• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved guidelines for any-aged forestry

    2022-09-08 12:53:56TimoPukkala
    Journal of Forestry Research 2022年5期

    Timo Pukkala

    Abstract Any-aged forest management (AAF) is a means to reduce clear-felling without compromising profitability or timber production.The concept of AAF is to choose between clear-felling or thinning one harvest at a time based on what is better at that time in terms of the management objectives for the forest.No permanent choice is made between rotation forest management (RFM) and continuous cover forestry (CCF).Optimized AAF is never less profitable than RFM or CCF because all cutting types of both RMF and CCF are also allowed in AAF.This study developed a new set of guidelines for managing boreal forest stands under AAF when the forest landowner maximizes economic profitability.The first part of the guidelines indicates whether the stand should be cut or left to grow.This advice is based on stand basal area,mean tree diameter,minimum allowable post-thinning basal area,site productivity,and discount rate.If the optimal decision is harvesting,the second instruction determines whether the harvest should be clear-felling or thinning.In the case of thinning,the remaining two steps determine the optimal harvest rate in different diameter classes.The guidelines were developed using two different modeling approaches,regression analysis,and optimization,and applied to two Finnish forest holdings,one representing the southern boreal zone and the other the northern parts of the boreal zone.The results show that AAF improves profitability compared to current Finnish management instructions for RFM.The use of clear-felling also decreased the lower the minimum acceptable post-thinning basal area of the stand.

    Keywords Management optimization·Silvicultural system·Differential evolution

    Introduction

    Silvicultural systems have traditionally been classified into even-and uneven-aged management (Hanewinkel 2002;Hynynen et al.2019).Continuous cover forestry (CCF) has also been frequently discussed in recent literature (Knoke 2012;Pukkala 2016;Mason et al.2021).CCF corresponds to the German Dauerwald concept,the essential elements of which are to avoid clear-felling,rely on natural regeneration,and remove mature,diseased,and low-quality trees (Troup 1927).Maintaining tree cover and providing a continuous supply of ecosystem services are important characteristics of CCF (M?ller 1922).Typical of CCF management is that mixed stands are also favored (M?ller 1922).In contrast to uneven-aged management,continuous maintenance of uneven-aged stand structure or fixed harvest removals at regular intervals is not required in CCF.According to Heliwell(1997),the goals of CCF are to avoid clear-felling,abandon the concepts of age-class and rotation,and not allow regeneration to drive the system.From an economic point of view,an important feature of CCF is to aim for a high economic return with low capital (Heliwell 1997),which translates into good economic profitability.

    Considering the features of CCF,i.e.,uninterrupted supply of ecosystem services,high tree species diversity,and economic profitability,it is obvious that CCF corresponds to the management objectives of most multiple-use forests.Several recent studies indicate that CCF outperforms or is competitive with even-aged rotation management in economic profitability (Tahvonen 2009;Pukkala 2016;Peura et al.2018),carbon sequestration (Pukkala 2014;Assmuth and Tahvonen 2018;Peura et al.2018;Díaz-Yá?ez et al.2020;Parkatti and Tahvonen 2021),and biodiversity indicators (Peura et al.2018;Díaz-Yá?ez et al.2020;Eyvindson et al.2020).

    However,if clear-felling is ruled out,forested landscapes may no longer correspond to structures that natural dynamics would produce.Berglund and Kuuluvainen (2020) concluded that,without human intervention,non-stand replacing disturbance dynamics would dominate in Fennoscandian forests but there would be a certain percentage of stands,perhaps 20%,which would illustrate stand replacing dynamics.This means,for example,that for ecological sustainability,it would be good to have a portion of the forest under even-aged management,although the majority (around 80%)should be managed for more complex stand structures.If forest management and other activities reduce the damage caused by storms and wildfires,it may be justified to use clear-felling to mimic these hazards (Schall et al.2017).Refraining from all clearcuttings also may not be economically optimal (Tahvonen and R?m? 2016).There might be situations where natural regeneration is scarce,and the existing tree cover is no longer productive.Natural regeneration via seed or shelter trees is not always feasible due,for instance,to a high risk of wind damage or poor germination conditions.

    Therefore,it has been suggested that CCF alone may not be the best silvicultural system for multipurpose forests but mixtures of different management systems (Peura et al.2016;Pohjanmies et al.2017;Eyvindson et al.2018),or the so-called free-style or any-aged management (AAF) should be used instead (Haight and Monserud 1990a,b;Boncina 2011;Pukkala 2018).The concept of AAF is that all types of cuttings are allowed all the time,and no permanent choice is made between CCF and even-aged management.The likely outcome of optimized AAF is the frequent use of thinning from above and infrequent use of clear-felling and planting (Diaz-Yanez et al.2020).Clear-felling might be used in cases of insufficient natural regeneration or excessively high opportunity cost of the growing stock.However,a single clear-felling does not indicate a permanent switch from CCF to even-aged management.

    There are already optimizations-based instructions for employing AAF in Finnish forests (Pukkala 2018).These guidelines have been used in a few studies that have compared alternative silvicultural systems.These studies suggest that AAF outperforms both CCF and RFM in economic profitability (Pukkala 2021),and is competitive with CCF in biodiversity maintenance,wood production,and carbon sequestration (Díaz-Yá?ez et al.2020;Pukkala 2021).The results are logical since AAF is less constrained than CCF and RFM,and all the management options available in CCF and RFM can also be used in AAF.

    AAF guidelines for Finnish forests (Pukkala 2 018) consist of three rules,of which the first shows the probability that immediate cutting is the optimal decision.This probability depends on the discount rate,stand basal area,mean diameter of trees,site fertility,and temperature sum,which describes the total accumulated temperature of the growing season.If the first rule recommends harvesting,the second determines whether the harvest should be a final felling or a thinning.An additional factor,(compared to the first rule),affecting the choice between thinning or clear-felling,is the basal area of pulpwood-size trees.Ifit is 5 m2ha-1or more,it is almost certain that thinning from above is the optimal cutting method.If a thinning treatment is selected,the third rule indicates the harvest percentages for different diameter classes.

    Although the AAF guidelines described above are recent,there are a number of reasons to update them.New growth models,suitable for simulating and optimizing AAF,have been published (Pukkala et al.2021).It may be expected that these models describe the growth and dynamics of current Finnish forests better than those on which previous AAF guidelines are based.Another reason is that a new way to derive management instructions has been suggested (Jin et al.2019).The current guidelines consist of four models that have been fitted separately to a high number of standlevel optimization results using regression analysis.This is a two-step procedure consisting of separate optimization and model fitting steps.The idea of this new method is to develop a complete set of rules in one step by optimizing the parameters of all sub-models of the management guideline.The management of a set of stands is simulated with all parameter combinations that are inspected during the optimization run,seeking values that would result in the best objective function value when calculated over all stands used in the analysis.The study by Jin et al.(2019) shows that the two approaches,fitting regression models to stand-level optimization results,or optimizing the instruction directly,do not necessarily result in similar management guidelines.

