張嵐云,何彥,楊靜怡,周海海,陳炳發(fā)
【院士專(zhuān)欄:國(guó)防裝備設(shè)計(jì)與制造】
航空裝配作業(yè)疲勞監(jiān)測(cè)機(jī)理研究及其裝備設(shè)計(jì)應(yīng)用
張嵐云,何彥,楊靜怡,周海海,陳炳發(fā)
(南京航空航天大學(xué) 工業(yè)設(shè)計(jì)系,南京 210000)
對(duì)航空制造業(yè)裝配操作者的疲勞檢測(cè)方法進(jìn)行研究,并對(duì)疲勞監(jiān)測(cè)設(shè)備提出設(shè)計(jì)策略。以人為中心的設(shè)計(jì)概念為基礎(chǔ),運(yùn)用實(shí)證法,通過(guò)對(duì)新手操作者和熟練操作者的肌電信號(hào)和主觀疲勞程度進(jìn)行采集,整體地分析生理和主觀評(píng)價(jià)的數(shù)據(jù),對(duì)操作者的疲勞進(jìn)行評(píng)估。得出肌電信號(hào)的特征值隨著人員的疲勞而規(guī)律性地變化,其中RMS值(均方根值)和FInsm5值(由Dimitrov提出的新頻域參數(shù))與主觀評(píng)價(jià)表現(xiàn)出顯著的相關(guān)性;新手操作者與熟練操作者的肌電信號(hào)也出現(xiàn)差異。結(jié)合RMS值和FInsm5值的聯(lián)合頻譜分析,提出一個(gè)評(píng)估肌肉疲勞的模型,包括3種肌肉狀態(tài):肌肉激活、過(guò)渡到疲勞、疲勞到精疲力竭;提出將主觀評(píng)價(jià)標(biāo)準(zhǔn)融入疲勞檢測(cè)系統(tǒng)的方法;分析航空制造業(yè)裝配操作者疲勞監(jiān)測(cè)設(shè)備的設(shè)計(jì)策略,包括:可穿戴設(shè)備、肌肉疲勞模型的應(yīng)用策略、反饋數(shù)據(jù)形式。最后根據(jù)設(shè)計(jì)策略對(duì)一款可穿戴設(shè)備的人機(jī)交互進(jìn)行了設(shè)計(jì)應(yīng)用探索。
疲勞監(jiān)測(cè);可穿戴設(shè)備;交互設(shè)計(jì);工業(yè)設(shè)計(jì)
我國(guó)航空制造業(yè)發(fā)展至今,智能制造水平有了很大的提高,這極大地提升了飛機(jī)生產(chǎn)效率和質(zhì)量可靠性。不過(guò),由于航空產(chǎn)品生產(chǎn)專(zhuān)用裝備多、工裝復(fù)雜、工藝流程多變、制造環(huán)境要求高,且具有多品種、小批量、設(shè)計(jì)制造并行等特點(diǎn)[1],整個(gè)生產(chǎn)活動(dòng)還是離不開(kāi)人的參與。例如,對(duì)于結(jié)構(gòu)復(fù)雜、布局緊湊的飛機(jī)零部件,狹窄的空間內(nèi)進(jìn)行的裝配、檢測(cè)和清理工作依然有賴(lài)于人力。航空領(lǐng)域的許多工序難度高,工藝復(fù)雜,在需要人工操作的情況下,對(duì)操作者的能力及效率有著極高的要求。操作者的身心狀態(tài)對(duì)航空產(chǎn)品的質(zhì)量有著不容忽視的影響?;诖?,本研究將以航空制造業(yè)裝配操作者的疲勞問(wèn)題作為主題,探索疲勞監(jiān)測(cè)設(shè)備的設(shè)計(jì)研究,以期操作者對(duì)自身狀態(tài)有實(shí)時(shí)的感知,以更舒適高效的方式完成作業(yè)。
1982年第五屆國(guó)際運(yùn)動(dòng)生化學(xué)術(shù)討論將疲勞定義為“機(jī)體生理過(guò)程不能持續(xù)其機(jī)能在特定水平或不能維持預(yù)定的運(yùn)動(dòng)強(qiáng)度”;心理學(xué)家認(rèn)為疲勞是指“感知到個(gè)體效能降低后對(duì)完成既有工作的主觀厭惡感”;總的來(lái)說(shuō),疲勞是指持久或過(guò)度勞動(dòng)后引起的機(jī)體的不適,并會(huì)導(dǎo)致工作效率的降低[2],在生產(chǎn)和職業(yè)環(huán)境中是一個(gè)不容忽視問(wèn)題。國(guó)內(nèi)外學(xué)者探討了疲勞產(chǎn)生的原因和機(jī)理,目前研究還停留在假說(shuō)階段,主要有3種比較經(jīng)典的假說(shuō):力源消耗論、疲勞物質(zhì)積累論和中樞系統(tǒng)變化論[3]。目前,與疲勞監(jiān)測(cè)相關(guān)的研究大部分都集中在交通運(yùn)輸領(lǐng)域,其他領(lǐng)域的疲勞研究相對(duì)較少,不過(guò)近年來(lái)隨著人因工程學(xué)的逐漸成熟,對(duì)疲勞問(wèn)題的研究范圍有所拓展;同時(shí),人體疲勞的測(cè)量對(duì)象是人,測(cè)量方法在不同行業(yè)具有通用性,仍可在文獻(xiàn)中發(fā)現(xiàn)許多對(duì)制造業(yè)疲勞監(jiān)測(cè)問(wèn)題研究來(lái)說(shuō)有價(jià)值的研究成果。
