• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Signed-rank-based test forhigh dimensional mean vector*

    2022-09-09 13:56:56LIUYanLIShimingZHANGSanguo

    LIU Yan, LI Shiming, ZHANG Sanguo?

    (1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;2 Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049, China;3 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University,Beijing 100730, China)

    Abstract This work is concerned with tests for one-sample mean vectors under high dimensional cases. Existing high dimensional tests for mean vectors base on the assumption of elliptical distribution have been proposed recently. To extend to more distributions, we propose a signed-rank-based test. The proposed test statistic is robust and scalar-invariant. Asymptotic properties of the test statistic are established. Numerical studies show that the proposed test has a good control of the type-I error and is more efficiency. We also employ the proposed method to analyze an ophthalmic data.

    Keywords high dimensional analysis; signed-rank; one-sample test; scalar-invariance

    Suppose thatX1,…,Xn∈pare independent and identically distribution random samples with mean vectorμand covariance matrixΣ. And consider the following test

    H0:μ=μ0vs.H1:μ≠μ0.

    (1)

    undernnbecause of the singularity of the sample covariance matrix. It is a challenge to the traditional method in high dimensional situation.

    The challenge of testing (1) in high dimensional situation has attracted many researchers. Ref.[1] constructed the test statistics which avoid the inverse of the sample covariance matrix. but the test statistics can only be applied to the case ofp/n→c∈(0,1), which means that the increasing rate of the sample dimension should be same as the sample size. Ref.[2] proposed a new test statistic without any direct relationship betweenpandn. In practice, different components may have different scales. Therefore, scalar-invariant is an important property to a test statistic. Ref.[3], Ref.[4] and Ref.[5] constructed a test statistic with the property of scalar-invariant and under the assumption thatp=o(n2). Ref.[6] proposed a scalar-invariant test that allows the dimension to be arbitrarily large. But their test is not location shift invariant. However, under heavy-tailed distributions, which frequently arise in genomics and quantitative finance, the asymptotic properties of the above test statistics are not established, a natural result is that these tests tend to have unsatisfactory power. Under the assumption of elliptical distributions, Ref.[7] proposed a novel non-parametric test based on spatial-signs, which is more powerful than the test in Ref.[2] for heavy-tailed multivariate distributions and has similar power to the test in Ref.[2] for multivariate normal distribution. But their test is not scalar-invariant. Ref.[8] proposed a novel scalar-invariant test based on multivariate-sign, which is more powerful than the test in Ref.[5] for heavy-tailed multivariate distributions. And their method is under the assumption that log(p)=o(n).

    We propose a novel test for hypothesis (1) based on signed-rank method and our study have two main contributions. Firstly, the proposed test statistic works for more distributions because signed-rank method only requires that the distribution of the samples is symmetric. And the test statistic is available whenpis arbitrarily large. Secondly, we show that, under null hypothesis, the proposed test statistic is asymptotically normal. Moreover, the simulation study shows that our method is scalar-invariant and robust, and is more efficient without the assumption of elliptical distributions.

    1 A signed-rank-based high dimen-sional test

    1.1 The proposed test statistic

    Suppose thatXi,i=1,…,nare independent and identically distribution random samples with dimensionp. We denote thatX(k)=(X1k,…,Xnk),k=1,…,pas the sample of thek-th dimension. And, let (r1k,…,rnk) be the rank of (|X1k|,…,|Xnk|). To test hypothesis (1), we proposed a test statistic based on signed-rank functions, which are defined as:

    Ui=diag{sign(Xi1),…,sign(Xip)}(ri1,…,rip)T,

    wherei=1,2,…,n. Then, we consider the following U-statistic:

    (2)

    Setsi=(si1,…,sip)Twith covariance matrixΣs>0, wheresij=sign(Xij). To establish the asymptotic properties of the U statistic under the null hypothesis, we need following conditions:

    Remark1.1Condition A1 is necessary condition of the signed-rank test under null hypothesis and it indicates that the random samples have symmetric distributions. Under the first term in condition A1, we haveE(sij)=0. Under the second term in condition A1,rij≠rkjfor anyi≠kand eachjso that (r1j,…,rnj) is a permutation of all the elements in {1,…,n}. Condition A2 is similar to that applied in Ref.[2], and it is a quite mild condition on the eigenvalues ofΣs.

