• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New experimental measurement of natSe(n,γ)cross section between 1 eV to 1 keV at the CSNS Back-n facility

    2022-08-31 09:54:46XinRongHu胡新榮LongXiangLiu劉龍祥WeiJiang蔣偉JieRen任杰GongTaoFan范功濤HongWeiWang王宏偉XiGuangCao曹喜光LongLongSong宋龍龍YingDuLiu劉應(yīng)都YueZhang張?jiān)?/span>XinXiangLi李鑫祥ZiRuiHao郝子銳PanKuang匡攀XiaoHeWang王小鶴JiFengHu胡繼峰BingJiang姜炳DeXi
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王宏偉楊宇雅拉

    Xin-Rong Hu(胡新榮) Long-Xiang Liu(劉龍祥) Wei Jiang(蔣偉) Jie Ren(任杰)Gong-Tao Fan(范功濤) Hong-Wei Wang(王宏偉) Xi-Guang Cao(曹喜光)Long-Long Song(宋龍龍) Ying-Du Liu(劉應(yīng)都) Yue Zhang(張?jiān)? Xin-Xiang Li(李鑫祥)Zi-Rui Hao(郝子銳) Pan Kuang(匡攀) Xiao-He Wang(王小鶴) Ji-Feng Hu(胡繼峰)Bing Jiang(姜炳) De-Xin Wang(王德鑫) Suyalatu Zhang(張?zhí)K雅拉吐) Zhen-Dong An(安振東)Yu-Ting Wang(王玉廷)0 Chun-Wang Ma(馬春旺)0 Jian-Jun He(何建軍) Jun Su(蘇俊)Li-Yong Zhang(張立勇) Yu-Xuan Yang(楊宇萱) Sheng Jin(金晟) and Kai-Jie Chen(陳開杰)

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Spallation Neutron Source Science Center,Dongguan 523803,China

    6Key Laboratory of Nuclear Data,China Institute of Atomic Energy,Beijing 102413,China

    7Xiangtan University,Xiangtan 411105,China

    8Institute of Nuclear Physics,Inner Mongolia University for the Nationalities,Tongliao 028000,China

    9Sun Yat-sen University,Zhuhai 510275,China

    10Henan Normal University,Xinxiang 453007,China

    11Beijing Normal University,Beijing 100875,China

    12School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    13ShanghaiTech University,Shanghai 200120,China

    Keywords: natSe (n,γ) cross section, CSNS Back-n facility, C6D6 detectors, resolved resonance region, Rmatrix

    1. Introduction

    Most of the elements heavier than iron in the universe are mainly formed by the slow neutron capture process (s-process)[1,2]and the rapid neutron capture process (rprocess).[3]which account for about 50% of the whole stable elements respectively.[4]The rest of elements heavier than iron,about 1%,are produced by the capture of charged particles(p,γ)and the photonuclear reaction(γ,n),which is called p-process, and eventually produces the stable proton rich pnuclei.[5]The study of these nuclides and the accurate measurement of Maxwellian averaged cross section(MACS)of related nuclides for neutron capture reactions are of great significance in nuclear astrophysics.[6]The s-process mainly occurs in asymptotic giant branch(AGB)stars,in which the neutron density is low. The unstable sub-nuclei of the s-process form stable isobars throughβ-decay, and then continue to form new nuclide by means of additional neutron capture processes.Therefore,the slow neutron capture process takes place mainly along theβstable line. The r-process mainly occurs in supernova explosion or neutron star mergers. Due to the extreme neutron densities (~1020cm?3) and short time scales(~10 s),[7]very neutron rich nuclei are formed, which eventually decay through a series of beta decays.

    Se is one of the key elements in nuclear astrophysics research. Isotopes of Se are in the path of slow neutron capture process. The (n,γ) cross sections of Se isotopes, help to determine the abundance of the related elements in the universe.The slow neutron capture process in the Se-region is presented in Fig. 1. The accurate measurements of the neutron capture cross sections of Se isotopes play an essential role in the reaction network of the nuclear astrophysics. According to the different properties of Se isotopes, measurements of neutron capture cross section of Se isotopes follow different methods.79Se, with a half-life of 295 ky, is one of the long-lived fission products (LLFPs) for which neutron capture cross section is important from the viewpoint of nuclear power.[8]Besides,79Se is an important branching point in the s-process path. However,there are no direct measurement neutron capture cross section data because it is difficult to obtain samples of79Se. The79Se (n,γ) cross section was constrained by its reverse reaction of80Se(γ,n)by the laser Compton scattering gamma source(LCS-γ)in 2009.[9]The neutron capture cross section of the other six stable isotopes can be directly measured via(n,γ)reaction. The natural abundances of the stable Se isotopes are 0.89%, 9.37%, 7.63%, 23.77%, 49.61%, and 8.73%for74Se,76Se,77Se,78Se,80Se,and82Se,respectively.In which,74Se is a p-nucleus,synthesized by the p-process,and its abundance is only 0.86%;76,77,78,80Se isotopes are mainly produced by the s-process, while82Se is produced by the rprocess.