結(jié)合前述對(duì)疲勞的定義,人體疲勞由多個(gè)維度組成,包括生理上的疲勞和心理上的疲勞,并可將其進(jìn)一步細(xì)分為肌肉性疲勞、心理性疲勞、腦力性疲勞、病理性疲勞及混合性疲勞。
疲勞測(cè)量的方法大致可以分為主觀測(cè)量和客觀測(cè)量?jī)煞N[4],主觀測(cè)量的研究方法一般基于問(wèn)卷或訪談的形式,采用自我報(bào)告來(lái)評(píng)估疲勞程度。主觀測(cè)量的方法簡(jiǎn)單易行且費(fèi)用低廉,但客觀性較差,為保證科學(xué)研究的可靠性,常見(jiàn)的自評(píng)量表有博格量表[5]等。研究中也常使用基于生理、行為等間接指標(biāo)測(cè)量被試者的疲勞程度,常用的疲勞測(cè)量方法有心率值測(cè)定法、反應(yīng)時(shí)間測(cè)定法、腦電波測(cè)定法等[6]。其中心率值測(cè)定法基于勞動(dòng)強(qiáng)度越大,心率恢復(fù)至正常水平所需時(shí)間越長(zhǎng)這一現(xiàn)象,使用勞動(dòng)停止后恢復(fù)到靜息心率時(shí)間內(nèi)的心跳總數(shù)來(lái)表示人的疲勞程度;反應(yīng)時(shí)間測(cè)定法則基于人越疲勞,對(duì)刺激的反應(yīng)就越慢這一現(xiàn)象,使用反應(yīng)時(shí)間來(lái)測(cè)量疲勞程度;腦電波測(cè)定法則通過(guò)腦活動(dòng)的直接反映,分析前后的信號(hào)變化來(lái)測(cè)定人體的疲勞程度[7]。
疲勞監(jiān)測(cè)和疲勞測(cè)量是2個(gè)不同的概念,盡管二者的測(cè)量原理可能相同,但前者對(duì)測(cè)量有著更高的要求,即對(duì)疲勞程度實(shí)時(shí)動(dòng)態(tài)的感知。
在疲勞監(jiān)測(cè)發(fā)展最成熟的交通運(yùn)輸領(lǐng)域,研究者們針對(duì)疲勞駕駛問(wèn)題已提出了許多方法,其中基于身體反應(yīng)的監(jiān)測(cè)方法是最常用也最受認(rèn)可的,此方法通過(guò)監(jiān)測(cè)駕駛員頭部?jī)A斜度、身體姿勢(shì)的下垂度、眼睛閉合的頻率、駕駛員掌控方向盤(pán)的力度等的變化實(shí)時(shí)感知駕駛員的疲勞程度[8]。而在制造業(yè)的背景下,肌肉性疲勞的問(wèn)題是最關(guān)鍵的。人體肌肉發(fā)生疲勞時(shí),肌電信號(hào)的幅度和頻譜特征會(huì)發(fā)生變化,通過(guò)對(duì)電信號(hào)的分析,可以實(shí)現(xiàn)對(duì)肌肉疲勞的連續(xù)監(jiān)測(cè)[9]。2022年,González–Zamora等[10]提出了一種基于肌電信號(hào)測(cè)量肌肉疲勞程度的實(shí)時(shí)系統(tǒng),該系統(tǒng)使用平均頻率和功率譜密度作為肌肉疲勞測(cè)定的特征,使用線性回歸模型確定肌肉疲勞的程度,并采用了EMG(肌電圖)無(wú)線傳感器使工人的操作不受影響。
疲勞測(cè)量時(shí)必須考慮人口統(tǒng)計(jì)學(xué)變量。對(duì)于相同的任務(wù),每個(gè)人的感覺(jué)和生理反應(yīng)都是不同的[11]。在制造業(yè)疲勞測(cè)量中不能忽視的一個(gè)人口統(tǒng)計(jì)學(xué)變量——操作人員的熟練程度。研究人員已經(jīng)確定,對(duì)于給定的任務(wù),有經(jīng)驗(yàn)的操作者相比新手通常采用較低的生物力學(xué)脊柱負(fù)荷,較少的背部肌肉激活,更窄的腰椎運(yùn)動(dòng)范圍,更高的主觀不適閾值和心理上可接受的承重,以及在地面任務(wù)期間更大的膝關(guān)節(jié)屈曲[12]。
疲勞監(jiān)測(cè)設(shè)備在用戶(hù)達(dá)到臨界疲勞值時(shí)需要對(duì)用戶(hù)進(jìn)行提醒,以避免生產(chǎn)或安全事故。這一過(guò)程需要設(shè)備主動(dòng)發(fā)出反饋信號(hào)傳遞信息,刺激人的感覺(jué)器官。若采用合適的方式刺激人體的感覺(jué)通道就能獲得好的信息處理效果。常用的感覺(jué)通道有視覺(jué)通道和聽(tīng)覺(jué)通道。在特定條件下,觸覺(jué)和嗅覺(jué)通道也有特殊用處[13]。在疲勞檢測(cè)設(shè)備中,常見(jiàn)的反饋信號(hào)類(lèi)型包括提示消息(視覺(jué))、提示鈴聲(聽(tīng)覺(jué))、閃爍燈光(視覺(jué))、刺激氣味(嗅覺(jué))、設(shè)備振動(dòng)(觸覺(jué))等。