    A third reason for updating the AAF guidelines is that the current instructions omit a factor that has a significant influence on the choice between a final felling or thinning.This is the lowest allowed post-thinning stand density,usually measured by basal area.Previous studies show that thinning from above replaces clear-felling the more the lower the minimum allowed post-thinning basal area (Pukkala et al.2014).In Finland,the lowest post-thinning basal area is dictated by forestry legislation (Anonymous 2013).However,there may be case-specific reasons to set the limit higher.The most important of these is the risk of wind damage,which may increase considerably if a dense stand is thinned to a low basal area (Zubuzarreta-Gerendiain et al.2012;Pukkala et al.2016).The risk of wind damage varies for different regions,forest holdings and stands,and depends on wind patterns of the region,soil type,and shelter that an adjacent stand or the terrain provide.The lowest acceptable stand density may also depend on management objectives.For example,if the landowners aim for increased forest carbon stocks,they might avoid low stocking levels.

    The objective of the current study was to develop new management guidelines for AAF in such a way that the lowest allowed post-cutting basal area is considered,in addition to the discount rate,site productivity,and growing stock characteristics.The optimization-based one-step approach for developing the guidelines is tested as an alternative to the two-step regression-based approach.The analyses utilize the most recent growth,survival,and ingrowth models published in Finland (Pukkala et al.2021).

    Materials and methods

    Overview of the steps

    Three harvests of a sample of Finnish forest stands were optimized in such a way that all types of cuttings were allowed (partial cutting from below,partial cutting from above,clear-felling).This optimization produced data for modeling the cutting decision,i.e.,the dependence of the optimal moment and the optimal way to do the cutting,based on site fertility,discount rate,growing stock characteristics,and other relevant variables.

    If a cutting schedule tested during optimization included clear-felling,the simulation was terminated,and the bare land value was added to the net income of clear-felling.The bare land value describes the net present value (NPV) of all future incomes and costs.To facilitate this approach,new models for bare land value were developed in this study.

    If the management schedule tested did not include clearfelling,the NPV of the residual growing stock was calculated and added to the NPV of the simulated cuttings.The predicted NPV of the final growing stock describes the NPV of all cuttings carried out after the third optimized cutting.For this,new models were developed for predicting the value of the final growing stock.

    The optimization results for the individual stands were used to develop models for optimal stand management.The growing stock variables were saved at 5-year intervals.If the optimal schedule involved a harvest at the end of the 5-year period,the type of the cutting (final vs.partial) was also recorded.In the case of partial cutting,information about the thinning intensity in different diameter classes was written on the output file.

    The discount rate used in the optimization of a particular stand was random and uniformly distributed between 1 and 5%.The timber price was also random.The roadside prices of conifer sawlogs and pulpwood correlated as shown in Fig.1.Birch had the same pulpwood price as conifers,but the sawlog price of birch was 10 € m-3lower.The lowest allowed post-thinning basal area was also randomized.

    Fig.1 Assumed distribution of the roadside price of sawlogs and pulpwood.The random prices used for a particular stand were drawn from this distribution

    Stand-level optimization produced a dataset that was used to develop the following models:

    ·The probability that cutting the stand now is the optimal decision

    ·In the case of cutting,the probability that partial cutting(thinning) is the optimal decision

    ·In the case of partial cutting,the optimal thinning intensities of different diameter classes

    These models were fitted in regression analysis.Because the discount rate,timber price,and lowest allowed post-cutting basal area varied,it was possible to model the effect of these variables on the optimal management.

    The same models were then fitted simultaneously using an approach where the parameters of the rules (the models listed above) are the optimized decision variables (Jin et al.2019).In this approach,the management of each stand of the dataset was simulated with all parameter combinations that were tested during the optimization run.Those parameters that gave the highest NPV,when calculated over all stands of the dataset,were the optimal ones.

    Models used simulation

    The stand dynamics (diameter increment,survival,and ingrowth) were simulated using the models of Pukkala et al.(2021) and tree heights with the model of Pukkala et al.(2009).The assortment volumes of harvested trees were calculated with the taper models of Laasasenaho (1982).The net income of cutting was calculated by subtracting the harvesting and forwarding costs from the roadside value of harvested timber (sawlogs and pulpwood).The costs were based on the time consumption functions of Rummukainen et al.(1995),and the hourly costs of 95 € for the harvester and 65 € for the forwarder.The time consumption functions considered the fact that the cost per harvested cubic meter depends on the size of harvested trees,volume harvested per hectare,and type of the cutting,thinning being more expensive than clear-felling.

    Modeling the value of bare and forested land

    To produce data for modeling bare land value,even-aged management schedules were optimized for several forest types,discount rates,temperature sum regions,and timber prices,starting with bare land.The first treatment was always site preparation and the next was planting spruce on mesic and better sites,or sowing pine on other sites.The total cost of site preparation and planting was 1100 € ha-1,and the total cost of site preparation and sowing was 700 € ha-1.It was assumed that the management schedule included two tending treatments (years 3 and 10,costs of 350 € ha-1and 450 € ha-1) on mesic and better sites,and one tending treatment (year 6,450 € ha-1) on sub-xeric and poorer sites.The used discount rates were 1,2,3,and 4% and the site types were herb-rich (representing herb-rich and better sites),mesic,sub-xeric,xeric,and heath.All optimizations were repeated for four temperature sum regions:1400,1200,1000,and 800 degree days (d.d).In addition,the optimizations used five timber price levels:normal level,and normal level±10 and±20%.The “normal” roadside price was 60 € m-3for conifer sawlogs and 30 € m-3for pulpwood.These combinations resulted in 2000 optimizations and were used to model bare land value (net present value) as a function of temperature sum,site fertility,timber price,and discount rate.The models for bare land value are reported in Appendix 1 (Table S1).

    Modeling the value of forested land

    For developing models for forested land,the next three cuttings were optimized for a large number of stands.When the cutting schedule did not include clear-felling,the NPV after the third optimized cutting was predicted with an existing model (Ruotsalainen et al.2021).All costs and incomes,as well as the value of the residual forest,were discounted to the starting year of the simulation.These optimizations produced data for fitting updated models for the value of forested land.The optimizations were repeated using the updated models for the value of the residual forest,and the models were fitted again using the new optimization results.This was repeated twice more and was found to be sufficient for stabilized results.The models for the value of forested land are reported in Appendix 2 (Table S2).

