based on the optic disk. Every volume of 6×6 mm

    consisted of 512A scans for the B-scan (24 mm space between adjacent A-shapes) and 512B-scan spaces for scanning by voltage(24 mm spaces between adjacent B-shapes). To detect the motion contrast for OCTA, the optical microangiography(OMAGC) algorithm was used. Both OCTA photography was carried out by professional ophthalmic photographers, who, if possible, repeated the image acquisition to ensure photographs with intense OCT signal penetration and minimal motion artifacts. Scans with an signal-to-noise ratio (SNR) >8 decibels(dB) were considered good quality. The quality ratings for the scans were expressed as SNR in dB over a spectrum of 1 (poor quality) to 10 (excellent quality). Only photographs with a score of ≥8 were considered.

    Of these neuronal modifications, the thinning of the retinal nerve fiber layer (RNFL) is an essential feature of the inner retinal layers and is speculated as to the earliest improvement in DR neurodegenerative lesions. RNFL loss leads to defects in various ophthalmological tests, including electroretinograms,contrast sensitivity, dark adaptation, and microperimetry.Optical coherence tomography angiography (OCT-A) is a noninvasive and reproducible imaging procedure that was recently used to study macular and peripapillary vascular structures with unlikely details and clarification

    . Early variations in the peripapillary vessel anatomy and vessel density (VD)of the radial peripapillary plexus have been linked to RNFL thinning in patients with DM but without DR

    .

    The new technique, swept-source OCT (SS-OCT), improves the imaging depth and scanning speed that facilitates anterior segment assessment with corneal graft inspection,

    , it allows a precise qualitative and quantitative assessment of vascular improvements in the fundus and presents various application prospects. Additionally, Garway-Heath

    constructed a clinical map that relates visual field test points to the regions of the optic nerve head (ONH). The map is valuable in the clinical diagnosis of glaucoma patients and suspects and the research of the connection between retinal light sensitivity and ONH structure. Therefore, we used swept-source optical coherence tomography angiography (SS-OCTA) technology and Garway-Heath map-based ONH measurement software to explore the peripapillary VD, capillary vessel density (CVD), and RNFL thickness changes in early DR.

    SUBJECTS AND METHODS

    The study was approved by the Shanghai Sixth People’s Hospital Institutional Review Board. All the protocols followed the principles of Helsinki Declaration,and informed consent was obtained prior to participation in the study. The study was registered in the Chinese clinical trial registry (http://www.chictr.org.cn/, Registration number:ChiCTR1900028607). Between October 2020 and March 2021, diabetic patients were recruited from the Shanghai Diabetes Center at the Shanghai Sixth People’s Hospital Affiliated University. Healthy adults were recruited from the same hospital at the same time.

    Pearson’s correlation analysis was used to calculate the correlation between RNFL thickness and peripapillary VD and CVD (Table 3 and Figure 5). Furthermore, in diabetic patients,the average RNFL thickness and the mean peripapillary VD and CVD were positively correlated but not significantly(

    =0.141,

    =0.240;

    =0.175,

    =0.145). In the correlation analysis of each region, the RNFL thickness in the NS region was positively correlated with peripapillary VD and CVD(

    =0.233,

    =0.05;

    =0.288,

    =0.015; Table 3), while in the TI region, the RNFL thickness was positively correlated with peripapillary CVD (

    =0.237,

    =0.047; Table 3).

    All participants underwent ophthalmological analysis, including health history, visual acuity evaluation, biomicroscopy of the anterior segment using a slit lamp, ophthalmoscopy of the posterior segment, wide-field color fundus photography using Optos California (Optos plc, Dunfermline, UK), and Spectralis SD-OCT scans (Spectralis HRA+OCT; Heidelberg Engineering, Heidelberg, Germany). Based on the widefield color fundus photography and the International Clinical Diabetic Retinopathy Disease Severity Scale

    , two senior graders (Long D and Cai X) graded each subject’s DR as no DR, mild to moderate, or severe non-proliferative diabetic retinopathy (NPDR), or proliferative diabetic retinopathy(PDR). Each subject had one eye chosen as the research object,and if both eyes matched the eligibility criteria, the eye with higher visual acuity or a lower refractive error was chosen. All the participants were at least 18-year-old, had a logMAR visual acuity of at least 0.5 log units, and a refractive error of no more than -3.00 diopters (D) or +3 D-equivalent spheres. The exclusion criteria were as follows: 1) unable to give informed consent or consent to a full examination; 2) glaucoma, cup/disc(C/D)>0.4, or intraocular pressure >21 mm Hg; 3) pregnant or nursing; 4) active eye infections (such as blepharitis, keratitis,scleritis, conjunctivitis,

    ); 5) history of ocular disorders that affecting the neural and vascular structures of the eye (ocular trauma, amblyopia, retinal vein occlusion, retinal detachment,macular disease, multiple sclerosis, Alzheimer disease,hypertensive retinopathy,

    ), and history of ocular procedures other than cataract surgery (laser, intravitreal injections, and vitreoretinal surgery); 6) degree of DR classification greater than moderate NPDR; 7) presence of diabetic macular edema(DME).