    UnderH0, and then suppose condition A1 hold, it is easy to show that

    E(Tn)=0,

    and

    Theorem 1.1 in the following establishes the asymptotic normality ofTn.

    Theorem1.1UnderH0, and then suppose conditions A1 and A2 hold, asn→∞ andp→∞,

    (3)

    1.2 Computational issue

    2 Simulation study

    We compare the performance of the proposed test (SR) with five alternatives: Ref.[1] (BS), Ref.[2] (CQ), Ref.[5] (SKK), Ref.[7] (WPL), Ref.[8] (FZW). All the following simulations are replicated 1 000 times. And, we setn=20, 50 andp=200, 1 000.

    Table 1 stands for the performance of the six tests in Example 1. We can see that the power of SR is similar to those of BS, CQ and WPL whenΣ=Σ1, and is more than those of BS, CQ and WPL whenΣ=Σ2. It indicates that SR has better performance when the scales of different components are different. For example, when (n,p)=(20,200),Σ=Σ2andc=0.1, the power of SR, BS,CQ, and WPL are 0.547, 0.407, 0.420, and 0.394, respectively. And we observe that SR has better performance in power than SKK and FZW whenp?n. The reason is that SKK and FZW are under the assumptions thatpcannot be much larger thann. For example, when (n,p)=(20,1 000),Σ=Σ1andc=0.15, the power of SR, SKK and FZW are 0.589, 0.413 and 0.347 respectively.

    Table 1 The empirical size and power at the significance level of 5% in Example 1

    Example2In this example,Xiis generated from p-variatet-distribution with 3 degrees of freedom. The setting of mean vectorμand covarianceΣare the same as those in Example 1. And we selectc=0.1 and 0.15 forμto calculate the power.

    Table 2 shows the simulation results in Example 2. We can see that SR have better performance in power than that of other five tests in all settings. For example, when (n,p)=(50,200),Σ=Σ1andc=0.15, the power of SR is 0.773 and the power of the other tests in this setting are 0.419, 0.538, 0.549, 0.577, and 0.610 respectively. Fort-distribution is a common heavy-tailed distribution, the results in this table indicate that SR is robust. Table 3 shows the performance of the six tests in Example 3. It shows that SR are more powerful than other five tests in all settings. For example, when (n,p)=(20,1 000),Σ=Σ2, andc=0.15, the power of BS, CQ, SKK, WPL, FZW, and SR are 0.626, 0.615, 0.695, 0.653, 0.650, and 0.949, respectively. Laplace distribution is not a elliptical distribution, and Table 3 shows that SR is more effective in this situation.

    Table 2 The empirical size and power at the significance level of 5% in Example 2

    Example3In this example,Xiis generated from p-variate Laplace distribution. And we consider the same setting of mean vectorμand covarianceΣas those in Example 1. To calculate the power, we selectc=0.1 andc=0.15 whenn=20, andc=0.05 andc=0.075 whenn=50.

    Table 3 shows the performance of the six tests in Example 3. It shows that SR are more powerful than other five tests in all settings. For example, when (n,p)=(20,1 000),Σ=Σ2, andc=0.15, the power of BS, CQ, SKK, WPL, FZW, and SR are 0.626, 0.615, 0.695, 0.653, 0.650, and 0.949, respectively. Laplace distribution is not a elliptical distribution, and Table 3 shows that SR is more effective in this situation.