    The stands used in the optimizations were drawn from the Metsaan.fi database using stratified random sampling.The samples were drawn separately for three latitudinal ranges(60-62.99,63-65.99,> 66 degrees) and in each range,the sample was drawn separately for four site fertility categories:(1) herb-rich and better,(2) mesic,(3) sub-xeric,and(4) xeric and poorer.The sampling ratio was adjusted in such a way that each sub-sample included approximately 150 stands.The total number of stands in the 12 strata (three latitude ranges,four site classes) was 1651,slightly less than the target (3×4×150=1800) since the sub-sample was not always exactly 150 and stands without any trees were not used.

    Producing data for management instructions

    Once the models for bare land and forested land were completed,optimizations for the 1651 stands were repeated using random timber prices,discount rate,and minimum post-cutting basal area.The variables optimized for each cutting were:

    ·Number of years since the beginning of the simulation(1st cut) or previous cut (2nd and 3rd cutting)

    ·Two parameters of the thinning intensity curve (Eq.1)

    Therefore,the total number of optimized variables was nine.If a partial cut led to a post-thinning basal area lower than the minimum allowed,the schedule was penalized with the consequence that such a schedule was never selected as the optimum.However,if the cutting was clear-felling,there was no penalty.Final felling interrupted the simulation since the NPV of subsequent cuttings was based on the predicted bare land value.A cutting was interpreted to be a clear-felling if the post-cutting basal area was less than 0.25 times the minimum allowed post-thinning basal area.

    The thinning intensity in different diameter classes was described with the following:

    wherepremove(d) is the proportion of trees removed when the diameter isdcm anda1anda2are parameters optimized for each cutting.Parametera2shows the dbh at which the thinning intensity is 50%.Parametera1shows the type thinning.Ifa1> 0,the thinning is from above,i.e.,the thinning intensity increases towards larger trees.Ifa1=0,the thinning intensity is the same for all diameter classes,anda1<0 indicates thinning from below.In this study,parametera2is referred to as the thinning intensity parameter anda1as the thinning type of parameter.

    The results of the optimal management schedules were used to fit the following set of models which serve as management guidelines for any-aged forest management:

    wherepcutis the probability of cutting (probability that cutting the stand now is the optimal decision),pthinis the probability that the optimal type of cutting is thinning,anda1anda1are the parameters of the thinning intensity curve (Eq.1).Gis the stand basal area,Gminis the minimum allowed postthinning basal area,Gpulpis the basal area of pulpwoodsized stems (dbh 8-18 cm),Dis the basal-area-weighted mean diameter,Ris the discount rate,TSis the temperature sum,Siteis the site fertility class,Pslis the roadside price of sawlogs,andPpwis the roadside price of pulpwood.The predictors and model forms were adopted from a previous study (Pukkala 2018) but the model forms were not forced to be the same.Gmin(the lowest allowed post-thinning basal area) was a new variable not tested by Pukkala (2018).The analyses indicated that timber price was not a significant predictor of models 2-5 and it was therefore not used in the final model versions.

    The model for the probability that cutting is the optimal decision (Eq.2) was based on all stands of the optimal management schedules.The simulation software saved the stand states at five-year intervals.However,cases where it was optimal to cut the stand immediately were not used in modeling.There may sometimes be situations where the optimal time of cutting has already passed,i.e.,the cutting is late in economic terms.The use of these cases would have resulted in biased models for the optimal timing of cutting.

    All stands in which there was a cutting prescription (also cases where the cutting was prescribed immediately) were then used to fit a model for the probability that the optimal cutting type was thinning.Finally,all stands in which a thinning treatment was prescribed were used of fit models for the parameters of the thinning intensity curve (Eq.1).

    Optimization-based one-step procedure for developing management guidelines

    The parameters of management rules (Eqs.2,3,4 and 5)were also found using an alternative,optimization-based method suggested by Jin et al.(2019).In this optimization,the management schedules of the stands were not optimized separately.Instead,the parameters of Eqs.2,3,4 and 5 were optimized.The development and management of each stand (of the set of 1651 stands) were simulated with each combination of the parameters tested during the optimization run.The parameter combination that gave the highest NPV was assumed to be optimal.

    Timber price,discount rate,and the lowest allowed post-thinning basal area were also randomized in this optimization.However,drawing new random values for the stands at the beginning of each new simulation would lead to a situation where repeated runs with the same values might result in different net present values,which makes it difficult for the optimization algorithm to find the optimal parameter values.Therefore,the random discount rate,timber prices,and minimum post-cutting basal area were assigned to the stands at the beginning of the optimization,and the same values were used in all simulations during the optimization run.

    Optimization aimed at maximizing the NPV of all 1651 stands.However,as the discount rate was not the same for all stands,calculating the average or total NPV of the stands would be equal to giving more weight to low discount rates because the NPV increases with decreasing discount rates.Therefore,the NPVs based on different discount rates were weighted as follows.First,a model was fitted between discount (R,%) rate and NPV (€ ha-1),based on the separate optimizations of the management schedules of the stands:

    The weight of the NPV of standj(w j)was then calculated as follows:

    whereR jis the discount rate used for standj.The formula scales the weights so that their mean is equal to one when the discount rate is uniformly distributed between 1 and 5%.

    The parameter optimization maximized the following function:

    wherew jis the weight andNPV jthe NPV of standjandθthe set of parameters of the cutting rules (Eqs.2,3,4 and 5).Weightw jwas a function of the discount rate (Eq.7),which was different for different stands.

    Optimization methods

    In the regression-based approach,stand-level optimization problems were solved with the direct search method of Hooke and Jeeves (1961).The number of optimized variables was nine (three cutting intervals plus two additional parameters per cutting) or less than nine if one of the cuttings was clear-felling.Hooke and Jeeves (1961) employed two search modes,exploratory and pattern search.In exploratory search,increased and decreased values of the decision variables are tested one at a time.All changes that improve the objective function (OF) value (NPV in this study) are accepted,and all non-improving changes are rejected.If an increased value does not improve the OF value,a decreased value is tested.

    After inspecting all decision variables,the algorithm switches to the pattern search,where the values of several decision variables are modified simultaneously.The magnitudes of the changes (search direction) depend on the changes made in the preceding exploratory search.The algorithm then starts a new exploratory search using 50% smaller change steps than in the previous exploratory search.Repeating the search modes,with a gradual reduction in the magnitude of the changes,the algorithm gradually finds the optimal or near-optimal values of decision variables.

    The performance of the method of Hooke and Jeeves (1961)may decrease if the number of optimized variables is high (Jin et al.2018).In the optimization-based approach for deriving the management guidelines for AAF,the number of simultaneously optimized variables was 32 (parameters of Eqs.2,3,4 and 5).Therefore,another method,differential evolution (Storn and Price 1997) was used.Differential evolution operates with several solution vectors or several sets of optimized variables.A recommended number of solution vectors is about 10 times the number of optimized variables.In this study,differential evolution was implemented with 300 solution vectors.Each solution vector was initialized with uniform random numbers.The ranges of the random numbers were based on the regression-based parameter values of the AAF instructions.The minimum value of the range was equal to 0.5 times the value of the parameter in the regression model,and the maximum value was obtained by doubling the regression coefficient.