    Fig.1.Synthetic network diagram of nuclei near Se isotopes.The black boxes represent stable nuclei, the orange boxes represent unstable nuclei that can undergo β+decay,and the gray boxes represent β?decay nuclei; The red arrows represent β?decay, the blue arrows represent β+ decay, the dark yellow arrows represent s-process, the yellow arrows represent p-process,and the dark blue arrows represent r-process.

    Until now, there has not been enough experimental neutron capture cross sections for the selenium element in the 1 eV–1 keV resolved resonance region, except keV-region’s MACS for76Se[10]and78Se[11]isotopes. Recently,Babiano-Suarezet al.[12]measured the80Se (n,γ) cross section at n TOF in 2020,gave some resonance peak in the energy range from 0.1 keV to 100 keV but withoutR-matrix analysis. This work is the first experimental measurement of neutron capture cross section of natural selenium in the energy region between 1 eV and 1 keV at Back-n facility in CSNS. The experimental methods and data processing are analyzed in detail below.Finally,the neutron capture resonance parameters ofnatSe are also given.

    2. Experimental setup

    2.1. The Back-n facility

    The neutron time-of-flight facility Back-n is one of the neutron beam lines in China Spallation Neutron Source(CSNS), which can provide continuous neutron energy spectrum in the energy range from 0.1 eV to 200 MeV.CSNS is the first spallation neutron source in China.[13]Here,neutrons are produced by a pulse proton beam with an energy of 1.6 GeV and a repetition frequency of 25 Hz, bombarding a tungsten–tantalum (W–Ta) target. The proton pulse of CSNS can be divided into three operation modes: i)the narrow beam bunch with the proton bunch width of 3.7 ns; ii) the single bunch mode,the bunch time structure is parabolic shape with bunch width of 60 ns;iii)the double-bunch mode,which consists of two single-bunch protons with a spacing of 410 ns. The measurement of neutron capture cross section in the resonance energy region is carried out under the double-bunch mode. The Back-n white neutron source is built at the back-scattering direction of the proton beam, which mainly focuses on nuclear data measurements and detector calibration. This beamline has two experiment stations ES1 and ES2 with the distances of 55 m and 76 m from the spallation target to each station,respectively. ES1 mainly studies the (n, light charge particle(lcp)) reaction cross section, and ES2 is mainly for the measurement of(n,γ),(n,tot),and(n,f)reaction cross sections.Our measurement is carried out at ES2. More detailed information on the Back-n facility can be found in Refs.[14–19].

    2.2. The C6D6 detectors

    Four deuterated benzene(C6D6)liquid scintillator detectors were used for theγ-ray detection. The C6D6detectors were placed upstream of the neutron beam sample to reduce the scattering neutron background. The main advantages of these detectors are a fast time response, with pulse width of the order 10 ns, and a very low sensitivity to scattered neutrons,which are widely used for(n,γ)cross section measurements up to now. The shell of the scintillator is made of aluminum due to its low capture rate,with a diameter and length of 130 mm and 76.2 mm,respectively. The distance between the detector center to the sample centre is about 150 mm,and the distance from the neutron beam centre to the centre of the front face of the detector is about 80 mm.[20]Figure 2 shows the Geant4 geometry of the sample and detectors implemented for this experiment.

    Fig.2. A schematic view of the detectors and sample setup used for this experiment by Geant4 simulation.

    In the neutron capture cross section measurements, the amplitudes of the anode signals of the C6D6detectors range from 0.01 V to 3 V. Signals from the C6D6detectors are delivered to flash ADCs, which can digitize the signals into a full waveform with a 1 GS/s sampling rate and 12 bits resolution.[21]The incident neutron energy was determined by the time-of-flight(TOF)technique. The neutron energyEnis given by Eq. (1) and the corresponding neutron resolution is presented by Eq.(2),[24]

    where the neutron flight lengthL=L0+?L(En),L0is the geometric distance from the spallation target to the experimental sample, and ?L(En) is the equivalent change in moderation length associated with the incident neutron energy.Tfis the neutron time of flight, given byTf=tn?tγ+L/c, wheretnandtγare the start time of the neutron capture signal and the start time of the gamma flash recorded by the data acquisition(DAQ)system,respectively;cis the speed of light.

    Besides,the neutron flux was measured by using a silicon monitor;and the silicon monitor consists of a thin6LiF conversion layer and eight silicon detectors outside the neutron beam(Li–Si monitor)to count the number of neutrons by detecting alpha particles and3H through the reaction6Li (n,α)3H.[22]It is worth mentioning that with this detection system we have measured the neutron capture cross section of197Au[28]andnatEr[29]successfully,which validated the performance of the detection system and the processing methodology.