目前制造業(yè)領(lǐng)域內(nèi)肌肉監(jiān)測(cè)相關(guān)產(chǎn)品較少,大多還停留在概念階段,對(duì)反饋信號(hào)的設(shè)計(jì)還不成熟。此處以駕駛疲勞監(jiān)測(cè)設(shè)備為例介紹反饋信號(hào)的類(lèi)型。尼桑駕駛員注意力提醒系統(tǒng)(Driver Attention Alert)利用轉(zhuǎn)向感傳感器實(shí)時(shí)監(jiān)控駕駛狀態(tài),當(dāng)系統(tǒng)發(fā)現(xiàn)駕駛員疲勞時(shí),會(huì)發(fā)出鈴聲,同時(shí)儀表板上會(huì)出現(xiàn)咖啡杯圖標(biāo)和提醒駕駛員休息的提示信息[14]。福特駕駛員警報(bào)系統(tǒng)利用前視攝像頭來(lái)監(jiān)控車(chē)輛在車(chē)道中的位置并監(jiān)測(cè)駕駛員的注意力集中程度。若系統(tǒng)察覺(jué)駕駛員疲勞,系統(tǒng)將發(fā)出提示音,儀表盤(pán)屏幕會(huì)彈出警告彈窗。如果警告被忽視或者駕駛員疲勞程度加深,警告彈窗將由黃變紅,提示音會(huì)變得更急促刺耳[15]。
本研究擬通過(guò)表面肌電信號(hào)和主觀量表來(lái)預(yù)測(cè)操作者在工作過(guò)程中的肌肉疲勞。由于航空裝配作業(yè)以人的上肢肌肉負(fù)荷為主,尤其是飛機(jī)蒙皮裝配中的鉚接,主要為肘關(guān)節(jié)和肩關(guān)節(jié)之間的肱二頭肌承載作業(yè)負(fù)荷[16]。上肢的重復(fù)作業(yè)中,肱二頭肌也是主要累及的肌肉[17]。因此為了模擬裝配作業(yè)中的主要肌肉負(fù)荷,本研究設(shè)計(jì)了上肢啞鈴卷舉實(shí)驗(yàn)。被試者被要求完成至少五組坐姿孤立啞鈴卷舉,每組重復(fù)12次。實(shí)驗(yàn)開(kāi)始前需要重復(fù)5次動(dòng)作作為熱身。對(duì)不同熟練程度的操作者,有3種啞鈴的重量可供選擇(5 kg、8.5 kg和10 kg)。被試者按照不同的實(shí)驗(yàn)?zāi)J竭M(jìn)行實(shí)驗(yàn)(一半的被試者被要求選擇模式a,另一半為模式b),見(jiàn)圖1。
圖1 肌電實(shí)驗(yàn)休息模式
具體的實(shí)驗(yàn)的流程如下。
第1步,在閱讀完實(shí)驗(yàn)信息表并簽署同意書(shū)后,被試者被要求選擇最適合自己能力的啞鈴重量,并被告知給定的工作模式。在肱二頭肌熱身(使用2 kg啞鈴)完后,被試者被要求坐下來(lái)并佩戴無(wú)線表面肌電信號(hào)設(shè)備直到整個(gè)過(guò)程結(jié)束(在放置表面肌電電極前,用酒精墊清潔皮膚表面)。
第2步,被試者需要完成5次重復(fù)的熱身動(dòng)作和至少5組坐姿孤立啞鈴卷舉,每組重復(fù)12次,組間和組內(nèi)的休息時(shí)間由他們選擇的實(shí)驗(yàn)?zāi)J經(jīng)Q定,肌電信號(hào)的采集在整個(gè)過(guò)程中一直都是持續(xù)的。每組測(cè)試結(jié)束后,被試者需要立即報(bào)告他們的主觀疲勞程度(博格量表),見(jiàn)表1?;贐org CR10量表的主觀性,被試者可能會(huì)根據(jù)自己的疲勞感受對(duì)自己的疲勞程度進(jìn)行不同的評(píng)估,這可能會(huì)導(dǎo)致他們?cè)谡麄€(gè)實(shí)驗(yàn)過(guò)程中不準(zhǔn)確地報(bào)告自己的努力程度。為了應(yīng)對(duì)這一挑戰(zhàn),我們對(duì)博格量表的各個(gè)等級(jí)進(jìn)行了解釋。例如,“3”表示肌肉開(kāi)始疼痛,“10”表示無(wú)法舉起啞鈴。
表1 Borg CR10量表
Tab.1 Borg CR10 scale
第3步:在完成練習(xí)后,被試者被要求回答關(guān)于日常工作疲勞的半結(jié)構(gòu)化問(wèn)題,包括間隔的休息時(shí)間和他們?nèi)粘9ぷ鞯哪J健?/p>