    為保障淄博市森林防火指揮系統(tǒng)正常運(yùn)轉(zhuǎn),確保全市森林防火指揮系統(tǒng)暢通、高效,市森林防火指揮部辦公室于11月1日對(duì)森林防火通訊指揮系統(tǒng)進(jìn)行調(diào)試,與各區(qū)縣及市直林場(chǎng)逐一進(jìn)行信號(hào)測(cè)試,反復(fù)查測(cè)通信盲區(qū),重點(diǎn)調(diào)試了火情監(jiān)測(cè)、無線通訊等項(xiàng)目,強(qiáng)化各單位之間的連通共享,為實(shí)現(xiàn)“縱向貫通、橫向互連、實(shí)時(shí)感知、精確指揮”的一體化指揮體系夯實(shí)基礎(chǔ)。調(diào)試結(jié)束后,市森林公安局局長(zhǎng)王尊慶對(duì)調(diào)試情況進(jìn)行了講評(píng),對(duì)做好下一步防火值班、督導(dǎo)檢查、宣傳教育、培訓(xùn)演練等工作進(jìn)行安排部署,并提出了具體要求。

    The SSOCT/OCTA device was designed for the central wavelength laser (VG200S; SVision Imager, Henan, China) of 1050 nm with a scan rate of 200 000 A-scans/s. The device was equipped with an eye monitoring tool based on an integrated confocal laser ophthalmoscope for the removal of objects of eye movement. The axial and lateral resolutions were 5 and 13 μm,respectively. The depth of the scan was 3 mm.

    Recent studies on DR pathogenesis found that neuronal dysfunction and neurodegeneration are closely associated with microvascular dysfunction and that neurovascular unit degeneration could be regarded as an essential component of DR pathology

    . In addition, evidence from diabetic donors’and diabetic animal models’ retinas demonstrated that retinal neuronal cell degeneration or apoptosis develops early in diabetes

    .

    In order to analyze the VD quantitatively in different regions, non-parametric Kruskal-Wallis with Bonferroni’s post hoc test was applied. The statistical results are displayed in Table 2 and Figure 2. In the central ring, the mean VD of the control, no-DR, and mild-moderate NPDR groups was 47.54±8.23, 46.01±9.17, 48.93±9.84, with no significant differences between the groups (

    =0.466). In the 2-4 mm circle, significant differences were detected among the three groups (

    =0.006). VD in the no-DR and mild-moderate NPDR groups was significantly lower than that in the normal group, but no significant difference was observed between the no-DR and mild-moderate NPDR groups. In the eight regions of 2-4-mm circle, differences were observed in the superior,inferior, NS, and IN quadrants (

    =0.007, 0.026, 0.007, and 0.039). Among these, the VD of the mild-moderate NPDR group was lower than that of the control group (

    <0.05);however, the difference between the mild-moderate NPDR

    no-DR and no-DR

    control groups were not significant(

    >0.05).

    The ONH program installed in the machine assessed the data automatically. The ONH was a 4 mm diameter ring. The middle was a 2 mm circle, and the 2-4 mm circle was separated using nerve fiber flux (NFF) cartographies in eight areas (Garway-Heath

    scheme). The eight regions include nasal superior (NS), nasal inferior (NI), inferior nasal (IN), inferior temporal (IT), temporal inferior (TI),temporal superior (TS), superior temporal (ST), and superior nasal (SN). The built-in program was utilized to assess each pattern of the average retinal VD of the inner retina (from ILM-5 mm to IPL/INL+(INL/OPL-IPL/INL)/2) was measured(version1.31.6; VG200D, SVision Imaging Ltd, Henan Province, China). The density of peripapillary CVD was then calculated using the procedure of removing massive blood vessels. Simultaneously, the corresponding RNFL thickness was also calculated (Figure 1).

    All data analyses were carried out using the SPSS version 19.0 program (IBM Co., Chicago, IL, USA).The data are presented as the mean±standard deviation (SD)for continuous and categorical variables. One-way variation analysis (ANOVA) was conducted to compare the continuous variables with Bonferroni post hoc tests, independent

    -test or Mann-Whitney

    test.

    test was used to compare the proportions between groups. Pearson’s correlation and multivariable linear regression analysis investigated the correlation between retinal neurodegeneration and intrinsic risk factors. The two-tailed

    -values were recorded. To evaluate statistical significance, a 0.05-type I error level was used.

    Diabetic microangiopathy is also known as retinal ischemia.One of the lesions in early DR, retinal capillary damage, is not fully formed into a local, visible non-perfusion region but manifests as decreased retinal blood flow density (RVD). It also found that the RVD of eyes with severe NPDR and PDR were significantly lower than those with mild NPDR and the normal control group, and the RVD of the eyes with DME was more significantly reduced

    . In the eyes of NPDR without DME, the RVD decreased significantly with the severity of the disease

    . Decreased VD in patients with non-DR and mild DR indicated a loss of papillary or lack of perfusion in the early stages of the disease

    . In diabetic patients without DR, the superficial and deep decreased compared to healthy participants

    . Li

    analyzed the VD of 97 DM patients and 48 controls and found that VD was decreased in the diabetic patient group. According to the anatomy, the capillaries in the inner layer of the retina are continuously branched from the central retinal artery that runs from the center of the optic disc. The retinal capillaries are distributed in layers, with the thickest next to the optic disc. Thus, it is speculated that when the retinal ischemic disease shows decreased RVD in the macular area at the end of the blood supply, the peripapillary blood supply should also decrease.The present study demonstrated that the peripapillary VD in diabetic patients decreased, and after removing the influencing factors of large blood vessels, CVD was also decreased.