    2.3. Samples

    ThenatSe sample consisted of selenium monomers in powder form with a purity of 99.99%. In addition,the natural carbon sample and empty holder were used for the neutron scattering background and surroundingsγ-ray background subtraction, thenatPb sample for in-beamγ-ray background.Data were also recorded with a197Au sample for normalizing the cross section using 4.9 eV resonance for the saturated resonance method.[23]Table 1 shows the properties of the samples used in the experiment. ThenatSe sample was measured for 80 hours with a proton power between 22.8 kW and 23.4 kW.Then the gold sample and carbon sample were measured for 12 hours respectively, and finally the empty target was measured for 10 hours with a proton power 31.2–33.4 kW.

    Table 1. Properties of the samples used in the measurement.

    3. Data analysis

    3.1. Pluse height weighting technique

    The C6D6detection system is one of the total energy detection system that is widely used for neutron capture cross section measurements. In 1963,Moxon and Rae[25]first proposed the principle of the pulse height weighting technology(PHWT),then Macklin and Gibbons[26]for the first time used this method to measure the neutron capture cross section in 1967. PHWT has been developed for decades and has become a mature neutron capture cross section measurement method. According to this technique,two conditions must be met. First,the detection efficiency to gamma-rays has to be so low that at most only one gamma ray is detected in a capture event. Second,the detection efficiency is directly proportional to the energy of the gamma,εγ=k·Eγ. Owing toεγ ?1 andEc=En+Sn,the capture efficiencyεccan be written as[27]

    Fig.3. (a)The response function of the C6D6 detectors of natSe simulated by Geant4 with energy broadening. (b)The original efficiency of the C6D6 detectors in the top tile,the weighted efficiency of the detectors shown in the middle tile,and the ratio between weighted efficiency and the corresponding γ energy in the bottom tile, which is very close to one.

    3.2. Determination of the capture yield

    The experimental capture yieldYW[30,31]has been extracted dividing the weighted countsCW, after subtraction of the total backgroundBW,by the incident neutron fluenceφn:

    3.3. Background estimation

    A number of background contributions to the observed counts were identified and are shown in Fig.4 along with the measured spectrum of thenatSe sample. Their contributions were the ambient background subtracted by the empty holder,neutron scattering background from sample subtracted by the carbon sample,and in-beamγ-ray background deduced by the lead sample. The whole samples have been normalized by the Li–Si monitor shown in Fig.4. Because thenatPb sample has high gamma scattering cross section and low neutron scattering cross section,it was used for in-beam gamma calibration.It can be seen that the in-beam gamma mainly contributes to the energy region above 100 eV.The background contribution in the low energy band from thenatPb sample was less than the empty sample background contributions as shown in Fig. 4.The total backgroundB(En) was expressed as following formula:

    whereB0is the time-independent background that mainly comes from the natural environment,Bem(En) is the sampleindependent background originating from the neutron beam flux with anything other than thenatSe sample,Bns(En)is the background caused by the neutron scattered from the sample,Bγs(En)is the background attributed to in-beamγ-rays scattering from the thenatSe sample;andηis the ratio of the product of the neutron elastic scattering cross section and the number of nuclei per unit area of thenatSe sample to that of the carbon sample.

    3.4. Uncertainty analysis

    The experimental uncertainty of this work comes from the recent experiment conditions and data analysis. According to the Back-n collaboration’s work,[32]the uncertainty of the neutron energy spectrum varies between 2.3%and 4.5%above 0.15 MeV and less than 8%below 0.15 MeV.The uncertainty from the proton beam power was recorded during the measurement,contributing an error of 2.0%. Uncertainty in data analysis mainly concluded the PHWT method,normalization and background subtraction. The system uncertainty of PHWT was 2.0%–3.0% according to Tainet al.[33]The systematic uncertainties from different sources contributing to the resulting yield normalization are summarized in Table 2. Owing to the diameter of samples(50 mm)larger than the neutron flux diameter (30 mm), the uncertainty caused by the relative position Se/Au is negligible. The uncertainty of the normalized factor of the gold sample at the saturated resonance energy of 4.9 eV is about 1%. According to J.Renet al.,[34]there is an obvious in-beam gamma background at time-of-flight between 20μs and 400μs,namely,the keV energy region. The whole uncertainties are presented in Table 2.

    Table 2. The statistic uncertainty and systematic uncertainties of this experiment.

    Fig. 4. The measured natSe spectrum together with the various measured scaled background components has been normalized by a Li–Si monitor;and the count rates are expressed in a width-independent logarithmic equidistant binning.