    After initialization,all solution vectors were used to simulate the development of each of the 1651 stands.The simulations yielded the OF value (Eq.8) for each vector.The population of solution vectors was then modified for several iterations aimed at improving the quality of the solutions.A so-called noise vector was generated for each solution vector as follows:

    wherey iis the value of parameteriin the noise vector,a i,b i,andc ivalues of the same parameter in three other,randomly selected solution vectors,and λ is a parameter (0.5 used in this study).Each element of the solution vector was then replaced by the noise vector value with a certain probability (0.5 used in this study).However,in one,randomly selected solution vector,all elements were replaced by the noise vector value.If the modified solution vector was better than the non-modified one,the modified vector replaced the non-modified one.

    The above process was repeated for all solution vectors for several iterations.The solution of the differential evolution algorithm was the best solution vector at the end of the last iteration.

    Results

    Probability of cutting

    The model for the probability that cutting the stand was the optimal decision is:

    where

    in the regression-based approach and

    in the optimization-based approach.The explanatory variables were minimum allowed post-thinning basal area (Gmin,m 2 ha-1),basal-area-weighted mean diameter (D,cm),stand basal area (G,m 2 ha-1),temperature sum (TS,d.d.),discount rate (R,%) and three indicator variables for site fertility categories:H=herb-rich or better,M=mesic,S=sub-xeric.All indicator variables are zero if the site fertility class is xeric or poorer.

    The models show that the probability of cutting increases with increasing basal area and mean diameter (Fig.2).The probability that cutting is the optimal decision also increases with an increasing discount rate.Increasing temperature sums and improving site fertility decrease the probabilitythat cutting is the optimal decision,which means that the maturity for cutting is reached with a larger mean diameter and stand basal area on fertile sites and in southern latitudes.

    Fig.2 The probability that harvesting is the optimal decision according to the models developed in this study and according to a previous model (Pukkala 2018).TS is temperature sum,D is mean diameter,G is basal area R is discount rate and min BA is the lowest allowed post-thinning basal area (m2 ha-1)

    The minimum allowable post-thinning basal area also affected the optimal timing of harvesting.Decreasing the minimum basal area increased the probability that cutting the stand was the optimal decision.This means that cuttings are to be conducted earlier if the lowest allowable post-thinning basal area is low.

    Of the two methods of fitting the model,the probability of cutting increases faster with increasing basal area and mean diameter in the optimization-based model.The predictions of the regression-based model resemble those of the earlier model (Pukkala 2018),whereas the optimization model predicts higher cutting probabilities.This means that the optimization-based model prescribes a cutting treatment earlier than the regression-based model or the earlier model.

    Probability of thinning

    The model for the probability that thinning is the optimal type of cutting (in the case where cutting is the optimal decision) was:

    where

    in the regression-based approach and

    in the optimization-based approach.An additional predictor,compared to the model for the probability of cutting,is the basal area of pulpwood-sized trees (Gpulp,m2ha-1).It is the basal area of trees whose dbh is 8-18 cm.A high basal area of pulpwood-sized trees greatly increases the probability that thinning is the optimal type of cutting instead of clear-felling(Fig.3).

    Fig.3 Probability that thinning is the optimal type of harvesting(when harvesting is the optimal decision) according to the models in this study and according to a previous model (Pukkala 2018).TS is temperature sum,D is mean diameter,G is basal area R is discount rate and min BA is the lowest allowed post-thinning basal area(m2 ha-1)

    The probability that thinning is the optimal decision begins to decrease rapidly when the mean diameter of trees is > 25-28 cm.With smaller mean diameters,thinning is the optimal type of cutting with a very high probability.The probability of thinning increases with increasing temperature sums and site productivity,which means that thinning treatments should be extended to larger mean diameters at moresouthern latitudes and on better-growing sites.Increasing the discount rate decreased the probability that thinning is the optimal type of cutting;if the opportunity cost of letting mature trees continue growing is high,it is optimal to cut all trees,even though the bare land value might be negative at a high discount rate.

    A low minimum post-cutting basal area increased the probability that the optimal cutting type is thinning.This is logical,since the possibility to leave a sparse,post-thinned stand decreases the opportunity cost of the growing stock.Of the two versions of the model,the optimization-based variant prescribed thinning for a larger mean tree diameter.Also,the overall probability of thinning was higher with the optimization-based model.Compared to the earlier model (Pukkala 2018),the effects of mean tree diameter,discount rate,and temperature sums were stronger with the new models.

    Models for the type of thinning

    The models for the thinning type parameter of Eq.1 were:

    Regression-based model

    Optimization-based model

    According to these models,the value of parametera1of the thinning intensity curve (Eq.1) is always clearly positive with those mean diameters at which forests are thinned.This means that the models always prescribe thinning from above.

    The models for parametera2of the thinning intensity curve were:

    Regression-based model

    Optimization-based model

    Parametera2is the diameter at which the thinning intensity is 50%.As thinning is from above,thinning intensity is higher than 50% for dbh larger thana2and less than 50%for trees smaller thana2.Models 16 and 17 result in rather high values for parametera1,which means that the thinning intensity increases sharply beyonda2and decreases sharply belowa2.Therefore,the optimal cutting often resembles diameter-limit cutting.

    Of the two versions of the model fora2,the regressionbased model gives lower values compared to the optimization-based model,i.e.,the regression-based model prescribes slightly heavier thinning (Fig.4).Increasing discount rates lead to smallera2,which means that thinning is heavier when the discount rate is high.Also increasing pre-thinning basal area increases the intensity of thinning.Both models suggest higher values for diameters at which thinning intensity is 50%,compared to the earlier models (Pukkala 2018).The effects of the models fora1anda2are visualized in Fig.5 for two spruce stands growing on a mesic site in central Finland.