    RESULTS

    Based on the inclusion/exclusion criteria, the study included 104 participants (32 controls on health and 72 diabetes patients; 45 males and 59 females),of which 32 comprised the control group, 34 were T2DM without DR (no-DR group), and 38 were mild-moderate DR.The sample participants’ demographic characteristics are summarized in Table 1.

    The mean age of the subjects in the three groups was 57.46±9.39y, 63.59±9.69y, and 58.15±10.38y, respectively;the difference was significant among the groups (

    =0.112;Table 1). No statistically significant differences were identified in patients’ sex (

    =0.953), laterality (

    =0.734), visual acuity(

    =0.421), and mean spherical equivalent (

    =0.685) among three groups. Among the diabetic patients, the comparison[duration of diabetes, fasting blood glucose (FBG), hemoglobin A1c (HbA1c), and glycated albumin] showed that only FBG was significantly different between the mild-moderate NPDR and no-DR groups (

    =-2.004,

    =0.049).

    The repeatability test was carried out for 12 patients with a mean (SD) age of 59.46±6.24 (range: 50-74)y.Among these participants, six had diabetes. The intraclass correlation coefficient (ICC) scores were 0.89 for VD, 0.91 for CVD, and 0.92 for RNFL.

    湖南省制圖數(shù)據(jù)的制作很長(zhǎng)一段時(shí)間都采用先通過GIS軟件制作地形數(shù)據(jù),再通過制圖軟件導(dǎo)入地形數(shù)據(jù)用以制作制圖數(shù)據(jù)這一模式。這種模式減少了格式轉(zhuǎn)換次數(shù),制圖數(shù)據(jù)修改時(shí)庫(kù)體數(shù)據(jù)不需要返回到原始庫(kù)體修改。由于制圖軟件可根據(jù)制圖規(guī)則模板快速生產(chǎn)制圖數(shù)據(jù),因此制圖數(shù)據(jù)也隨著建庫(kù)數(shù)據(jù)而自動(dòng)更新,但建庫(kù)與出圖仍分開進(jìn)行,這種模式也稱為半一體化模式。

    F2=3.90×105+3.91×105+1.95×105+1.95×105+2.58×105+2.58×105=16.87×105N

    “云南少數(shù)民族傳統(tǒng)體育發(fā)展成就展”將在臨滄開展 云南省第十一屆少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)將于12月4日至13日在臨滄舉行,期間,云南民族博物館將推出特展——“云南少數(shù)民族傳統(tǒng)體育發(fā)展成就展”,該展覽主要展示云南少數(shù)民族傳統(tǒng)體育的發(fā)展脈絡(luò)和云南在少數(shù)民族傳統(tǒng)體育事業(yè)方面的工作成就,使觀眾深切感受到少數(shù)民族傳統(tǒng)體育項(xiàng)目的魅力。

    表2數(shù)據(jù)顯示,國(guó)內(nèi)女性主義翻譯研究的主要被引文獻(xiàn)多集中于該理論的引介與闡發(fā)初期,此間發(fā)刊的論文篇數(shù)不多,但被引率極高,影響極大。在被引前十的文獻(xiàn)中,有9篇屬于理論分析文章,被引合計(jì)2 077頻次,篇均被引230.78次,幾乎構(gòu)成了國(guó)內(nèi)女性主義翻譯研究的理論基石,奠定了作者自身在該研究領(lǐng)域的理論話語(yǔ)地位。比如,被引頻次最多的一篇是蔣驍華的《女性主義對(duì)翻譯理論的影響》[3],364次被引中有158條期刊論文引證,說明該文獻(xiàn)在同類研究中具有重要的理論基礎(chǔ)性、影響力和導(dǎo)向性。

    A similar finding was observed in RNFL. The RNFL thickness did not differ significantly in mild-moderate NPDR

    no-DR and no-DR

    control groups (

    >0.05). However, the RNFL thickness in the mild-moderate NPDR group was significantly lower than that in the control group in the ST quadrants(

    =0.030; Table 2 and Figure 4).

    首先將本文方法所需數(shù)據(jù)量與文獻(xiàn)[5]中基于矩陣分析的方法、文獻(xiàn)[10]中基于GFFT的方法和文獻(xiàn)[11]中基于Gr?bner基改進(jìn)的GFFT方法進(jìn)行對(duì)比,m取值為3~8,仍然選取與圖4中相同的6種RS碼進(jìn)行研究,且每種RS碼對(duì)應(yīng)誤比特率分別為0.02、0.01、0.005、0.002、0.001和0.0004.本文方法在各種條件下所需數(shù)據(jù)量可由式(32)獲得;對(duì)于文獻(xiàn)[5]中方法,其分析矩陣必須滿足行數(shù)大于列數(shù),因此所需數(shù)據(jù)量至少為m2n2;基于GFFT的方法至少需要50組完整碼字,相應(yīng)的數(shù)據(jù)量為50mn.最終,得到對(duì)比結(jié)果如表4所示.可以看出,相同條件下本文方法所需數(shù)據(jù)量更小.