本實(shí)驗(yàn)招募了20名健康男性被試者,表2顯示了被試者的信息,以及他們?cè)诮o定的實(shí)驗(yàn)?zāi)J较聦?duì)啞鈴重量的選擇。原始表面肌電信號(hào)通過(guò)無(wú)線8通道生物信號(hào)Plux HUB采集,采樣速率為1 000 Hz。被試者測(cè)量身體質(zhì)量指數(shù)(BMI)也在表2中給出。其中,新手操作者的招募標(biāo)準(zhǔn)是經(jīng)過(guò)初步訓(xùn)練或有興趣現(xiàn)場(chǎng)進(jìn)行操作培訓(xùn)的人員,熟練操作者的招募標(biāo)準(zhǔn)是在過(guò)去至少有1年進(jìn)行過(guò)大重量練習(xí)的人員。
表2 被試者信息
Tab.2 Participant information
表面肌電信號(hào)采樣頻率為1 000 Hz,利用帶通濾波器將20~500 Hz的頻率截?cái)?。在啞鈴彎曲時(shí),肌肉呈現(xiàn)間歇性的激活狀態(tài)。Teager–Kaiser能量算子(TKEO)用于檢測(cè)肌肉激活的活動(dòng)段。提取了肌電信號(hào)的活動(dòng)段之后,通過(guò)Python提取計(jì)算6個(gè)肌電特征。6個(gè)肌電特征的計(jì)算原理如下。
對(duì)于振幅特征,提取了2個(gè)指標(biāo):平均絕對(duì)值(MAV值)和均方根值(RMS值)。它們由式(1)—(2)表達(dá)。
(1)平均絕對(duì)值(MAV)
(2)均方根值(RMS)
(3)過(guò)零率(ZCR)
(4)平均功率頻率(MPF)
(5)中值頻率(MDF)
(6)由Dimitrov提出的新頻率參數(shù)FInsm5
本文采用SPSS統(tǒng)計(jì)軟件對(duì)實(shí)驗(yàn)中采集的數(shù)據(jù)進(jìn)行描述性分析和統(tǒng)計(jì)學(xué)分析,探討肌電圖特征和主觀指標(biāo)隨肌肉疲勞程度增加的變化規(guī)律。首先對(duì)所有表面肌電信號(hào)特征進(jìn)行歸一化處理。其次,通過(guò)單因素方差分析對(duì)表面肌電信號(hào)特征進(jìn)行獨(dú)立比較,當(dāng)獲得顯著的F值時(shí),執(zhí)行Sheffe事后檢驗(yàn)來(lái)檢驗(yàn)平均值之間的兩兩差異。最后進(jìn)行相關(guān)性分析,分析表面肌電信號(hào)特征之間的相關(guān)性,以及表面肌電信號(hào)特征與主觀測(cè)量指標(biāo)之間的相關(guān)性。本文未展示半結(jié)構(gòu)化訪談數(shù)據(jù)的結(jié)果。
如圖2所示,表面肌電信號(hào)的時(shí)域特征(RMS值,ZCR值,MAV值)和頻域特征(MDF值,F(xiàn)lnsm5值,MPF值)的表面肌電信號(hào)特征表明,肌肉的疲勞程度增加時(shí),表面肌電信號(hào)的時(shí)域特征和頻域特征值都表現(xiàn)出規(guī)律性的上升或下降。RMS值的方差分析和事后檢驗(yàn)結(jié)果分別表明:在前3組中,前4次重復(fù)記錄的RMS值顯著低于(<0.05)高于后4次重復(fù),如圖2a。FInsm5的方差分析和事后檢驗(yàn)結(jié)果表明:在最后3組中,前3次重復(fù)記錄的FInsm5顯著低于后3次重復(fù)(<0.05),如圖2d。
采用線性回歸法計(jì)算各個(gè)表面肌電信號(hào)特征每組的斜率。Spearman相關(guān)分析表明Borg 量表評(píng)分與RMS值的斜率具有較強(qiáng)的相關(guān)性(=–0.638,< 0.01),其次是Borg量表評(píng)分和FInsm5值的斜率(= 0.531,<0.01),見(jiàn)表3。
根據(jù)實(shí)驗(yàn)被試者肌肉力量水平的不同,可將被試者分為新手組(所選啞鈴重量為5 kg)和熟練組(所選啞鈴重量為8.5 kg和10 kg)。新手組和熟練組的實(shí)驗(yàn)結(jié)果也存在顯著差異。
如表4所示,Mann–Whitney的檢驗(yàn)結(jié)果顯示,新手組和熟練組在表面肌電信號(hào)特征的數(shù)值上存在顯著差異。從表中可以看出,新手組的幅值特征比熟練組小,原因在于幅值是與肌肉的力量水平呈正相關(guān)的。而造成新手組的頻域特征與熟練組也有顯著差異的原因,基于實(shí)驗(yàn)中的觀察,猜測(cè)新手組在實(shí)驗(yàn)過(guò)程中發(fā)力不正確、姿勢(shì)不標(biāo)準(zhǔn),從而造成了與熟練組之間的顯著差異。
為了研究隨著重復(fù)次數(shù)的增加,新手組和熟練組肌肉疲勞變化程度的不同,對(duì)新手組和熟練組按每組12次重復(fù)的平均值進(jìn)行了回歸分析,分析的特征為時(shí)域特征RMS值和頻域特征FInsm5值。