    Fig.4 Diameter at which thinning intensity is 50% according to the models in this study and a previous model (Pukkala 2018).TS is temperature sum,D is mean diameter,G is basal area R is discount rate and min BA is the lowest allowed post-thinning basal area (m2 ha-1)

    Fig.5 Pre-and post-thinning number of trees in 2-cm diameter classes when thinning is simulated according to the models in this study and according to a previous model (Pukkala 2018).The temperature sum is TS 1200 d.d.,the discount rate 3%,the lowest allowable post-thinning basal area 9 m2 ha-1 and the site is mesic.In the first stand (top),the pre-thinning basal area is 28.1 m2 ha-1 and its mean diameter 18.5 cm.The post-thinning basal areas are:regression-based model 18.5 m2 ha-1,optimization-based models 22.5 m2 ha-1,and previous model 12.0 m2 ha-1.In the second stand (bottom),the pre-thinning basal area is 29.8 m2 ha-1 and the mean diameter 22.1 cm.The post-thinning basal areas are:regression-based model 15.7 m2 ha-1,optimization-based models 17.5 m2 ha-1,and previous model 8.5 m2 ha-1

    Test results for the models

    The management of the 1651 stands was simulated using the regression-and optimization-based models to guide the simulation of harvesting.The same randomized discount rate,timber price,and minimum allowable post-thinning basal area were used in both simulations for a specific stand.The weighted sum of the net present values,calculated with Eq.8,was 106 011 096 € when the regression-based models were used,and 128 797 744 € (21% higher) when the optimization-based models were used.This comparison suggests that the optimization-based guidelines would lead to better profitability.

    Forest management plans are often developed so that treatments are simulated in the middle of a particular period,(for instance,a 10-year period),and not exactly in the year when the probability of harvesting exceeds 0.5.In addition,there might be a limitation that the cutting interval in the same stand should not be too short,meaning that the simulated management schedules may not follow the cutting instructions exactly.The usual procedure in forest planning is to simulate several alternative near-optimal management schedules and subsequently use combinatorial optimization to find the optimal combination of the schedules (e.g.,Díaz-Yá?ez et al.2020).Combinatorial optimization makes it possible to consider constraints such as the requirement for even-flow of harvests as well as objective variables other than NPV.

    The two sets of management instructions developed in this study were also compared in a forest-planning setting.This was carried out for two forest holdings,one representing the northern boreal forest and the other the southern boreal zone.The area of both holdings was approximately 420 ha,and both forests consisted of about 400 stands.The northern forests especially had a high percentage of stands older than 100 years (Fig.6).Pine was the dominant species whereas pine,spruce,and broadleaf species were of similar magnitude in the southern forest.

    Fig.6 Areas of age classes of stands in the northern and southern case study forests

    Alternative management schedules were simulated for the stands of these forests by varying the discount rate at which the instruction was used.These simulations used the same models for the stand dynamics,stem taper,harvesting costs,bare land value,and value of the residual forest used in the development of the management guidelines.The simulation was done using the instruction at 1%,2%,and 3% discount rates.In addition,the limiting probability for thinning was varied in such a way that a harvest was simulated as a thinning when the calculated probability of thinning was higher than 0.4,higher than 0.5,or higher than 0.6.Harvesting was simulated when the probability of cutting being the optimal decision was 0.5 or higher.The simulation covered five 10-year periods.All harvests of a 10-year period were simulated at five years.The optimal combination of the simulated management schedules was then selected by maximizing the total NPV calculated over the entire forest using a 2% discount rate.

    To test the hypothesis that decreasing minimum postcutting basal area improves profitability and decreases the use of clearcutting (Pukkala et al.2014),the planning calculations were repeated with four levels of the lowest allowed post-thinning basal area,referred to as high,medium,normal,and low.A high level was 16 m 2 ha-1 on herb-rich sites,14 m 2 ha-1 on mesic sites,12 m 2 ha-1 on sub-xeric sites,11 m 2 ha-1 on xeric sites,and 10 m 2 ha-1 on the heath.The low levels were 10,8,6,5,and 4 m 2 ha-1 for herb-rich or better,mesic,sub-xeric,xeric,and heath sites,respectively.The other levels were in-between.

    The guidelines of this study led to better NPV than the current management guidelines for even-aged forestry(?ij?l? et al.2014).However,the margin was small in the northern forests where the portion of financially mature stands was high,especially when the lowest allowable post-thinning basal area was high.The analysis confirms the hypothesis that decreasing the minimum post-thinning basal area improves the profitability of forest management(Fig.7).The other hypothesis that decreasing minimum post-thinning basal area leads to decreased use of clearfelling,was also strongly supported (Fig.8).

    Fig.7 Net present value calculated with a 2% discount rate in southern and northern boreal forests in even-aged and any-aged forestry(AAF) management when the lowest allowable post-thinning basal area is high,medium,normal,or low.The treatments of the AAF system were prescribed using the regression-based or optimization-based guidelines developed in this study

    Fig.8 Total clearcut area of the 50-year planning period in the southern and northern boreal forest in even-aged and any-aged forestry (AAF) when the lowest allowable post-thinning basal area is high,medium,normal,or low;treatments of the AAF system were prescribed using the regression-based or optimization-based instructions developed in this study

    Of the two sets of management guidelines developed in this study for AAF,the optimization-based ones led to higher NPV.The exception was the northern forest with a high minimum post-thinning basal area.The optimizationbased instructions prescribed less clear-felling than the regression-based ones.

    Discussion

    The management guidelines developed in this study are based on the concept that decisions on forest management are taken one at a time.They are based on long-term optimizations of several future harvests,which means that the prescription is based on both immediate and long-term consequences of the decision.However,the models advise only what the optimal decision would be now.Pukkala (2018)showed that following these management instructions lead to equally high NPV as optimizing a sequence of future cuttings.However,using the guidelines is easier than the use of sophisticated optimization methods.

    The guidelines developed in this study have one advantage over long-term optimizations.The optimal time and type of a future harvest depend on how the forest develops,and the actual development may differ from what the models predicted.For example,it is not possible to accurately predict the future ingrowth or natural regeneration since they depend on variables that cannot be reliably predicted.For example,the size of seed crops,germination of seeds and survival seedlings depend on weather and other factors in complicated ways (Pukkala et al.2010;Manso et al.2013).Therefore,it might be unwise to decide or fix the management schedule of a forest stand for the distant future.

    Another starting point for the guidelines developed in this study was that no choice is required between CCF and RFM.Because all cutting types used in CCF and RFM are acceptable,optimized AAF results in equal or better profitability than restricting management to follow either RFM or CCF or assigning stands permanently to one of these silvicultural systems (Díaz-Yá?ez et al.2020).The reason for the superiority of AFF is that it is more flexible and less constrained than RFM or CCF.The names given to this type of management,namely any-aged management (Haight and Monserud 1990a) or freestyle management (Boncina 2011),refer to this flexibility.

    In addition to providing updated guidelines for any-aged forest management,this study also developed new models for bare land valuation (Appendix 1) and the valuation of forested land (Appendix 2).These models can be used in forest planning calculations,optimization studies,and in the evaluation of the economic value of a forest estate.These models consider both the discount rate and timber price,both of which may vary temporarily and geographically.