    Furthermore, we estimated the changes in peripapillary CVD after removing large blood vessels. The sectored analyses of each CVD in the ONH grid are shown in Table 2 and Figure 3.In the 2-4 mm circle, the mean CVD did not differ significantly among the control, no-DR, and mild-moderate NPDR groups(

    =0.117). In the eight regions of the 2-4 mm circle, no significant differences were detected in the ST quadrants(

    =0.018). In addition, the CVD of the mild-moderate NPDR group decreased significantly compared to the control group(

    <0.05).

    著名哲學(xué)家黃克劍先生提出教育的終極目標(biāo)——生命化教育:人的道德的自我完善,心靈的自我督責(zé),人格的自我提升,境界的自我超越。大家知道,孩子的認(rèn)識(shí)是立體的、全面的,但是在傳統(tǒng)課堂中,學(xué)科是孤立、自成體系的?;诖耍谥袑W(xué)語(yǔ)文教學(xué)中,抓住課堂主陣地,利用網(wǎng)絡(luò)信息技術(shù),充分利用校內(nèi)外資源,探索與實(shí)踐“一課雙師”語(yǔ)文教學(xué)模式,開闊學(xué)生視野、擴(kuò)散學(xué)生思維、發(fā)展學(xué)生能力,促進(jìn)教育資源的均衡發(fā)展,提高中學(xué)語(yǔ)文教學(xué)質(zhì)量,實(shí)現(xiàn)生命化教育。

    DISCUSSION

    This study was based on the Garway-Heath map to explore the changes in peripapillary VD, CVD, and RNFL thickness in the early stage of DR. Consequently, we found that functional and structural impairments had already begun in the early stages of DR. Correlation research analysis demonstrated a correlation between neural and vascular structures.

    Garway-Heath

    produced a clinically useful map that related the visual field test points to ONH regions. The map in this analysis was asymmetric, representing the location of the ONH above the horizontal meridian. Paracentral and arcuate regions of the visual field are defined by sectors in proximity to the poles of the ONH in the map. Subsequently, a peripapillary RNFL thickness map was used in the study by Tan

    .to derive nerve fiber trajectories in the peripapillary region,and an over nerve fiber tracking algorithm was presented. The study devised a system to construct the NFF map and quantify it by track and sector in any test subject. On peripapillary OCT scans, the NFF tracks and sectors matched the typical nerve fiber trajectory over a wide area, potentially allowing efficient detection of focal damage and precise quantification of regional loss

    . Therefore, in the current study, the measurement based on the ONH topographic map accurately detected the neural and vascular structural changes in early DR.

    4)采用云計(jì)算方式進(jìn)行數(shù)據(jù)處理。隨著導(dǎo)航應(yīng)用的進(jìn)一步深入,數(shù)據(jù)量越來越龐大,數(shù)據(jù)關(guān)系更加復(fù)雜,應(yīng)采用云計(jì)算的方式快速處理和提供信息。

    These results were in line with the above theoretical speculation,

    , the VD in the mild-moderate DR was significantly lower than in the normal control group, thereby suggesting that clinical examination should focus on whether the VD of DM patients can detect meaningful ischemic manifestations at the early stage.

    When the large retinal vessels around the disc were removed,we found that in the ST area, the peripapillary CVD and RNFL thickness in the mild-moderate NPDR group was lower than that in the normal group, indicating a positive correlation.From an anatomical point of view, the macular area and the surrounding retina converge toward the optic disc in arcs on the upper and lower sides of the macular optic disc axis, and hence, the optic nerve and blood vessels in the supratemporal and infratemporal positions of the optic disc are denser than those in other parts

    . After removing the large blood vessels, the changes in blood flow around the supply disc were observed accurately, and significant changes were detected in the blood vessels and nerves around the optic disc of DR,which were investigated further.

    The superficial capillary layer at the optic disc, especially the radial peripapillary capillaries (RPC) blood vessels, run parallel to the direction of the nerve axons. The blood vessels are straight and lacking a large amount of intervascular anastomosis; also, the tolerance to hypoxia and injury was poor. However, the dense nerves in the superior and IT quadrants lead to high oxygen demand, thereby effectuating the cause of structural changes in the optic nerve that is susceptible to hyperglycemia

    .

    The current results do not show how the progression of DR(DME and PDR) affects the peripapillary VD. Since macular edema distorts OCTA segmentation (which is critical for accurate measurements) and falsely increases peripapillary RNFL thickness, these factors are pre-specified as exclusion criteria

    . In addition, panretinal photocoagulation and focal laser therapy are linked to declining RNFL thickness independently

    . Therefore, if we recruited such patients, we would introduce uncontrollable confusion.

    Nevertheless, the present study has a few limitations. First, this was a cross-sectional observational study. Thus, the association between improvements in peripapillary VD and development in the early-stage DR could be explained by longitudinal analysis. Second, the sample size was limited and insignificant to draw reasonable conclusions. Third, with the built-in program of the computer, we analyzed the microvasculature using a 4×4 mm

    scan pattern. The RPC that supplies an RNFL blood flow extends to 8 mm from the optical disk temporal tip.Thus, a wide area for scanning the modifications of the VD could be useful

    .