    4. Result and discussion

    It is worth mentioning that the neutron capture cross sections of natural Se can be calculated by weighting the cross sections of Se isotopes according to their abundances.Figure 5 shows the neutron capture cross sections ofnatSe and the contributions of Se isotopes in the energy region of 1 eV–100 keV respectively. The Se isotopes capture cross sections are taken from the ENDF/B-VIII.0 evaluation database.[35]We also plot the existing experimental data ofnatSe neutron capture cross section in Fig.5. In Fig.5 one can see that the current experimental cross sections for neutron capture in Se isotopes are seriously deficient,and there are only few experimental results in the energy range below 100 keV.

    Fig.5. The neutron caption cross section of natSe is calculated by weighting the different isotopes cross sections with their abundances, where the red solid line represents the natSe(n,γ)cross section and the dashed lines are the contributions of each isotope capture cross section. The magenta and blue solid dots represent the existing experimental data.

    Fig.6. The neutron capture cross section of natSe in the energy region from 1 eV to 100 keV.

    Fig. 7. The neutron capture cross section of natSe in the unresolved resonance region from 10 keV to 100 keV.

    This work measured the neutron capture cross section ofnatSe in the 1 eV to 100 keV energy region, as shown in Fig. 6, where the red dots are the current experimental data and can roughly match the evaluated data ENDF/B-VIII.0[35](green solid line). Figure 7 shows the neutron capture cross section ofnatSe in the unresolved resonance region(URR)of 10–100 keV,where the evaluation data JEFF-3.3.[37]shows a large number of resonance peaks in this energy region,which differs significantly from our experimental data. Compared with the ENDF/B-VIII.0 data, our results are in better agreement with the evaluated data JENDL-4.0,[36]which also verify the reasonableness of the experimental data. And in this region,there are only three previous experimental data points from R. L. Mackinet al.[39]and T. S. Belanova.[40]Considering there being a large in-beam gamma background,[34]it is difficult to subtract completely the whole background limited to the current experiment conditions. On the other hand,the white neutron source(WNS)used the double-bunch mode of proton pulse, which limits the neutron energy resolution in the energy region of above 1 keV. For the above reasons,there are large errors in the experimental data in the resolved resonance region (RRR) above 1 keV, and unfortunately the resonance analysis cannot be performed in this region. This work focuses on the analysis of the resonance parameters ofnatSe in the 1 eV–1 keV energy region. Among them, the experimental results in the 100 eV to 1 keV energy region are compared with the ENDF/B-VIII.0 evaluation data as shown in Fig. 8, and overall, the experimental data can match the evaluation data well. The individual peak positions that are not matched, e.g.,at 130 eV,are brought about by the neutron energy spectrum[28]structure.

    Fig.8. The neutron capture cross section of natSe in resonance regions of 0.1–1 keV.

    Fig.9. The resolved resonance range of 1 eV to 1050 eV analyzed in this work. The pink points are the experimental data,and the black line is the R-matrix fit performed with SAMMY.

    Neutron resonances up to about 1.05 keV neutron energy were identified and analyzed using the multilevelR-matrix code SAMMY.[38]The fitting procedure applied in the Reich–Moore approximation to find the“best fit”values of resonance parameters and the associated parameter covariance matrix was based Bayes’s theorem. In the above 1050 eV, due to the limited energy resolution of the detection system, theRmatrix analysis was not performed. The fit included multiple scattering and self-shielding corrections, and Doppler broadening with an effective temperature of 300 K using the free gas model(FGM).Owing to many energy broadenings, the measured resonance widths were larger than the natural widths;and only the capture kernel could be determined. It is related to the resonance area via[41]

    whereλdenotes the de Broglie wavelength at the resonance energy, andΓn,Γγrepresent the neutron and gamma partial widths, respectively. The statistical spin factorgs=(2J+1)/(2S+1)(2I+1) is determined by the resonance spinJ, the neutron spinS=1/2, and the spinIof the target nucleus. And the resonance spinJ=I+S+lrelates to the neutron orbital angular momentuml,i.e.,l=0 corresponding to s-wave neutron,l=1 to p-wave neutron. The resonance fits up to 1050 eV are shown in Fig. 9, which match the experimental data well. At last,we extracted the corresponding resonance parameters,i.e.,the neutron width(Γn)and gamma partial width (Γγ) seen in Table 3. We get three resonances for74Se contribution at 27.1 eV, 270.8 eV, and 1018 eV; and most of the resonances are of77Se nuclei’s contribution.Since some of the nuclei77Se weighed resonance cross sections are relatively low, introducing increased background errors, the authors recommend measuring the neutron capture cross section of77Se isotope separately and extracting the corresponding resonance parameters.

    Table 3. The resonance parameters above 27 eV obtained by this work. Quantum number I,l and Jπ are taken from ENDF/B-VIII.0,and ER represents the ENDF/B-VIII.0 evaluated resonance energy.