    The optimization-based variant of the new AAF guidelines propose lighter thinning and less frequent use of clearcutting,compared to the regression-based variant.The reasons for the difference are related to the fitting method and objective function.The regression method first optimizes the management of a set of stands separately and then fits each sub-model of the instruction separately by maximizing the fit of the model.The optimization-based system,on the other hand,fits all models simultaneously in a single step,maximizing the net present value calculated over all the stands of the dataset.

    The test results suggest that the optimization-based approach leads to more profitable forest management.The optimization based AAF guidelines indicate that forests should be managed mainly with thinning from above,and harvest intensities are moderate.Therefore,the same stand should be thinned frequently.It may be concluded that if harvesting costs are ignored or timber is sold at a fixed stumpage price,optimal management would involve many light thinnings,each removing trees that have reached or are approaching financial maturity (their relative value increment is lower than the required rate of interest).The true optimum depends on how the harvesting costs per cubic meter is related to harvested volume per hectare.

    Compared to the earlier AAF guidelines for Finnish forests (Pukkala 2018),the lowest allowable post-thinning basal area was used as an additional predictor in the decision rules.This value is dictated by forestry legislation,but it can be set higher than the legal limit to decrease the risk of wind damage or increase the growing stock volume for other reasons.Of the two versions of the new AAF guidelines,the optimization-based version is better in windy regions as these instructions advise to gradually decrease stand density in repeated thinnings.These thinning treatments allow the trees to gradually expand their root systems and strengthen their stems without making the stand too vulnerable to wind damage.

    The effect of the minimum post-thinning basal area was as expected,based on earlier research (Pukkala et al.2014).Decreasing the lowest allowable post-thinning basal area improved profitability and decreased the use of clearcutting.

    From a landscape-ecological point of view,the use of the models of this study results in forest management where there are both severe (clearcutting) and mild (thinning)disturbances.Contrary to using only CCF in all stands,AAF generates open areas and initiates even-aged cohort dynamics which can be found also in unmanaged Fennoscandian forests (Berglund and Kuuluvainen 2020).On the other hand,the AAF guidelines result in less clearcutting compared to the current even-aged management (Fig.8).Even-aged management produces fewer uneven-sized stand structures compared to natural disturbance dynamics (Kuuluvainen 2009).Therefore,forests managed according to AFF guidelines produce forest landscapes that are closer to natural landscapes compared to using CCF or RFM alone(Berglund and Kuuluvainen 2020).

    A mixture of different forest structures and silvicultural systems may be the best way to guarantee a sustainable supply of most ecosystem services (Trivi?o et al.2016;Peura et al.2018;Díaz-Yá?ez et al.2020;Eyvindson et al.2020).On the other hand,the use of AAF does not guarantee the viability of the populations of all forest-dwelling species(M?nkk?nen et al.2011).Any type of management that aims at good economic profitability tends to increase conifer volumes and decrease the volume of deadwood and large trees.Protected areas,green-tree retention,and other measures are therefore necessary to maintain the biodiversity of boreal forests (M?nkk?nen et al.2011).

    FundingOpen access funding provided by University of Eastern Finland (UEF) including Kuopio University Hospital.No external funding was used in this research.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creativecommons.org/licenses/by/4.0/.