    Table 3 The empirical size and power at the significance level of 5% in Example 3

    Example4In this example, we generateXifrom a mixed distribution. Firstly, we generateZijfrom normal distribution for 1≤j≤2p/5, generateZijfromtdistribution with 3 degrees of freedom for 2p/5+1≤j≤7p/10, and generateZijfrom Laplace distribution for 7p/10+1≤j≤p, and allZijhave mean 0 and variance 1. Then we letXi=ΓZi+μ, whereΓis ap×pmatrix withΓΓT=Σ, andZi={Zi1,…,Zip}T. And we consider the same setting of mean vectorμand covarianceΣas those in Example 1. To calculate the power, we selectc=0.1 andc=0.15 whenn=20, andc=0.05 andc=0.075 whenn=50.

    Table 4 stands for the simulation results in Example 4. We can see that the power of SR is more than those of the other five tests in all settings. For example, when (n,p)=(50,1 000),Σ=Σ2andc=0.075, the power of SR is 0.757 and the power of the other tests in this setting are 0.214, 0.271, 0.548, 0.299 and 0.613 respectively. In practice, the variates usually have different distributions. Hence, the results in Table 4 indicate that SR is supposed to have better performancein application.

    Table 4 The empirical size and power at the significance level of 5% in Example 4

    Moreover, we plot the empirical distributions of SR with the settings of four examples and compare them with the standard normal distribution. And, Fig.1 confirms the asymptotic normal distributions of SR given in Theorem 1.1.

    Fig.1 Tn under the null hypothesis with four different distributions of X

    3 Real data application

    In this section, we employ the proposed signed-rank-based method to study an ophthalmic data. This data is collected by the Beijing Tongren Eye Center and Anyang Eye Hospital. We take the data of the fifth and sixth grades of a class in the data, Apply the proposed method to study whether the visual factors and their interaction with eye habits are different in different grades.

    Fig.2 The distribution of the standard deviations

    Firstly, we remove the visual factors and their interaction with eye habits with missing values greater than 15%, and impute the sample mean into the missing values for the remaining 945 factors. Then, we letXibe the difference between the visual factors and their interaction with eye habits of thei-th student in the sixth grade and those in the fifth grade. And, we calculate standard deviations of each dimension inX, and show the distribution of the standard deviations in Fig.2. It shows that these standard deviations are different, so the scalar-invariance method are supposed to have better performance in the analysis of this data. Applying the proposed SR method, we obtain ap-value <10-9, which illustrates that the visual factors and their interaction factors of eye habits are different in different grades. Through CQ, WPL and FZW methods, thep-values obtained are 0.491 0, 0.491 3 and <10-9respectively. For the standard deviations of each dimension in the sample are different, the CQ and WPL methods are relatively ineffective, while thep-values obtained through FZW and SR methods are small.