    5. Conclusion

    For the first time, thenatSe neutron capture cross section in the 1 eV–100 keV energy region has been measured at the Back-n facility of CSNS by using the four C6D6liquid scintillator detectors. A detailed description of data analysis with PHWT and system uncertainty evaluation are given. The cross sections in the 10–100 keV energy are a good agreement with the JENDL-4.0 and ENDF/B-VIII.0 evaluated data,which verify the correctness of the experimental method and data processing. Data in the 1 keV–10 keV energy range exist larger errors due to the large in-beam gamma background and the limitation of neutron energy discrimination at current experimental conditions. The data of the 1 eV–1050 eV were analyzed in detail and theRmatrix program was used to provide the isotope contribution of the natural selenium resonance shape and the corresponding resonance parameters. The result shows that74Se and77Se isotopes have greater contributions on the resonance peaks of natural selenium in the 1–1050 eV energy region.

    Data availability

    The data that support the findings of this study are openly available in Science Data Bank at http://doi.org/10.11922/sciencedb.j00113.00019.

    Acknowledgements

    The authors sincerely appreciate the efforts of the staff of the CSNS and Back-n collaboration as well as Prof. Gui-Lin Zhang for his useful suggestion on data analysis. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 11705156,11605097, and U2032146) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB34030000).