    In conclusion,

    the measurement based on the ONH topographic map may be more accurate than the traditional four-classification method. The peripapillary VD, CVD, and RNFL decreased in early DR, the changes in RNFL thickness were correlated with the CVD and/or VD in some regions. The current study provides mechanistic insight into DR, demonstrating functional and structural impairments around the optic disc in early DR and a correlation between these conditions. Furthermore, to validate the usefulness of peripapillary outcomes as biomarkers of early DR, longitudinal studies are warranted.

    Supported by College-level Project Fund of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (No.ynlc201909).

    None;

    None;

    None;

    None;

    None.

    1 Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss.

    (

    ) 2015;2:17.

    2 Olafsdottir E, Andersson DK, Dedorsson I, Svardsudd K, Jansson SP,Stefansson E. Early detection of type 2 diabetes mellitus and screening for retinopathy are associated with reduced prevalence and severity of retinopathy.

    2016:94(3): 232-239.

    3 Kim K, Kim ES, Yu SY. Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes.

    2018;196:165-172.

    4 Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding,mechanisms, and treatment strategies.

    2017;2(14):e93751.

    5 Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter?

    2018;61(9):1902-1912.6 Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy.

    2012;366(13):1227-1239.

    7 Nian S, Lo ACY, Mi YJ, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets.

    (

    ) 2021;8(1):15.

    8 Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy.

    2017;255(1):1-6.

    9 Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular unit: a new target for treating early stages of diabetic retinopathy.

    2021;13(8):1320.

    10 Yang JH, Kwak HW, Kim TG, Han JS, Moon SW, Yu SY. Retinal neurodegeneration in type II diabetic otsuka long-Evans tokushima fatty rats.

    2013;54(6):3844-3851.

    11 Li ST, Wang XN, Du XH, Wu Q. Comparison of spectral-domain optical coherence tomography for intra-retinal layers thickness measurements between healthy and diabetic eyes among Chinese adults.

    2017;12(5):e0177515.

    12 Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy:inflammation, microvasculature defects and neurodegeneration.

    2018;19(1):E110.

    13 Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.

    2015;133(1):45-50.

    14 Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G.Optical coherence tomography angiography.

    2018;64:1-55.

    15 Vujosevic S, Muraca A, Gatti V, Masoero L, Brambilla M, Cannillo B, Villani E, Nucci P, De Cillà S. Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study.

    2018;59(12):5074-5081.

    16 Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA.Mapping the visual field to the optic disc in normal tension glaucoma eyes.

    2000:107(10): 1809-1815.

    17 Wilkinson CP, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT,. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales.

    2003;110(9):1677-1682.

    18 Tan O, Liu L, Liu L, Huang D. Nerve fiber flux analysis using widefield swept-source optical coherence tomography.

    2018;7(1):16.

    19 Kim AY, Chu ZD, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography.

    2016;57(9):OCT362-OCT370.

    20 Sambhav K, Abu-Amero KK, Chalam KV. Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of nonproliferative diabetic retinopathy.

    2017;27(6):716-729.

    21 Forte R, Haulani H, Jürgens I. Quantitative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: a prospective pilot study.

    2020;40(2):333-344.

    22 Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K.Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy.

    2017;58(1):190-196.

    23 Li ZJ, Alzogool M, Xiao JH, Zhang S, Zeng P, Lan YQ. Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy.

    2018;55(10):1075-1082.

    24 Yu PK, Balaratnasingam C, Xu J, Morgan WH,

    Label-free density measurements of radial peripapillary capillaries in the human retina.

    2015;10(8):e0135151.

    25 Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, Huang D. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography.

    2017;7:42201.

    26 Yang HS, Woo JE, Kim MH, Kim DY, Yoon YH. Co-evaluation of peripapillary RNFL thickness and retinal thickness in patients with diabetic macular edema: RNFL misinterpretation and its adjustment.

    2017;12(1):e0170341.

    27 Lee HJ, Kang TS, Kwak BS, Jo YJ, Kim JY. Long-term effect of panretinal photocoagulation on spectral domain optical coherence tomography measurements in diabetic retinopathy.

    2017;42(8):1169-1173.

    28 Huang T, Li XL, Xie J, Zhang L, Zhang GR, Zhang AP, Chen XT, Cui Y, Meng QL. Long-term retinal neurovascular and choroidal changes after panretinal photocoagulation in diabetic retinopathy.

    (

    ) 2021;8:752538.

    29 Reddy SV, Husain D. Panretinal photocoagulation: a review of complications.

    2018;33(1):83-88.

    30 Mammo Z, Heisler M, Balaratnasingam C,

    Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma, glaucoma suspect, and normal eyes.

    2016;170:41-49.