    国产成人精品无人区| 精品熟女少妇八av免费久了| 久久精品成人免费网站| 热99re8久久精品国产| 久久久精品国产亚洲av高清涩受| 亚洲国产成人一精品久久久| 久久精品国产亚洲av香蕉五月 | 亚洲av日韩精品久久久久久密| 老熟女久久久| 久久精品国产综合久久久| 十分钟在线观看高清视频www| 欧美日韩亚洲综合一区二区三区_| av欧美777| 一边摸一边做爽爽视频免费| 成人影院久久| 成人手机av| 欧美激情极品国产一区二区三区| 亚洲精品国产av蜜桃| 欧美乱码精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 99国产精品一区二区蜜桃av | 欧美精品一区二区免费开放| 在线精品无人区一区二区三| 老汉色∧v一级毛片| 丁香六月欧美| 国产成人av教育| 国产伦人伦偷精品视频| 午夜福利乱码中文字幕| 啦啦啦啦在线视频资源| 久久国产亚洲av麻豆专区| 国产熟女午夜一区二区三区| 亚洲精品美女久久av网站| 欧美+亚洲+日韩+国产| 美国免费a级毛片| 国产男女内射视频| 视频在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲全国av大片| 日韩免费高清中文字幕av| 午夜成年电影在线免费观看| 国产色视频综合| 亚洲人成电影观看| 黑丝袜美女国产一区| 一区二区日韩欧美中文字幕| 国产精品一二三区在线看| 久久热在线av| 亚洲天堂av无毛| 丝袜美腿诱惑在线| 久久精品aⅴ一区二区三区四区| 国产亚洲一区二区精品| 亚洲av片天天在线观看| 老司机午夜福利在线观看视频 | 黄色 视频免费看| 国产免费一区二区三区四区乱码| 各种免费的搞黄视频| 18在线观看网站| 黄色视频不卡| 亚洲成人免费av在线播放| 丝袜脚勾引网站| 制服人妻中文乱码| e午夜精品久久久久久久| 成年美女黄网站色视频大全免费| 久久精品熟女亚洲av麻豆精品| 国产亚洲av高清不卡| 国产成人免费无遮挡视频| 18禁裸乳无遮挡动漫免费视频| 大型av网站在线播放| 亚洲国产精品999| 国产亚洲精品第一综合不卡| av免费在线观看网站| 99久久99久久久精品蜜桃| 久久午夜综合久久蜜桃| 国产成人av教育| 午夜福利在线观看吧| 免费高清在线观看日韩| 午夜福利一区二区在线看| 纯流量卡能插随身wifi吗| 岛国在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 女人精品久久久久毛片| 国产成人影院久久av| 国产精品一区二区精品视频观看| 成年人午夜在线观看视频| 国产精品一区二区免费欧美 | 成年人午夜在线观看视频| 国产精品一区二区免费欧美 | 亚洲国产欧美日韩在线播放| 老司机影院成人| 久久青草综合色| 熟女少妇亚洲综合色aaa.| 日韩有码中文字幕| 中亚洲国语对白在线视频| 老司机影院毛片| 午夜福利,免费看| 国产xxxxx性猛交| 老熟女久久久| 国产亚洲一区二区精品| 亚洲一区中文字幕在线| 人人妻人人添人人爽欧美一区卜| 国产精品亚洲av一区麻豆| 欧美日韩成人在线一区二区| 久久女婷五月综合色啪小说| 黄片小视频在线播放| 精品亚洲成a人片在线观看| 一区二区三区激情视频| 一本大道久久a久久精品| 一区二区三区四区激情视频| 2018国产大陆天天弄谢| 免费看十八禁软件| 最近中文字幕2019免费版| 人人妻人人爽人人添夜夜欢视频| 国产成人系列免费观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩精品网址| 国产免费一区二区三区四区乱码| 国产一区二区 视频在线| 久久久久国产一级毛片高清牌| 欧美精品一区二区免费开放| av网站免费在线观看视频| 人人妻人人澡人人爽人人夜夜| 日韩欧美一区二区三区在线观看 | 91字幕亚洲| 国产日韩欧美视频二区| 91九色精品人成在线观看| 中文字幕av电影在线播放| 久久久精品94久久精品| 爱豆传媒免费全集在线观看| 成年人黄色毛片网站| av超薄肉色丝袜交足视频| 性色av乱码一区二区三区2| 99国产精品免费福利视频| 天天影视国产精品| 伊人久久大香线蕉亚洲五| 12—13女人毛片做爰片一| 妹子高潮喷水视频| 在线十欧美十亚洲十日本专区| 久久久久久久久免费视频了| 色综合欧美亚洲国产小说| 国产欧美日韩综合在线一区二区| 又大又爽又粗| 在线看a的网站| 亚洲av电影在线进入| 男女床上黄色一级片免费看| av欧美777| 久久久国产欧美日韩av| 悠悠久久av| 亚洲成人免费电影在线观看| 国产老妇伦熟女老妇高清| 亚洲国产欧美网| xxxhd国产人妻xxx| 欧美精品av麻豆av| 成人三级做爰电影| 国产97色在线日韩免费| 欧美日韩一级在线毛片| 国产成人影院久久av| 大型av网站在线播放| 国产精品av久久久久免费| 国产亚洲欧美在线一区二区| 欧美黄色片欧美黄色片| 