圖2 表面肌電信號(hào)的變化(均值±標(biāo)準(zhǔn)差)
表3 表面肌電特征與Borg量表評(píng)分之間的相關(guān)性分析
Tab.3Correlation coefficients between Borg scale ratings and the slope of six sEMG features
注:*<0.05,**<0.01。
表4 新手組與熟練組各肌電特征的數(shù)值比較
Tab.4 Numerical comparison of sEMG features between novice group and skilled group
注:*<0.05,**<0.01。
如表5所示,隨著組數(shù)的增加,熟練組和新手組的RMS值的回歸系數(shù)和相關(guān)系數(shù)都在減小。但是與新手組相比,熟練組在后期RMS值的變化并不顯著,并且除第1組外,熟練組的相關(guān)性都比新手組小。由此可以看出,熟練組到達(dá)RMS值的閾值的時(shí)間比新手組短。
表5 新手組與熟練組RMS值變化趨勢(shì)比較分析
Tab.5Comparison of changing trend of RMS between novice group and skilled group
注:*<0.05,**<0.01。
如表6所示,除了新手組的第1組之外,其他組的數(shù)據(jù)都呈顯著線性增加的趨勢(shì)。對(duì)比于新手組,熟練組的上升趨勢(shì)更為明顯。新手組4–5組的變化顯著,熟練組最后3組的變化顯著??梢钥闯?,F(xiàn)lnsm5值反映疲勞對(duì)于熟練組更加敏感,新手組在4–5組的趨勢(shì)相比1–3組更加明顯。
表6 新手組與熟練組FInsm5值的變化趨勢(shì)比較分析
Tab.6Comparison of changing trend of FInsm5 between novice group and skilled group
注:*<0.05,**<0.01。
現(xiàn)有研究表明,表面肌電信號(hào)幅值的增加與肌肉力量[13]高度相關(guān),頻譜的偏移是肌肉疲勞[17]的典型標(biāo)志。發(fā)現(xiàn)在前3組中,RMS值隨著肌肉力量的增加而顯著增加,后2組沒(méi)有明顯變化。另一方面,最后3組的FInsm5值明顯增加,這被認(rèn)為與疲勞的增加高度相關(guān)。同時(shí)與其他表面肌電信號(hào)特征相比,每組的RMS值和FInsm5值的斜率與Borg量表評(píng)分的相關(guān)性更高。因此,結(jié)合RMS值和FInsm5值的聯(lián)合頻譜分析,提出了3種疲勞狀態(tài):肌肉激活,過(guò)渡到疲勞,疲勞到精疲力竭。模型來(lái)評(píng)估肌肉疲勞水平,見(jiàn)圖3。
1)肌肉激活(RMS值的斜率>0.1,F(xiàn)Insm5值的斜率<0.15),此階段肌肉力量增加,無(wú)肌肉疲勞。
2)過(guò)渡到疲勞(RMS值的斜率>0.1,F(xiàn)Insm5值的斜率>0.15),此時(shí)肌肉力量增加,肌肉疲勞增加。
3)疲勞至力竭(RMS值的斜率<0.1,F(xiàn)Insm5值的斜率>0.15),此階段肌肉力量下降,肌肉疲勞增加。
圖3 基于RMS值的斜率和FInsm5值的斜率的疲勞模型
如圖3所示,軸和軸分別表示每組的RMS值的斜率和FInsm5值的斜率。例如,如果某組的RMS值得斜率大于0.1,F(xiàn)Insm5值的斜率小于0.15,框架就會(huì)判定該組的肌肉狀態(tài)為肌肉激活。
疲勞模型中的閾值可以根據(jù)用戶(hù)的使用數(shù)據(jù)進(jìn)行調(diào)整。基于收集的數(shù)據(jù),發(fā)現(xiàn)博格尺度評(píng)分在0–3的組,其RMS值的斜率大多大于0.1;博格評(píng)分大于7的組,其RMS值的斜率大多小于0.1。所以決定將0.1設(shè)置為軸(RMS軸)的閾值。FInsm5值的斜率閾值的確定方法與RMS值類(lèi)似??偟膩?lái)說(shuō),閾值應(yīng)該可以根據(jù)不同的用戶(hù)和同一用戶(hù)的不同肌肉表現(xiàn)自動(dòng)調(diào)整。在實(shí)際的場(chǎng)景中,隨著實(shí)驗(yàn)疲勞監(jiān)測(cè)設(shè)備用戶(hù)的增加,會(huì)收集該用戶(hù)的大量數(shù)據(jù)。因此,疲勞模型中的閾值理論上可以自動(dòng)調(diào)整。