    猜你喜歡
    數(shù)據(jù)量制圖女性主義
    《達(dá)洛維夫人》中的女性主義敘事
    名作欣賞(2021年24期)2021-08-30 07:02:24
    基于大數(shù)據(jù)量的初至層析成像算法優(yōu)化
    計(jì)算Lyapunov指數(shù)的模糊C均值聚類小數(shù)據(jù)量法
    無聲手槍如何消音?
    高刷新率不容易顯示器需求與接口標(biāo)準(zhǔn)帶寬
    寬帶信號(hào)采集與大數(shù)據(jù)量傳輸系統(tǒng)設(shè)計(jì)與研究
    電子制作(2019年13期)2020-01-14 03:15:18
    二向反射模型在土地覆被制圖中的應(yīng)用
    《人·鬼·情》中的女性主義
    淺析女性主義翻譯
    人間(2015年18期)2015-12-30 03:42:11
    工程制圖課程教學(xué)改革探析
    久久婷婷人人爽人人干人人爱 | 亚洲精品在线观看二区| 国产欧美日韩精品亚洲av| 麻豆av在线久日| 99久久综合精品五月天人人| 国产免费男女视频| 97人妻精品一区二区三区麻豆 | 大型av网站在线播放| 精品国产一区二区久久| 日日夜夜操网爽| 精品福利观看| 色综合亚洲欧美另类图片| 日本免费a在线| 在线观看免费午夜福利视频| 中文字幕最新亚洲高清| 成人特级黄色片久久久久久久| 婷婷六月久久综合丁香| 欧美成人一区二区免费高清观看 | 一二三四社区在线视频社区8| 一级,二级,三级黄色视频| 老司机福利观看| 午夜福利影视在线免费观看| 日本欧美视频一区| 日本 欧美在线| 校园春色视频在线观看| av免费在线观看网站| 美女午夜性视频免费| 国产一区二区三区在线臀色熟女| 非洲黑人性xxxx精品又粗又长| 免费观看精品视频网站| 男人舔女人的私密视频| 99国产综合亚洲精品| 人人妻人人澡人人看| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 日韩三级视频一区二区三区| 国产麻豆69| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 久久精品人人爽人人爽视色| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 男人舔女人的私密视频| 亚洲av电影在线进入| 后天国语完整版免费观看| xxx96com| 一区二区三区高清视频在线| 成人亚洲精品一区在线观看| 性欧美人与动物交配| 91九色精品人成在线观看| 乱人伦中国视频| 国产精品爽爽va在线观看网站 | 国产亚洲欧美精品永久| 97人妻天天添夜夜摸| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 国产av一区在线观看免费| 亚洲欧美精品综合一区二区三区| 男女做爰动态图高潮gif福利片 | 一级a爱视频在线免费观看| 男人舔女人下体高潮全视频| 亚洲五月婷婷丁香| 丁香六月欧美| 国产野战对白在线观看| 大型av网站在线播放| 法律面前人人平等表现在哪些方面| 欧美不卡视频在线免费观看 | 此物有八面人人有两片| 18禁美女被吸乳视频| 精品午夜福利视频在线观看一区| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 桃红色精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 国产一卡二卡三卡精品| 亚洲人成电影免费在线| 国产精品野战在线观看| 91成人精品电影| 叶爱在线成人免费视频播放| 成人三级做爰电影| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 午夜免费激情av| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| videosex国产| 性欧美人与动物交配| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 国产伦人伦偷精品视频| 精品国产亚洲在线| 一进一出好大好爽视频| 在线观看免费午夜福利视频| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 国产熟女午夜一区二区三区| 一本综合久久免费| 他把我摸到了高潮在线观看| 如日韩欧美国产精品一区二区三区| 精品一区二区三区av网在线观看| 久久精品91蜜桃| 男女床上黄色一级片免费看| 女警被强在线播放| 十分钟在线观看高清视频www| 怎么达到女性高潮| 欧美日韩精品网址| av有码第一页| 国产一级毛片七仙女欲春2 | 老司机午夜十八禁免费视频| 国产精品精品国产色婷婷| 精品人妻1区二区| 久久精品亚洲精品国产色婷小说| 精品熟女少妇八av免费久了| 丝袜在线中文字幕| 一级片免费观看大全| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 国产亚洲精品av在线| av片东京热男人的天堂| 亚洲黑人精品在线| 午夜福利一区二区在线看| 国产精品综合久久久久久久免费 | 国产极品粉嫩免费观看在线| 熟女少妇亚洲综合色aaa.| 日韩国内少妇激情av| 亚洲美女黄片视频| 老鸭窝网址在线观看| 亚洲男人的天堂狠狠| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 色精品久久人妻99蜜桃| 黄片播放在线免费| 国产av在哪里看| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 香蕉久久夜色| 男女做爰动态图高潮gif福利片 | 老司机深夜福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| av天堂在线播放| 久久中文字幕人妻熟女| 在线av久久热| 亚洲av五月六月丁香网| 亚洲精品美女久久久久99蜜臀| 久久香蕉激情| 99国产精品一区二区三区| 日本 av在线| 午夜精品国产一区二区电影| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 夜夜爽天天搞| 亚洲av第一区精品v没综合| 叶爱在线成人免费视频播放| 美女高潮到喷水免费观看| 亚洲最大成人中文| 午夜精品在线福利| 天堂动漫精品| 欧美一区二区精品小视频在线| 国产亚洲精品av在线| 亚洲精品国产一区二区精华液| 精品熟女少妇八av免费久了| 一个人观看的视频www高清免费观看 | 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 亚洲成人国产一区在线观看| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 一a级毛片在线观看| www.www免费av| 久久青草综合色| 亚洲伊人色综图| 亚洲七黄色美女视频| 伦理电影免费视频| 色在线成人网| 99在线视频只有这里精品首页| 韩国av一区二区三区四区| 久久亚洲精品不卡| 热99re8久久精品国产| 91九色精品人成在线观看| 国产野战对白在线观看| 国产色视频综合| 色播在线永久视频| 午夜福利,免费看| 