午夜福利乱码中文字幕| 欧美精品高潮呻吟av久久| 欧美日韩亚洲高清精品| 动漫黄色视频在线观看| 美女国产高潮福利片在线看| 大片免费播放器 马上看| 脱女人内裤的视频| 亚洲国产精品一区三区| 夫妻午夜视频| 久久久国产一区二区| 国产成人欧美在线观看 | 亚洲视频免费观看视频| 啦啦啦免费观看视频1| 91成人精品电影| 日韩欧美国产一区二区入口| 国产高清视频在线播放一区 | 久久99一区二区三区| 国产精品av久久久久免费| 亚洲av日韩精品久久久久久密| 精品人妻熟女毛片av久久网站| 久久亚洲国产成人精品v| 欧美变态另类bdsm刘玥| 精品视频人人做人人爽| 搡老岳熟女国产| 欧美av亚洲av综合av国产av| 涩涩av久久男人的天堂| 99国产极品粉嫩在线观看| 成年av动漫网址| 三上悠亚av全集在线观看| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区激情视频| 欧美成人午夜精品| 黑人巨大精品欧美一区二区mp4| 欧美精品亚洲一区二区| 老熟妇乱子伦视频在线观看 | 精品亚洲成a人片在线观看| 丝瓜视频免费看黄片| 自线自在国产av| 日韩制服丝袜自拍偷拍| 亚洲国产成人一精品久久久| 每晚都被弄得嗷嗷叫到高潮| 丝袜在线中文字幕| 久久久久久免费高清国产稀缺| 黑人巨大精品欧美一区二区mp4| 少妇 在线观看| a 毛片基地| 少妇 在线观看| 国产视频一区二区在线看| 亚洲精品第二区| 九色亚洲精品在线播放| 97精品久久久久久久久久精品| 国产欧美日韩一区二区三区在线| 精品视频人人做人人爽| 欧美日韩中文字幕国产精品一区二区三区 | 免费看十八禁软件| 久久综合国产亚洲精品| 一级黄色大片毛片| 另类亚洲欧美激情| 国产精品久久久av美女十八| 亚洲精品一区蜜桃| 亚洲三区欧美一区| 韩国高清视频一区二区三区| 丝袜在线中文字幕| 人人妻,人人澡人人爽秒播| 国产成人系列免费观看| 久久久精品免费免费高清| 人妻一区二区av| 国产免费现黄频在线看| 男女之事视频高清在线观看| 久久免费观看电影| 国产av又大| 亚洲av男天堂| 法律面前人人平等表现在哪些方面 | 亚洲精品国产av成人精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲七黄色美女视频| 中国美女看黄片| 99精品久久久久人妻精品| 夜夜夜夜夜久久久久| 午夜成年电影在线免费观看| 丰满迷人的少妇在线观看| 亚洲 欧美一区二区三区| 人妻人人澡人人爽人人| 老熟妇乱子伦视频在线观看 | 久久久精品免费免费高清| 午夜福利,免费看| 亚洲人成77777在线视频| 欧美精品一区二区大全| 嫁个100分男人电影在线观看| 日本一区二区免费在线视频| 91麻豆av在线| 黑人欧美特级aaaaaa片| 国产免费一区二区三区四区乱码| 丝袜脚勾引网站| 免费在线观看影片大全网站| 91成人精品电影| 黑丝袜美女国产一区| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 性色av一级| 亚洲精品久久成人aⅴ小说| 老司机影院毛片| 亚洲一码二码三码区别大吗| 1024视频免费在线观看| 久久久国产成人免费| 亚洲欧洲日产国产| 自拍欧美九色日韩亚洲蝌蚪91| 大片电影免费在线观看免费| 精品第一国产精品| 大片免费播放器 马上看| www日本在线高清视频| 国产精品国产三级国产专区5o| 亚洲全国av大片| 午夜免费观看性视频| 国产精品九九99| 啪啪无遮挡十八禁网站| 中国国产av一级| 嫩草影视91久久| 精品久久久久久久毛片微露脸 | 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影观看| 正在播放国产对白刺激| 国产精品一二三区在线看| 日韩电影二区| 精品一品国产午夜福利视频| 蜜桃在线观看..| 中国国产av一级| 美女福利国产在线| 岛国在线观看网站| 韩国高清视频一区二区三区| 老熟女久久久| 精品人妻在线不人妻| 国产精品九九99| 交换朋友夫妻互换小说| 波多野结衣一区麻豆| 爱豆传媒免费全集在线观看| 精品第一国产精品| 一本久久精品| 建设人人有责人人尽责人人享有的| 人人妻,人人澡人人爽秒播| 日韩欧美一区视频在线观看| www.999成人在线观看| 日韩欧美免费精品| 国产精品成人在线| 成人国产av品久久久| cao死你这个sao货| 一区在线观看完整版| 老司机午夜福利在线观看视频 | 1024视频免费在线观看| 久久久精品国产亚洲av高清涩受| 国产成人啪精品午夜网站| 丁香六月欧美| 久久久久网色| 亚洲全国av大片| 日韩欧美一区二区三区在线观看 | 女警被强在线播放| 亚洲精品国产一区二区精华液| 黄色a级毛片大全视频| 无限看片的www在线观看| 妹子高潮喷水视频| 亚洲第一av免费看| 日韩三级视频一区二区三区| 国产精品久久久久久人妻精品电影 | av在线app专区| 久久av网站| 国产成人精品久久二区二区91| 欧美日韩一级在线毛片| 国产男女内射视频| 在线观看免费高清a一片| 丝袜脚勾引网站| 每晚都被弄得嗷嗷叫到高潮| www.