    欧美日韩综合久久久久久| 最黄视频免费看| 熟女电影av网| 精品亚洲成a人片在线观看 | 18禁裸乳无遮挡免费网站照片| 九九久久精品国产亚洲av麻豆| 欧美激情极品国产一区二区三区 | 国产日韩欧美在线精品| 热re99久久精品国产66热6| 最黄视频免费看| 你懂的网址亚洲精品在线观看| 久久久久人妻精品一区果冻| 欧美精品一区二区免费开放| 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 欧美高清成人免费视频www| 国产乱来视频区| 香蕉精品网在线| 久久韩国三级中文字幕| 成人影院久久| 亚洲精品色激情综合| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区黑人 | 丰满乱子伦码专区| 最近最新中文字幕免费大全7| 日产精品乱码卡一卡2卡三| 小蜜桃在线观看免费完整版高清| videos熟女内射| 亚洲不卡免费看| 亚洲欧美中文字幕日韩二区| av卡一久久| 男女国产视频网站| 看非洲黑人一级黄片| 精品国产露脸久久av麻豆| 人妻一区二区av| 新久久久久国产一级毛片| 国产精品爽爽va在线观看网站| 一级毛片 在线播放| 菩萨蛮人人尽说江南好唐韦庄| 日韩av在线免费看完整版不卡| 亚洲第一区二区三区不卡| 国产精品一区二区在线观看99| 一个人看视频在线观看www免费| 小蜜桃在线观看免费完整版高清| 亚洲国产精品国产精品| 久久精品久久久久久久性| 国产精品爽爽va在线观看网站| 国产精品无大码| 精品国产露脸久久av麻豆| 三级经典国产精品| 亚洲久久久国产精品| 亚洲精华国产精华液的使用体验| 亚洲丝袜综合中文字幕| 亚洲三级黄色毛片| 久久这里有精品视频免费| 99热这里只有是精品50| 99热这里只有是精品50| 亚洲人成网站在线播| 嘟嘟电影网在线观看| 日韩一区二区三区影片| 亚洲精品第二区| 97超碰精品成人国产| 午夜福利影视在线免费观看| 国产精品久久久久久av不卡| 99九九线精品视频在线观看视频| 91aial.com中文字幕在线观看| 哪个播放器可以免费观看大片| 深夜a级毛片| 成人毛片a级毛片在线播放| 亚洲久久久国产精品| 国产探花极品一区二区| 久久亚洲国产成人精品v| 欧美激情国产日韩精品一区| 黄色一级大片看看| 国产成人精品福利久久| a级一级毛片免费在线观看| 一级毛片aaaaaa免费看小| 欧美变态另类bdsm刘玥| 老女人水多毛片| 欧美高清性xxxxhd video| 亚洲av不卡在线观看| 亚洲丝袜综合中文字幕| 成年av动漫网址| 老熟女久久久| 久久久a久久爽久久v久久| 国产色爽女视频免费观看| h视频一区二区三区| 高清视频免费观看一区二区| 少妇高潮的动态图| 亚洲精品视频女| 精华霜和精华液先用哪个| 国产伦精品一区二区三区视频9| 久久人人爽人人爽人人片va| 九色成人免费人妻av| 成人国产麻豆网| 国产精品av视频在线免费观看| 99热网站在线观看| 亚洲精品乱久久久久久| av免费在线看不卡| 国产成人精品婷婷| 色哟哟·www| 97在线视频观看| 久久久久久久精品精品| 毛片一级片免费看久久久久| 国产成人a∨麻豆精品| av一本久久久久| 永久免费av网站大全| 国产精品99久久久久久久久| 成年av动漫网址| 一区二区三区免费毛片| 国产亚洲91精品色在线| 中文天堂在线官网| 在线观看免费视频网站a站| 亚洲精品成人av观看孕妇| 国产成人freesex在线| 亚洲av免费高清在线观看| 国产精品欧美亚洲77777| 日产精品乱码卡一卡2卡三| 国产在线免费精品| 日本欧美视频一区| 国产在视频线精品| 国产精品免费大片| 亚洲熟女精品中文字幕| 国产男女超爽视频在线观看| 日韩视频在线欧美| 久久久欧美国产精品| 欧美激情国产日韩精品一区| 人妻制服诱惑在线中文字幕| 亚洲成人av在线免费| 国产精品偷伦视频观看了| 日韩大片免费观看网站| 777米奇影视久久| 欧美另类一区| 91精品国产国语对白视频| 日韩亚洲欧美综合| 少妇熟女欧美另类| 观看美女的网站| 女人十人毛片免费观看3o分钟| 中文字幕精品免费在线观看视频 | 一区二区av电影网| 在线观看一区二区三区| 精品一区二区三卡| 中文字幕av成人在线电影| 纵有疾风起免费观看全集完整版| 男女啪啪激烈高潮av片| 午夜福利网站1000一区二区三区| 久久热精品热| 亚洲精品日韩在线中文字幕| 日韩伦理黄色片| 久久久成人免费电影| 欧美精品国产亚洲| 18禁在线播放成人免费| 亚洲,一卡二卡三卡| 五月天丁香电影| 少妇熟女欧美另类| 99久久人妻综合| 国产一区有黄有色的免费视频| 国产午夜精品一二区理论片| 九草在线视频观看| h日本视频在线播放| 在线看a的网站| 中文欧美无线码| 日韩三级伦理在线观看| 久久久久久久精品精品| 噜噜噜噜噜久久久久久91| 久久6这里有精品| 美女福利国产在线 | 国产精品久久久久久久久免| av在线app专区| 久久久欧美国产精品| .国产精品久久| 日韩av在线免费看完整版不卡| 国产一区二区三区av在线| 菩萨蛮人人尽说江南好唐韦庄| 有码 亚洲区| 91久久精品国产一区二区成人| 99久久精品国产国产毛片| 国产亚洲一区二区精品| 精品亚洲成国产av| 免费看不卡的av| 黄色一级大片看看| 永久网站在线| 成人黄色视频免费在线看| 看非洲黑人一级黄片| 久久精品人妻少妇| 观看av在线不卡| 亚洲一级一片aⅴ在线观看| 人人妻人人添人人爽欧美一区卜 | 国产亚洲一区二区精品| tube8黄色片| 人妻一区二区av| 国产av码专区亚洲av| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 国产男人的电影天堂91| 欧美国产精品一级二级三级 | 免费大片18禁| 久久久久性生活片| 97超碰精品成人国产| 五月伊人婷婷丁香| 97热精品久久久久久| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 日韩不卡一区二区三区视频在线| 狂野欧美激情性xxxx在线观看| 久久综合国产亚洲精品| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 中文在线观看免费www的网站| 国产伦理片在线播放av一区| 久久女婷五月综合色啪小说| 欧美亚洲 丝袜 人妻 在线| 国产亚洲91精品色在线| 六月丁香七月| 三级国产精品片| 国产 一区 欧美 日韩| 国产精品99久久久久久久久| 国产女主播在线喷水免费视频网站| 日韩精品有码人妻一区| 亚洲精品国产成人久久av| 女性被躁到高潮视频| 亚洲三级黄色毛片| 高清午夜精品一区二区三区| 少妇人妻一区二区三区视频| 黑人高潮一二区| 深爱激情五月婷婷| 久久久久国产精品人妻一区二区| 国产日韩欧美亚洲二区| 99国产精品免费福利视频| 永久免费av网站大全| 看非洲黑人一级黄片| 国产亚洲最大av| 日本午夜av视频| 欧美少妇被猛烈插入视频| 亚洲高清免费不卡视频| 亚洲国产色片| 亚洲精品456在线播放app| 秋霞伦理黄片| 国产女主播在线喷水免费视频网站| 最新中文字幕久久久久| 免费大片18禁| 黄色视频在线播放观看不卡| av线在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 人妻少妇偷人精品九色| 成人一区二区视频在线观看| 人人妻人人澡人人爽人人夜夜| 一区二区三区精品91| 女性生殖器流出的白浆| 亚洲国产高清在线一区二区三| 少妇被粗大猛烈的视频| 亚洲自偷自拍三级| 成人无遮挡网站| 免费看av在线观看网站| 国产淫语在线视频| 老司机影院毛片| 久久99热这里只有精品18| 美女福利国产在线 | 成年女人在线观看亚洲视频| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 成人漫画全彩无遮挡| 在线免费十八禁| 少妇精品久久久久久久| 老司机影院毛片| 亚洲欧美成人综合另类久久久| 嫩草影院新地址| 建设人人有责人人尽责人人享有的 | 久久99蜜桃精品久久| 国产视频首页在线观看| 热99国产精品久久久久久7| 免费看av在线观看网站| 亚洲无线观看免费| 男人舔奶头视频| 精品午夜福利在线看| 性色avwww在线观看| 乱码一卡2卡4卡精品| 网址你懂的国产日韩在线| 国产黄色免费在线视频| 97超视频在线观看视频| 午夜福利视频精品| 中文字幕亚洲精品专区| 伦精品一区二区三区| 国产爱豆传媒在线观看| 少妇人妻久久综合中文| 精品久久久久久久末码| 婷婷色av中文字幕| 亚洲av中文字字幕乱码综合| 1000部很黄的大片| 免费久久久久久久精品成人欧美视频 | 九草在线视频观看| 只有这里有精品99| 国产视频首页在线观看| 精品人妻熟女av久视频| 亚洲人成网站在线观看播放| 我的老师免费观看完整版| 国产亚洲91精品色在线| 日韩亚洲欧美综合| 一级毛片aaaaaa免费看小| 在线看a的网站| 在线观看三级黄色| 一区二区三区乱码不卡18| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 午夜福利高清视频| 又粗又硬又长又爽又黄的视频| 大香蕉97超碰在线| 在现免费观看毛片| 国产一区亚洲一区在线观看| 99久久综合免费| 一级av片app| 色5月婷婷丁香| 午夜日本视频在线| a级毛片免费高清观看在线播放| 人妻少妇偷人精品九色| 一级毛片aaaaaa免费看小| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 一边亲一边摸免费视频| 中文天堂在线官网| 亚州av有码| 亚洲欧美清纯卡通| 精品久久久噜噜| 两个人的视频大全免费| 大码成人一级视频| 男人爽女人下面视频在线观看| 国产高清三级在线| 夜夜看夜夜爽夜夜摸| 最近最新中文字幕免费大全7| 亚洲综合精品二区| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 在线观看美女被高潮喷水网站| 国产精品蜜桃在线观看| 看十八女毛片水多多多| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 在线观看人妻少妇| av网站免费在线观看视频| 超碰av人人做人人爽久久| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 国产精品国产三级国产av玫瑰| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品国产精品| 欧美日韩一区二区视频在线观看视频在线| xxx大片免费视频| 麻豆成人午夜福利视频| 蜜桃在线观看..