午夜老司机福利片| 亚洲欧美日韩另类电影网站| 黄色视频,在线免费观看| 久久伊人香网站| 午夜视频精品福利| 母亲3免费完整高清在线观看| 亚洲在线自拍视频| av在线播放免费不卡| 免费人成视频x8x8入口观看| 91老司机精品| 精品一品国产午夜福利视频| 午夜老司机福利片| 亚洲精品在线美女| 日韩av在线大香蕉| 丝袜美足系列| 午夜福利,免费看| 桃色一区二区三区在线观看| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影| 9色porny在线观看| 少妇粗大呻吟视频| 中国美女看黄片| 九色国产91popny在线| 黑人巨大精品欧美一区二区蜜桃| a在线观看视频网站| 丝袜美足系列| 99国产精品免费福利视频| 国产区一区二久久| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 国产成人av教育| 看片在线看免费视频| 欧美黑人精品巨大| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 黄频高清免费视频| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 免费不卡黄色视频| 老司机靠b影院| 精品免费久久久久久久清纯| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 亚洲一区高清亚洲精品| 999久久久国产精品视频| 一夜夜www| 精品国产乱子伦一区二区三区| 好男人电影高清在线观看| 午夜a级毛片| 男人的好看免费观看在线视频 | 国产亚洲欧美98| 中出人妻视频一区二区| 久久久久久大精品| 欧美在线一区亚洲| 免费不卡黄色视频| 午夜福利影视在线免费观看| 韩国精品一区二区三区| 黑丝袜美女国产一区| 欧美人与性动交α欧美精品济南到| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 久久精品国产清高在天天线| 欧美成狂野欧美在线观看| 怎么达到女性高潮| 韩国精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产亚洲欧美98| 熟妇人妻久久中文字幕3abv| 午夜a级毛片| www.www免费av| 精品日产1卡2卡| 曰老女人黄片| 国产私拍福利视频在线观看| 午夜精品久久久久久毛片777| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 久久久久久久精品吃奶| 久久人妻av系列| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 国产区一区二久久| 9热在线视频观看99| 一进一出好大好爽视频| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 日本在线视频免费播放| 亚洲精品在线美女| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 久久久久久人人人人人| 国产一区二区在线av高清观看| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| www.自偷自拍.com| 亚洲第一青青草原| 成年人黄色毛片网站| 夜夜躁狠狠躁天天躁| 国产成+人综合+亚洲专区| 日本免费一区二区三区高清不卡 | 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 欧美另类亚洲清纯唯美| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 国产一级毛片七仙女欲春2 | 怎么达到女性高潮| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月| 桃色一区二区三区在线观看| av中文乱码字幕在线| 99在线视频只有这里精品首页| 一边摸一边做爽爽视频免费| 久久久久国内视频| 色老头精品视频在线观看| 极品教师在线免费播放| 久久久久久久久中文| 长腿黑丝高跟| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区三| 午夜福利成人在线免费观看| 午夜福利欧美成人| 精品久久蜜臀av无| 波多野结衣av一区二区av| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 18禁裸乳无遮挡免费网站照片 | 亚洲精品中文字幕在线视频| 久久性视频一级片| 日韩中文字幕欧美一区二区| 午夜福利视频1000在线观看 | 别揉我奶头~嗯~啊~动态视频| 夜夜看夜夜爽夜夜摸| a级毛片在线看网站| 少妇熟女aⅴ在线视频| 大陆偷拍与自拍| 99国产精品99久久久久| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看 | 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 免费av毛片视频| 校园春色视频在线观看| 精品国产一区二区三区四区第35| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 亚洲人成伊人成综合网2020| 最好的美女福利视频网| 桃色一区二区三区在线观看| 日韩成人在线观看一区二区三区| 成人国语在线视频| 成人三级黄色视频| 色综合欧美亚洲国产小说| 在线视频色国产色| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 在线观看日韩欧美| 男人舔女人的私密视频| 国产精品秋霞免费鲁丝片| 一区二区三区高清视频在线| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 又大又爽又粗| 在线观看www视频免费| 十八禁人妻一区二区| 一级黄色大片毛片| 久久性视频一级片| 老司机靠b影院| 国产色视频综合| 国产99白浆流出| 午夜精品在线福利| 精品电影一区二区在线| 亚洲人成电影免费在线| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影 | 久久精品亚洲熟妇少妇任你| 亚洲欧美一区二区三区黑人| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 精品少妇一区二区三区视频日本电影| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 亚洲成av人片免费观看| 纯流量卡能插随身wifi吗| 久9热在线精品视频| 身体一侧抽搐| 日本一区二区免费在线视频| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频 | 欧美精品亚洲一区二区| 又大又爽又粗| 黄色 视频免费看| 后天国语完整版免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 人人妻人人澡欧美一区二区 | 国产欧美日韩一区二区三| 久久午夜综合久久蜜桃| 长腿黑丝高跟| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 