為了測(cè)試該疲勞模型,將使用Borg量表的評(píng)分作為標(biāo)簽。根據(jù)博格量表的評(píng)分,將0–3定義為肌肉激活,4–6定義為過(guò)渡到疲勞,7–10定義為疲勞至力竭。在圖4中,3種不同顏色的點(diǎn)代表博格等級(jí)的不同范圍。我們將實(shí)驗(yàn)數(shù)據(jù)放到這個(gè)框架中,軸上的每個(gè)點(diǎn)代表了1個(gè)組的Borg量表評(píng)分。
圖4 模型中代表每組的點(diǎn)
準(zhǔn)確率的計(jì)算方法是將落在相應(yīng)顏色區(qū)域的點(diǎn)的數(shù)量除以點(diǎn)的總數(shù)。64.29%的0–3的Borg評(píng)分被判斷為肌肉激活;55.56%的4–6的Borg評(píng)分被判斷為過(guò)渡到疲勞;而在7–10的Borg評(píng)分中,有61.29%被認(rèn)定為疲勞至力竭,見(jiàn)表7所示。準(zhǔn)確率可以通過(guò)不同的方法進(jìn)一步測(cè)試,如機(jī)器學(xué)習(xí)算法。另一方面,主觀感受(即Borg量表的評(píng)分)也可以對(duì)疲勞模型中的閾值產(chǎn)生影響,而不是僅作為檢驗(yàn)準(zhǔn)確率的參考標(biāo)準(zhǔn)。
表7 3種狀態(tài)的識(shí)別率(%)
Tab.7Accuracy of identifying three states
由于新手操作者組和熟練操作者組的RMS、FInsm5在數(shù)值和斜率上存在一些差異。對(duì)于RMS值,與新手組相比,熟練組的整體斜率更偏低一些,在中度疲勞(Borg為3–6)時(shí)熟練操作者更低,因此預(yù)計(jì)將新手肌肉疲勞模型中的RMS值的斜率的閾值調(diào)高為0.15,熟練組模型中的RMS值的閾值適當(dāng)調(diào)低為0.05。對(duì)于FInsm5值,與新手組相比,熟練組的整體斜率更偏高一些,因此預(yù)計(jì)將新手組肌肉疲勞模型中的FInsm5值的閾值適當(dāng)調(diào)低為0.1,熟練組適當(dāng)調(diào)高為0.2。
調(diào)整完肌肉疲勞模型框架中的閾值之后,將新手組和熟練組對(duì)應(yīng)的組帶入各自不同閾值的疲勞模型中計(jì)算準(zhǔn)確率,結(jié)果(見(jiàn)表8)顯示識(shí)別準(zhǔn)確率與原先相比有所下降,由于新手組和熟練組的疲勞模型中只有25個(gè)數(shù)據(jù),可能是由于樣本量減小造成了準(zhǔn)確率的下降,需要進(jìn)一步研究不同肌肉力量水平對(duì)應(yīng)的模型閾值。
表8 新手組和熟練組不同閾值下3種狀態(tài)的識(shí)別率(%)
Tab.8 Recognition rate of three states in novice group and skilled group under different thresholds %
隨著航空制造業(yè)復(fù)雜程度的提高,腦力作業(yè)及心理緊張性作業(yè)的負(fù)荷加重。在這種情況下,為達(dá)到最佳的人機(jī)匹配,設(shè)計(jì)者需要了解感覺(jué)器官功能的限度和能力,以及使用時(shí)可能出現(xiàn)的疲勞程度[13]。實(shí)時(shí)監(jiān)測(cè)操作者的肌肉疲勞情況是必要的。肌肉疲勞的評(píng)估和測(cè)量既是一項(xiàng)技術(shù)也是一項(xiàng)服務(wù),它需要設(shè)計(jì)專(zhuān)門(mén)的交互形式,可應(yīng)用在操作者可穿戴設(shè)備上,具體如下。
技術(shù)進(jìn)步為可穿戴電子設(shè)備的產(chǎn)品設(shè)計(jì)、操作效率和使用體驗(yàn)帶來(lái)新的機(jī)遇。例如在航空裝配場(chǎng)景下,飛機(jī)部件鉚接裝配,操作者需要長(zhǎng)時(shí)間保持同一姿勢(shì)或重復(fù)同一過(guò)程,即使擁有外骨骼機(jī)器人的輔助,操作者的肌肉疲勞狀況依然需要密切關(guān)注、監(jiān)測(cè)。目前市場(chǎng)上已有大量監(jiān)測(cè)類(lèi)可穿戴設(shè)備,包括監(jiān)測(cè)運(yùn)動(dòng)的智能手表、用于分析用戶(hù)睡眠模式的健身手環(huán),以及監(jiān)測(cè)溫度、心率和水合水平的靈活貼片設(shè)備[18]。雖然這些設(shè)備并沒(méi)有應(yīng)用于肌肉疲勞的領(lǐng)域,但已經(jīng)展現(xiàn)了可穿戴設(shè)備的巨大潛力。在專(zhuān)為科學(xué)研究和運(yùn)動(dòng)學(xué)研究領(lǐng)域,現(xiàn)在已經(jīng)有一些用于測(cè)量肌肉活力和被激活狀態(tài)的可穿戴設(shè)備[19],但這些設(shè)備不能對(duì)肌肉的疲勞進(jìn)行評(píng)估和反饋。因此,本文提出針對(duì)專(zhuān)用于航空裝配過(guò)程中的疲勞監(jiān)測(cè)可穿戴設(shè)備是值得研究和開(kāi)發(fā)的。