| 亚洲天堂av无毛| 99久久精品国产国产毛片| 80岁老熟妇乱子伦牲交| 国产精品福利在线免费观看| 一二三四中文在线观看免费高清| 国产91av在线免费观看| 免费大片黄手机在线观看| 亚洲国产av新网站| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 又爽又黄a免费视频| kizo精华| 国产av码专区亚洲av| 日产精品乱码卡一卡2卡三| 久久久成人免费电影| 成人影院久久| 亚洲精品aⅴ在线观看| 日韩中字成人| 欧美精品国产亚洲| 色视频在线一区二区三区| 色婷婷久久久亚洲欧美| 成人二区视频| 观看免费一级毛片| 尾随美女入室| 色网站视频免费| 免费高清在线观看视频在线观看| 日本vs欧美在线观看视频 | 女性生殖器流出的白浆| 我的老师免费观看完整版| 国产 一区精品| 久久人人爽人人爽人人片va| 国产在视频线精品| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 久久 成人 亚洲| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 熟女电影av网| 免费久久久久久久精品成人欧美视频 | 久久女婷五月综合色啪小说| 国产男人的电影天堂91| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 久久久国产一区二区| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| xxx大片免费视频| 国产精品国产三级国产专区5o| 女性生殖器流出的白浆| 五月玫瑰六月丁香| 免费看日本二区| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 国产在线一区二区三区精| 久久久亚洲精品成人影院| 欧美性感艳星| 欧美高清性xxxxhd video| 欧美精品人与动牲交sv欧美| 美女xxoo啪啪120秒动态图| 国产免费视频播放在线视频| 18禁动态无遮挡网站| 久久人妻熟女aⅴ| 伦理电影免费视频| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 免费大片18禁| 99热这里只有是精品50| 街头女战士在线观看网站| 夜夜骑夜夜射夜夜干| 一个人看视频在线观看www免费| 久久久久久伊人网av| 少妇人妻精品综合一区二区| 免费av不卡在线播放| 伦理电影免费视频| av线在线观看网站| 国产亚洲5aaaaa淫片| av国产久精品久网站免费入址| 亚洲丝袜综合中文字幕| 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 99热这里只有精品一区| 高清黄色对白视频在线免费看 | 欧美另类一区| 乱码一卡2卡4卡精品| 汤姆久久久久久久影院中文字幕| 成人无遮挡网站| 97超碰精品成人国产| 日韩不卡一区二区三区视频在线| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 搡老乐熟女国产| 老师上课跳d突然被开到最大视频| 汤姆久久久久久久影院中文字幕| 18禁在线无遮挡免费观看视频| 99久久精品一区二区三区| 亚洲美女视频黄频| 国产精品一二三区在线看| 欧美日韩综合久久久久久| 女性生殖器流出的白浆| 男女啪啪激烈高潮av片| 亚洲国产欧美人成| av女优亚洲男人天堂| 精品久久久噜噜| 欧美日韩一区二区视频在线观看视频在线| 最黄视频免费看| 日本爱情动作片www.在线观看| 最近的中文字幕免费完整| 成人美女网站在线观看视频| 成人毛片a级毛片在线播放| 亚洲精品国产成人久久av| 久久久久国产精品人妻一区二区| 人妻 亚洲 视频| 自拍偷自拍亚洲精品老妇| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 久久精品国产自在天天线| 最近2019中文字幕mv第一页| 插逼视频在线观看| 欧美zozozo另类| 亚洲精品一二三| 各种免费的搞黄视频| 狠狠精品人妻久久久久久综合| 国产免费一级a男人的天堂| 啦啦啦视频在线资源免费观看| 午夜免费观看性视频| 日韩大片免费观看网站| 中文字幕制服av| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 国产成人freesex在线| 亚洲欧洲日产国产| 久久久a久久爽久久v久久| 在线观看一区二区三区| 国产黄色视频一区二区在线观看| 亚洲国产高清在线一区二区三| 免费观看无遮挡的男女| 熟女av电影| 麻豆国产97在线/欧美| 一个人免费看片子| 3wmmmm亚洲av在线观看| 亚洲欧美日韩另类电影网站 | 看非洲黑人一级黄片| 少妇 在线观看| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 91精品国产九色| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 1000部很黄的大片| 亚洲国产最新在线播放| 国产成人freesex在线| 一级二级三级毛片免费看| 亚洲av中文字字幕乱码综合| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 在线观看一区二区三区| 国产69精品久久久久777片| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 日本免费在线观看一区| 国产免费视频播放在线视频| 亚洲欧美日韩东京热| 青春草亚洲视频在线观看| 小蜜桃在线观看免费完整版高清| 夫妻午夜视频| 美女中出高潮动态图| 亚洲精品色激情综合| 纯流量卡能插随身wifi吗| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 老司机影院毛片| 能在线免费看毛片的网站| 一个人看的www免费观看视频| 亚洲高清免费不卡视频| 五月开心婷婷网| av在线播放精品| 午夜视频国产福利| 午夜激情久久久久久久| 欧美少妇被猛烈插入视频| 国产在线一区二区三区精| 日本wwww免费看| 午夜老司机福利剧场| av天堂中文字幕网| 久久午夜福利片| 夫妻性生交免费视频一级片| 天天躁日日操中文字幕| 岛国毛片在线播放| 国精品久久久久久国模美| 亚洲欧美日韩东京热| 免费观看性生交大片5| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 视频中文字幕在线观看| 亚洲在久久综合| 久久青草综合色| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 男男h啪啪无遮挡| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 五月天丁香电影| 国产高潮美女av| 国产人妻一区二区三区在| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 国产精品无大码| 久久久久久久大尺度免费视频| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 男女下面进入的视频免费午夜| 亚洲精品一区蜜桃| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 久久亚洲国产成人精品v| 国产免费福利视频在线观看| 男人和女人高潮做爰伦理| 国产女主播在线喷水免费视频网站| 熟女人妻精品中文字幕| 22中文网久久字幕| 麻豆乱淫一区二区| av免费观看日本| 直男gayav资源| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| www.av在线官网国产| 97热精品久久久久久| 欧美xxⅹ黑人| av女优亚洲男人天堂| 亚洲精品,欧美精品| 欧美日韩亚洲高清精品| 草草在线视频免费看|