欧美乱码精品一区二区三区| 两个人视频免费观看高清| 久久午夜亚洲精品久久| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 亚洲美女黄片视频| 国产成人啪精品午夜网站| 国产一区在线观看成人免费| 亚洲第一电影网av| 99热只有精品国产| 国产99久久九九免费精品| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 欧美日韩乱码在线| 精品福利观看| 午夜精品在线福利| 日韩欧美国产一区二区入口| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 国产精品综合久久久久久久免费 | 亚洲中文字幕日韩| 99精品久久久久人妻精品| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 给我免费播放毛片高清在线观看| 免费看a级黄色片| 啪啪无遮挡十八禁网站| 久久国产精品影院| 1024视频免费在线观看| 夜夜看夜夜爽夜夜摸| 嫁个100分男人电影在线观看| 精品不卡国产一区二区三区| www.www免费av| 亚洲精品国产区一区二| 久9热在线精品视频| 999久久久精品免费观看国产| 黄片大片在线免费观看| 久久精品91蜜桃| 91国产中文字幕| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 麻豆久久精品国产亚洲av| 99精品久久久久人妻精品| 男人舔女人的私密视频| av片东京热男人的天堂| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| svipshipincom国产片| 他把我摸到了高潮在线观看| 怎么达到女性高潮| 黄色视频,在线免费观看| 久久精品亚洲精品国产色婷小说| 满18在线观看网站| 国产精品98久久久久久宅男小说| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 一本久久中文字幕| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 国产野战对白在线观看| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 亚洲第一欧美日韩一区二区三区| 丁香欧美五月| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影 | 看片在线看免费视频| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 又大又爽又粗| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| 免费少妇av软件| 日本三级黄在线观看| 国产av一区二区精品久久| xxx96com| 天堂√8在线中文| 国产亚洲精品av在线| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 黄色片一级片一级黄色片| 日韩 欧美 亚洲 中文字幕| 国产在线精品亚洲第一网站| 久久中文字幕一级| 又紧又爽又黄一区二区| 操出白浆在线播放| 国产不卡一卡二| 欧美久久黑人一区二区| 亚洲九九香蕉| 黄网站色视频无遮挡免费观看| 久久这里只有精品19| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 露出奶头的视频| 欧美激情久久久久久爽电影 | 日韩成人在线观看一区二区三区| 久久影院123| 久久久久久久午夜电影| 亚洲av五月六月丁香网| 精品熟女少妇八av免费久了| 久久狼人影院| 一级毛片女人18水好多| 满18在线观看网站| 免费在线观看影片大全网站| 国产单亲对白刺激| 天堂动漫精品| 色婷婷久久久亚洲欧美| 午夜精品久久久久久毛片777| 美女免费视频网站| 高潮久久久久久久久久久不卡| 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看.| 一进一出抽搐动态| 久久亚洲精品不卡| 精品久久久久久久人妻蜜臀av | 亚洲自偷自拍图片 自拍| 丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 国产高清videossex| 视频区欧美日本亚洲| 国产精品99久久99久久久不卡| 麻豆av在线久日| 精品国产亚洲在线| 欧美日韩乱码在线| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 亚洲人成77777在线视频| 精品卡一卡二卡四卡免费| 久久久精品欧美日韩精品| 亚洲精品av麻豆狂野| 国产一区在线观看成人免费| 99久久综合精品五月天人人| 午夜免费观看网址| 免费观看精品视频网站| 免费高清视频大片| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 老司机午夜十八禁免费视频| 啦啦啦韩国在线观看视频| 中文字幕人妻丝袜一区二区| 亚洲欧洲精品一区二区精品久久久| 神马国产精品三级电影在线观看 | 成人永久免费在线观看视频| 国产成人精品久久二区二区91| 一本大道久久a久久精品| 国产精品九九99| 午夜久久久久精精品| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 最好的美女福利视频网| 欧美黄色淫秽网站| 久久国产精品男人的天堂亚洲| 久久人妻av系列| 搡老妇女老女人老熟妇| 老熟妇仑乱视频hdxx| 日韩欧美在线二视频| 免费高清在线观看日韩| 一边摸一边做爽爽视频免费| 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区免费高清观看 | 黄色丝袜av网址大全| 成人三级黄色视频| 最新美女视频免费是黄的| av在线天堂中文字幕| 黑人欧美特级aaaaaa片| 免费看美女性在线毛片视频| 不卡一级毛片| 人妻久久中文字幕网| videosex国产| 麻豆成人av在线观看| 国产精品亚洲av一区麻豆| 天堂√8在线中文| 国语自产精品视频在线第100页| 国产精品秋霞免费鲁丝片| 亚洲,欧美精品.| 欧美精品啪啪一区二区三区| 在线观看日韩欧美| 欧美午夜高清在线| 欧美 亚洲 国产 日韩一| 精品熟女少妇八av免费久了| 免费av毛片视频| 日韩国内少妇激情av| bbb黄色大片| 一进一出好大好爽视频| 欧美 亚洲 国产 日韩一| 国产精品美女特级片免费视频播放器 | 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线观看免费| 日本一区二区免费在线视频| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| videosex国产| 免费在线观看视频国产中文字幕亚洲| 国产成人影院久久av| 老司机靠b影院| 少妇的丰满在线观看| 久久中文看片网| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看 | 日韩成人在线观看一区二区三区| 日本在线视频免费播放|