自偷自拍.com| 国产又色又爽无遮挡免| 最近中文字幕2019免费版| 亚洲五月婷婷丁香| 日韩中文字幕视频在线看片| 黄色怎么调成土黄色| 久久久久网色| 久久久久久久大尺度免费视频| 少妇精品久久久久久久| www.999成人在线观看| 精品国产乱码久久久久久男人| 一区在线观看完整版| 亚洲精品国产一区二区精华液| 丝袜美足系列| 不卡一级毛片| 国产精品久久久人人做人人爽| 99国产综合亚洲精品| 久9热在线精品视频| 国产亚洲午夜精品一区二区久久| 午夜91福利影院| 少妇粗大呻吟视频| 久久毛片免费看一区二区三区| 天天添夜夜摸| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人猛操日本美女一级片| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 久久中文看片网| 在线看a的网站| 制服诱惑二区| svipshipincom国产片| 中文字幕精品免费在线观看视频| 在线亚洲精品国产二区图片欧美| kizo精华| 亚洲av欧美aⅴ国产| 日韩大片免费观看网站| 99国产精品99久久久久| 另类精品久久| 国产又色又爽无遮挡免| 国产成人精品无人区| 两人在一起打扑克的视频| 窝窝影院91人妻| 亚洲欧美激情在线| 精品一区二区三卡| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| 国产淫语在线视频| 91av网站免费观看| 精品一区二区三区四区五区乱码| 脱女人内裤的视频| 热re99久久精品国产66热6| 国产精品久久久人人做人人爽| 国产福利在线免费观看视频| 夜夜夜夜夜久久久久| 国产成人精品久久二区二区免费| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 超色免费av| 国产片内射在线| 午夜激情av网站| 久久精品熟女亚洲av麻豆精品| 男女之事视频高清在线观看| 桃花免费在线播放| 亚洲av片天天在线观看| 黄色 视频免费看| 在线精品无人区一区二区三| 免费人妻精品一区二区三区视频| 男女高潮啪啪啪动态图| 黄色视频在线播放观看不卡| 日本欧美视频一区| 亚洲精品中文字幕一二三四区 | 99热国产这里只有精品6| 免费在线观看日本一区| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| 国产色视频综合| 欧美久久黑人一区二区| 建设人人有责人人尽责人人享有的| 热99久久久久精品小说推荐| 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 少妇 在线观看| 日韩欧美一区二区三区在线观看 | 夫妻午夜视频| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 亚洲精华国产精华精| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 日韩欧美一区二区三区在线观看 | 国产精品 欧美亚洲| 在线 av 中文字幕| 青春草视频在线免费观看| 交换朋友夫妻互换小说| www.精华液| 久久久久国产精品人妻一区二区| 考比视频在线观看| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 午夜两性在线视频| 欧美激情 高清一区二区三区| 免费人妻精品一区二区三区视频| 9色porny在线观看| 老司机靠b影院| 性高湖久久久久久久久免费观看| 热99re8久久精品国产| 黑人操中国人逼视频| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费| 中文精品一卡2卡3卡4更新| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 精品第一国产精品| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 亚洲国产av新网站| 我要看黄色一级片免费的| 青春草视频在线免费观看| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网 | 黄色a级毛片大全视频| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 大片免费播放器 马上看| 日本91视频免费播放| 狠狠狠狠99中文字幕| 欧美另类一区| 婷婷成人精品国产| 精品久久久久久久毛片微露脸 | 