本文提出的疲勞模型旨在評(píng)估肌肉重復(fù)舒張背景下的疲勞。該模型可以通過(guò)分析原始肌電信號(hào)來(lái)幫助了解人們的肌肉狀況。“肌肉激活”狀態(tài)可以幫助操作者了解是否進(jìn)入工作狀態(tài),“疲勞至力竭”狀態(tài)可以防止操作者過(guò)度疲勞。在實(shí)際應(yīng)用中,閾值可以通過(guò)從操作者前2到3次重復(fù)中收集的數(shù)據(jù)來(lái)確定,并且隨著肌肉激活、肌肉力量和疲勞程度的增加,模型中的閾值應(yīng)該能夠相應(yīng)地調(diào)整。此外,主觀數(shù)據(jù)可以通過(guò)2種不同的方法參與到肌肉疲勞評(píng)估中。第1種,主觀報(bào)告作為標(biāo)簽來(lái)調(diào)整模型,并間接影響疲勞評(píng)估結(jié)果;第2種,主觀報(bào)告作為輸入,直接影響疲勞評(píng)估結(jié)果。
可穿戴設(shè)備能為佩戴者提供實(shí)時(shí)反饋。實(shí)時(shí)反饋的目的是讓操作者在裝配任務(wù)期間對(duì)其的姿勢(shì)和運(yùn)動(dòng)行為有更好的自我意識(shí),并促進(jìn)改變、減輕或管理肌肉的骨骼損傷。視覺(jué)反饋是大多數(shù)設(shè)備的主要選擇[20],振動(dòng)觸覺(jué)或聽(tīng)覺(jué)反饋策略不需要視覺(jué)刺激,這對(duì)一些需要持續(xù)視覺(jué)注意的任務(wù),例如本文的場(chǎng)景,可能是首選。然而,視覺(jué)反饋可以通過(guò)更詳細(xì)地可視化操作者的運(yùn)動(dòng)來(lái)增強(qiáng)的學(xué)習(xí)。工作場(chǎng)所環(huán)境中的聲音反饋可能不切實(shí)際,并會(huì)引起潛在的混淆效應(yīng)。在對(duì)航空裝配過(guò)程中的肌肉疲勞監(jiān)測(cè)設(shè)備設(shè)計(jì)思考時(shí),需要整體考慮。
課題組設(shè)計(jì)了飛機(jī)裝配操作者可穿戴疲勞監(jiān)測(cè)系統(tǒng)的外觀和交互系統(tǒng),由可穿戴手環(huán)和操作者疲勞信息軟件2部分組成,見(jiàn)圖5。首先,關(guān)于可穿戴形式的思考,對(duì)產(chǎn)品加綁帶的形式進(jìn)行了選擇,不同長(zhǎng)度的綁帶可以適宜不同的肌肉部位,且穿戴簡(jiǎn)單、易于使用。其次,關(guān)于肌肉疲勞模型的應(yīng)用策略,根據(jù)疲勞模型將操作者的疲勞程度分成了3類(lèi),即肌肉激活、過(guò)渡到疲勞、疲勞;產(chǎn)品可以根據(jù)采集到的肌電信號(hào)來(lái)判斷操作者的疲勞狀態(tài)。再次,針對(duì)不同肌肉力量、不同熟練程度的操作者,模型的閾值與系統(tǒng)推薦的休息時(shí)間也是不同;針對(duì)新手和熟練操作者在實(shí)驗(yàn)中表現(xiàn)出來(lái)的疲勞數(shù)據(jù)不同,本設(shè)計(jì)對(duì)2類(lèi)人群進(jìn)行了模型的相應(yīng)修改和閾值的調(diào)整;在設(shè)計(jì)的界面中,操作者也可以查看自己在裝配作業(yè)過(guò)程中疲勞程度的變化和系統(tǒng)給出的建議。最后,關(guān)于反饋信號(hào)的設(shè)計(jì),為模型中3種不同疲勞狀態(tài)設(shè)計(jì)了不同的指示燈和振動(dòng)程度,當(dāng)操作者達(dá)到不同的疲勞程度時(shí),系統(tǒng)會(huì)即時(shí)反饋不同顏色的燈光,并且當(dāng)達(dá)到疲勞狀態(tài)后會(huì)發(fā)出振動(dòng)以提醒休息。
圖5 飛機(jī)裝配操作者可穿戴疲勞監(jiān)測(cè)系統(tǒng)造型和界面設(shè)計(jì)
Fig.5Productand interface design of wearable fatigue monitoring system for aircraft assembly operators