    猜你喜歡
    王宏偉楊宇雅拉
    楊宇作品
    淺談“塑性力學(xué)”教學(xué)中的Lode應(yīng)力參數(shù)拓展
    書法
    Chinese animation film Ne Zha became a hit
    A Class of Rumor Spreading Models with Population Dynamics?
    楊宇
    論納·賽西雅拉圖教授的史詩(shī)研究
    Effect of the Interference Instant of Zeolite HY Catalyst on the Pyrolysis of Pubescens*
    新方向“雅拉”復(fù)合肥效果出眾
    211378 Research of radiosurgery for brain metastases
    亚洲精品一区蜜桃| 欧美精品啪啪一区二区三区 | 亚洲国产欧美一区二区综合| 久久久国产精品麻豆| 蜜桃在线观看..| 久久久欧美国产精品| 18禁国产床啪视频网站| 欧美精品高潮呻吟av久久| 丁香六月天网| 亚洲 国产 在线| 狠狠精品人妻久久久久久综合| 日韩欧美国产一区二区入口| 中文字幕制服av| 国产精品一二三区在线看| 欧美亚洲日本最大视频资源| 久热爱精品视频在线9| 亚洲成人免费电影在线观看| 蜜桃国产av成人99| 欧美97在线视频| 少妇粗大呻吟视频| 9热在线视频观看99| 亚洲专区国产一区二区| 色老头精品视频在线观看| 亚洲精品成人av观看孕妇| 丝袜脚勾引网站| 亚洲欧美精品综合一区二区三区| 欧美激情久久久久久爽电影 | 一区在线观看完整版| 精品国产乱码久久久久久小说| 人人妻人人澡人人看| 老司机午夜十八禁免费视频| 一区二区av电影网| 日韩大片免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 日韩大片免费观看网站| 一本—道久久a久久精品蜜桃钙片| e午夜精品久久久久久久| 99久久精品国产亚洲精品| 成人国语在线视频| 18禁裸乳无遮挡动漫免费视频| 国产成人免费观看mmmm| 欧美一级毛片孕妇| 99热网站在线观看| 99精国产麻豆久久婷婷| 各种免费的搞黄视频| 在线av久久热| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 黄色 视频免费看| 久久人人97超碰香蕉20202| 男女午夜视频在线观看| 亚洲第一av免费看| 国产主播在线观看一区二区| 深夜精品福利| 久久国产精品大桥未久av| 免费观看人在逋| 国产成人影院久久av| 黄色片一级片一级黄色片| 三级毛片av免费| 亚洲第一欧美日韩一区二区三区 | 嫁个100分男人电影在线观看| 两性夫妻黄色片| 国产国语露脸激情在线看| e午夜精品久久久久久久| 国产亚洲欧美精品永久| 欧美中文综合在线视频| 一级毛片女人18水好多| 在线观看免费高清a一片| 色播在线永久视频| 高清欧美精品videossex| 曰老女人黄片| 国产日韩欧美视频二区| 亚洲精品中文字幕在线视频| 飞空精品影院首页| 91成人精品电影| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av香蕉五月 | 中文字幕高清在线视频| 9191精品国产免费久久| 免费在线观看视频国产中文字幕亚洲 | 咕卡用的链子| 亚洲精品第二区| 成人av一区二区三区在线看 | av片东京热男人的天堂| 亚洲精品国产一区二区精华液| 久久久久久久久免费视频了| 精品高清国产在线一区| 国产精品熟女久久久久浪| 激情视频va一区二区三区| 三上悠亚av全集在线观看| tube8黄色片| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 欧美在线一区亚洲| 国产精品 国内视频| 69精品国产乱码久久久| 黄色片一级片一级黄色片| 国产男人的电影天堂91| 国产日韩一区二区三区精品不卡| 国产99久久九九免费精品| 精品久久久精品久久久| 精品少妇一区二区三区视频日本电影| 久久久久久久大尺度免费视频| 久久精品熟女亚洲av麻豆精品| 欧美午夜高清在线| 午夜福利免费观看在线| 国产成人精品无人区| 1024视频免费在线观看| 日本一区二区免费在线视频| 欧美黄色淫秽网站| 天堂8中文在线网| 老司机深夜福利视频在线观看 | 啪啪无遮挡十八禁网站| 汤姆久久久久久久影院中文字幕| 18在线观看网站| 精品国产一区二区久久| 国产亚洲欧美精品永久| 黑人欧美特级aaaaaa片| 日韩免费高清中文字幕av| 老汉色∧v一级毛片| 日本91视频免费播放| www.999成人在线观看| 狠狠狠狠99中文字幕| 国产一区二区三区av在线| 国产成人免费观看mmmm| 久久国产精品人妻蜜桃| 亚洲av成人一区二区三| 久久久久国产精品人妻一区二区| 久久久久久久国产电影| 精品亚洲成国产av| 久久av网站| 99精国产麻豆久久婷婷| av网站免费在线观看视频| 亚洲av国产av综合av卡| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久 | 欧美性长视频在线观看| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 亚洲精品久久成人aⅴ小说| 精品久久久久久久毛片微露脸 | 国产人伦9x9x在线观看| 黑人操中国人逼视频| 在线十欧美十亚洲十日本专区| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 在线天堂中文资源库| 啪啪无遮挡十八禁网站| 99久久国产精品久久久| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 亚洲va日本ⅴa欧美va伊人久久 | 欧美激情极品国产一区二区三区| 国产免费福利视频在线观看| 99香蕉大伊视频| 婷婷丁香在线五月| 99国产精品99久久久久| 九色亚洲精品在线播放| 丝袜在线中文字幕| 青春草视频在线免费观看| 深夜精品福利| 亚洲人成77777在线视频| 欧美精品人与动牲交sv欧美| 国产国语露脸激情在线看| 国产片内射在线| 精品少妇内射三级| 少妇 在线观看| 韩国精品一区二区三区| 国产一卡二卡三卡精品| 亚洲性夜色夜夜综合| 在线观看免费日韩欧美大片| 一本—道久久a久久精品蜜桃钙片| 黑人欧美特级aaaaaa片| 亚洲自偷自拍图片 自拍| 黑人巨大精品欧美一区二区mp4| 91九色精品人成在线观看| 男人爽女人下面视频在线观看| 无限看片的www在线观看| 婷婷成人精品国产| 国产真人三级小视频在线观看| 精品少妇黑人巨大在线播放| 男女下面插进去视频免费观看| 一区二区av电影网| 中国国产av一级| 欧美 亚洲 国产 日韩一| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 黑丝袜美女国产一区| 久久九九热精品免费| 大码成人一级视频| 在线观看免费高清a一片| 一级a爱视频在线免费观看| 日本91视频免费播放| www.av在线官网国产| 国产黄频视频在线观看| 