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| 日本a在线网址| 国产片内射在线| 丝袜在线中文字幕| 天天添夜夜摸| 大片电影免费在线观看免费| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 午夜老司机福利片| 亚洲精品国产av成人精品| 国产欧美亚洲国产| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 制服诱惑二区| 国产免费一区二区三区四区乱码| 国产又爽黄色视频| 国产成人影院久久av| 日日夜夜操网爽| 波多野结衣av一区二区av| 伊人亚洲综合成人网| 天堂8中文在线网| 人人妻,人人澡人人爽秒播| 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 亚洲专区中文字幕在线| 51午夜福利影视在线观看| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 91av网站免费观看| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网 | 国产免费一区二区三区四区乱码| 亚洲国产看品久久| tocl精华| 国产精品久久久久成人av| av欧美777| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| 日本91视频免费播放| 最新的欧美精品一区二区| 中文字幕高清在线视频| 久久狼人影院| 久久香蕉激情| netflix在线观看网站| 男女无遮挡免费网站观看| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 菩萨蛮人人尽说江南好唐韦庄| 一级a爱视频在线免费观看| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 性色av一级| 大陆偷拍与自拍| 高清在线国产一区| 国产深夜福利视频在线观看| 满18在线观看网站| 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 免费看十八禁软件| 99九九在线精品视频| 欧美午夜高清在线| 操美女的视频在线观看| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 日本a在线网址| 啦啦啦中文免费视频观看日本| 成年av动漫网址| 99re6热这里在线精品视频| 大码成人一级视频| 免费日韩欧美在线观看| 久久亚洲精品不卡| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 日韩中文字幕视频在线看片| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| 日本av手机在线免费观看| 精品一品国产午夜福利视频| a级毛片在线看网站| 老司机影院成人| 亚洲av电影在线进入| 丝袜美足系列| 老司机影院毛片| 中文字幕高清在线视频| 女人久久www免费人成看片| 久久青草综合色| 亚洲成人国产一区在线观看| 搡老乐熟女国产| 欧美激情 高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 国产av国产精品国产| 亚洲成人国产一区在线观看| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 久久狼人影院| 各种免费的搞黄视频| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 伊人亚洲综合成人网| 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 黄色视频不卡| 精品少妇内射三级| 老司机影院毛片| 又黄又粗又硬又大视频| 大香蕉久久网| 午夜91福利影院| 久久久久精品人妻al黑| 午夜激情久久久久久久| 又紧又爽又黄一区二区| 国产精品.久久久| 久久99热这里只频精品6学生| 亚洲av美国av| 丰满迷人的少妇在线观看| 欧美午夜高清在线| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 亚洲国产毛片av蜜桃av| 日韩大片免费观看网站| av在线app专区| 夜夜夜夜夜久久久久| 精品人妻1区二区| 老司机午夜十八禁免费视频| 自线自在国产av| 黄色片一级片一级黄色片| 久久久久久久大尺度免费视频| 午夜精品久久久久久毛片777| 12—13女人毛片做爰片一| 久久香蕉激情| 亚洲精品国产av蜜桃| 一进一出抽搐动态| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 狠狠精品人妻久久久久久综合| 69精品国产乱码久久久|