成年女人毛片免费观看观看9 | 国产野战对白在线观看| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 精品福利观看| 在线观看一区二区三区激情| 亚洲精品美女久久久久99蜜臀| 亚洲激情五月婷婷啪啪| 桃花免费在线播放| 久久综合国产亚洲精品| 老司机在亚洲福利影院| 涩涩av久久男人的天堂| videosex国产| 欧美人与性动交α欧美精品济南到| 久久综合国产亚洲精品| 秋霞在线观看毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩精品久久久久久密| 欧美亚洲 丝袜 人妻 在线| 人妻久久中文字幕网| 男人爽女人下面视频在线观看| 欧美精品高潮呻吟av久久| 日韩视频一区二区在线观看| 精品国产乱码久久久久久小说| 天堂8中文在线网| 国产精品一二三区在线看| 亚洲视频免费观看视频| 亚洲国产精品一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 日日夜夜操网爽| 日本av手机在线免费观看| 午夜激情av网站| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 视频区图区小说| 精品一区二区三区av网在线观看 | 国产一区二区 视频在线| a级毛片黄视频| av在线老鸭窝| 精品免费久久久久久久清纯 | 蜜桃在线观看..| av网站免费在线观看视频| 777米奇影视久久| 不卡av一区二区三区| 波多野结衣av一区二区av| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 黄片大片在线免费观看| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 精品一区二区三卡| 天堂中文最新版在线下载| 爱豆传媒免费全集在线观看| 啦啦啦视频在线资源免费观看| 狂野欧美激情性bbbbbb| 欧美黑人精品巨大| 肉色欧美久久久久久久蜜桃| 日本撒尿小便嘘嘘汇集6| 国产精品自产拍在线观看55亚洲 | 动漫黄色视频在线观看| 国产av一区二区精品久久| 欧美xxⅹ黑人| 日韩一卡2卡3卡4卡2021年| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 精品少妇黑人巨大在线播放| 汤姆久久久久久久影院中文字幕| 搡老岳熟女国产| 少妇 在线观看| 91麻豆av在线| 中文字幕最新亚洲高清| 丝袜人妻中文字幕| 久久精品久久久久久噜噜老黄| 日韩中文字幕视频在线看片| 老司机靠b影院| 纯流量卡能插随身wifi吗| 免费少妇av软件| 国产伦人伦偷精品视频| 成人手机av| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 精品国产乱子伦一区二区三区 | 久久久久久久精品精品| 国产精品国产av在线观看| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 狠狠婷婷综合久久久久久88av| 国产成人av激情在线播放| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 黄色毛片三级朝国网站| 欧美黑人欧美精品刺激| 亚洲欧洲精品一区二区精品久久久| 亚洲少妇的诱惑av| 黄色片一级片一级黄色片| 一边摸一边做爽爽视频免费| 亚洲黑人精品在线| 欧美国产精品va在线观看不卡| av有码第一页| 免费在线观看日本一区| 国产伦理片在线播放av一区| av一本久久久久| 欧美av亚洲av综合av国产av| 99久久精品国产亚洲精品| 欧美精品亚洲一区二区| 满18在线观看网站| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 男女午夜视频在线观看| 国产精品秋霞免费鲁丝片| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 欧美乱码精品一区二区三区| 91成年电影在线观看| 91老司机精品| 欧美激情 高清一区二区三区| 中文精品一卡2卡3卡4更新| 成人国产一区最新在线观看| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 十八禁网站网址无遮挡| 日本一区二区免费在线视频| av在线老鸭窝| 亚洲,欧美精品.| 日韩人妻精品一区2区三区| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 桃花免费在线播放| 午夜免费成人在线视频| 午夜老司机福利片| 国产在线一区二区三区精| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 国产黄频视频在线观看| 老熟妇乱子伦视频在线观看 | 日韩电影二区| 精品亚洲成a人片在线观看| 久热这里只有精品99| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 日本vs欧美在线观看视频| e午夜精品久久久久久久| 亚洲精品av麻豆狂野| 久久人人爽人人片av| 精品视频人人做人人爽| 一级片免费观看大全| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 五月开心婷婷网| 一本色道久久久久久精品综合| 亚洲va日本ⅴa欧美va伊人久久 | 操美女的视频在线观看| 水蜜桃什么品种好| 丝瓜视频免费看黄片| 狂野欧美激情性xxxx| 午夜老司机福利片| 精品卡一卡二卡四卡免费| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 纵有疾风起免费观看全集完整版| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 电影成人av| 欧美日韩国产mv在线观看视频| 国产成人系列免费观看| 大型av网站在线播放| 法律面前人人平等表现在哪些方面 | 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 国产免费现黄频在线看| 精品第一国产精品| 欧美在线黄色| 美女主播在线视频| 下体分泌物呈黄色| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 激情视频va一区二区三区| 99国产综合亚洲精品| e午夜精品久久久久久久| 精品福利观看| 国产伦理片在线播放av一区| 这个男人来自地球电影免费观看| 日日夜夜操网爽| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 亚洲欧美一区二区三区久久| 少妇被粗大的猛进出69影院| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 久久久精品免费免费高清| 美女大奶头黄色视频| 不卡av一区二区三区| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 精品国产一区二区三区四区第35| 99热网站在线观看| 国产精品久久久av美女十八| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| √禁漫天堂资源中文www| 欧美黑人精品巨大| 成人影院久久| 日本黄色日本黄色录像| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区| netflix在线观看网站| 国产男女超爽视频在线观看| 在线十欧美十亚洲十日本专区| 大陆偷拍与自拍| 欧美乱码精品一区二区三区| 高清黄色对白视频在线免费看| 亚洲欧美日韩高清在线视频 | 亚洲第一av免费看| 国产成人影院久久av| 欧美久久黑人一区二区| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 精品人妻熟女毛片av久久网站| 久久久精品国产亚洲av高清涩受| 制服诱惑二区| 老汉色∧v一级毛片| 成人手机av| 三上悠亚av全集在线观看| 精品久久久久久电影网| 男人舔女人的私密视频| 国产97色在线日韩免费| 久热这里只有精品99| 精品第一国产精品| 色94色欧美一区二区| 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 久久久久网色| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 欧美日韩亚洲综合一区二区三区_| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 欧美日韩福利视频一区二区| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 亚洲欧洲精品一区二区精品久久久| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 国产无遮挡羞羞视频在线观看| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久| 考比视频在线观看| 国产精品亚洲av一区麻豆| 好男人电影高清在线观看| 青草久久国产| 国产精品免费视频内射| 最近最新中文字幕大全免费视频| 丝袜美足系列| 91精品三级在线观看| 久久ye,这里只有精品| h视频一区二区三区| 国产亚洲欧美精品永久| 亚洲欧美色中文字幕在线| 51午夜福利影视在线观看| 日韩大码丰满熟妇| 亚洲色图综合在线观看| 亚洲成人国产一区在线观看| 亚洲精品乱久久久久久| 午夜精品国产一区二区电影| 1024视频免费在线观看| 精品少妇内射三级| 99国产精品免费福利视频| 国产精品免费大片| 精品视频人人做人人爽| 国产成人欧美在线观看 | 操出白浆在线播放| videos熟女内射| 亚洲avbb在线观看| 国产又色又爽无遮挡免| 热re99久久国产66热| 最近最新中文字幕大全免费视频| 精品国产超薄肉色丝袜足j| 国产麻豆69| 亚洲国产毛片av蜜桃av| 欧美精品av麻豆av| 亚洲中文av在线| netflix在线观看网站| 美女大奶头黄色视频| 999精品在线视频| 国产区一区二久久| av视频免费观看在线观看| 50天的宝宝边吃奶边哭怎么回事| 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 国产欧美日韩一区二区精品| 波多野结衣av一区二区av| 国产精品 欧美亚洲| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 飞空精品影院首页| 成人国产av品久久久| 99精品欧美一区二区三区四区| 午夜福利视频精品| 电影成人av| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 日本精品一区二区三区蜜桃| 高清欧美精品videossex| 中国美女看黄片| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美软件| 亚洲美女黄色视频免费看| 在线观看人妻少妇| 制服人妻中文乱码| 亚洲人成77777在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美日韩另类电影网站| 国产国语露脸激情在线看| 国产又爽黄色视频| 人人妻人人添人人爽欧美一区卜| 久久中文字幕一级| 热re99久久精品国产66热6| 少妇人妻久久综合中文| 人妻 亚洲 视频| 色视频在线一区二区三区| 精品免费久久久久久久清纯 | 777久久人妻少妇嫩草av网站| 99精品久久久久人妻精品| 男人添女人高潮全过程视频| 一级毛片精品| 亚洲精华国产精华精| 国产深夜福利视频在线观看| 法律面前人人平等表现在哪些方面 | 精品欧美一区二区三区在线| 亚洲国产精品999| 国产成+人综合+亚洲专区| 汤姆久久久久久久影院中文字幕| 精品亚洲成a人片在线观看| 亚洲av电影在线观看一区二区三区| 久久精品人人爽人人爽视色| 亚洲精品第二区| 99热网站在线观看| 欧美黄色片欧美黄色片| 欧美性长视频在线观看| 美女主播在线视频| 一区二区日韩欧美中文字幕| 免费一级毛片在线播放高清视频 | 黑人猛操日本美女一级片| 岛国毛片在线播放| 亚洲欧美精品综合一区二区三区| 国产一区二区在线观看av| 亚洲成人国产一区在线观看| 中文字幕精品免费在线观看视频| 91国产中文字幕| 亚洲成人免费av在线播放| 搡老乐熟女国产| 国产精品一区二区在线观看99| 久久人人爽人人片av| 欧美黄色淫秽网站| 久久久久精品人妻al黑| 欧美日韩精品网址| 少妇人妻久久综合中文| 美女高潮喷水抽搐中文字幕| 亚洲欧美清纯卡通| 99精品久久久久人妻精品| 久热这里只有精品99| 午夜91福利影院| 欧美日韩成人在线一区二区| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 国产成人精品久久二区二区91| 18禁观看日本| 一级毛片电影观看| 俄罗斯特黄特色一大片| 丰满饥渴人妻一区二区三| 爱豆传媒免费全集在线观看| 19禁男女啪啪无遮挡网站| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 亚洲男人天堂网一区| 亚洲黑人精品在线| 97在线人人人人妻| 成人影院久久| 亚洲精品中文字幕一二三四区 | 亚洲av电影在线进入| 丰满饥渴人妻一区二区三| 人妻久久中文字幕网| 亚洲精品美女久久久久99蜜臀| 女性被躁到高潮视频| 国产熟女午夜一区二区三区| av视频免费观看在线观看| 日韩免费高清中文字幕av| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 国产精品 国内视频| 亚洲成人免费av在线播放| av在线播放精品| 又大又爽又粗| 国产xxxxx性猛交| 久久国产亚洲av麻豆专区| 免费人妻精品一区二区三区视频| 精品一区二区三卡| 久久精品国产综合久久久| 麻豆国产av国片精品| 国产精品国产av在线观看| 欧美性长视频在线观看| 午夜老司机福利片| 男女床上黄色一级片免费看| 欧美日韩av久久| 在线av久久热| 国产精品.久久久|