航空領(lǐng)域的許多工序難度高、操作復(fù)雜,對(duì)操作者有著極高的要求。操作者的疲勞狀態(tài)對(duì)工作效率有著不容忽視的影響。因此,對(duì)航空制造業(yè)裝配操作者疲勞監(jiān)測(cè)設(shè)備的研究是一個(gè)很重要的課題。本文通過(guò)肌肉疲勞實(shí)驗(yàn),對(duì)新手和熟練操作者的肌電信號(hào)和主觀疲勞程度進(jìn)行采集,整體地分析了生理和主觀評(píng)價(jià)的數(shù)據(jù)?;趯?shí)驗(yàn)的結(jié)果,提出了基于肌電信號(hào)時(shí)域和頻域特征的肌肉疲勞模型,初步檢測(cè)了其準(zhǔn)確率,并分析了如何將主觀評(píng)價(jià)標(biāo)準(zhǔn)融入疲勞檢測(cè)系統(tǒng)的方法。
在實(shí)驗(yàn)的基礎(chǔ)上,本文從可穿戴設(shè)備、肌肉疲勞模型的應(yīng)用策略、反饋數(shù)據(jù)形式等3個(gè)方面分析了航空制造業(yè)裝配操作者疲勞監(jiān)測(cè)設(shè)備的設(shè)計(jì)策略,并根據(jù)設(shè)計(jì)策略對(duì)一款可穿戴設(shè)備的人機(jī)交互進(jìn)行了設(shè)計(jì)應(yīng)用探索。
[1] 王國(guó)磊, 吳丹, 陳懇. 航空制造機(jī)器人現(xiàn)狀與發(fā)展趨勢(shì)[J]. 航空制造技術(shù), 2015, 58(10): 26-30.
WANG Guo-lei, WU Dan, CHEN Ken. Current Status and Development Trend of Aviation Manufacturing Robot[J]. Aeronautical Manufacturing Technology, 2015, 58(10): 26-30.
[2] 楊奎. 鐵路列車(chē)調(diào)度員疲勞機(jī)理與發(fā)展規(guī)律研究[D]. 成都: 西南交通大學(xué), 2017.
YANG Kui. Mechanism and Developing Law of Railway Dispatchor’s Fatigue[D]. Chengdu: Southwest Jiaotong University, 2017.
[3] 謝曉莉. 駕駛疲勞生成機(jī)理研究[D]. 北京: 北京工業(yè)大學(xué), 2010.
XIE Xiao-li. Study on Driving Fatigue Formation Me-chanism[D]. Beijing: Beijing University of Technology, 2010.
[4] SEDIGHI MAMAN Z, ALAMDAR YAZDI M A, CAV-UOTO L A, et al. A Data-Driven Approach to Modeling Physical Fatigue in the Workplace Using Wearable Sensors[J]. Applied Ergonomics, 2017, 65: 515-529.
[5] TROIANO A, NADDEO F, SOSSO E, et al. Assessment of Force and Fatigue in Isometric Contractions of the Upper Trapezius Muscle by Surface EMG Signal and Perceived Exertion Scale[J]. Gait & Posture, 2008, 28(2): 179-186.
[6] 徐騰. 制造業(yè)線上工人作業(yè)疲勞影響因素綜合評(píng)價(jià)研究[D]. 淮南: 安徽理工大學(xué), 2017.
XU Teng. Research on Comprehensive Evaluation of Factors Influencing Fatigue of Workers’ Job in Manufacturing Industry[D]. Huainan: Anhui University of Science & Technology, 2017.
[7] 曾志康. 用于精神疲勞監(jiān)測(cè)的多模態(tài)表皮電子傳感器研究[D]. 武漢: 華中科技大學(xué), 2020.
ZENG Zhi-kang. Research on Multi-Modal Epidermal Electronic Sensor for Mental Fatigue Monitoring[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[8] 黃瀚敏. 基于汽車(chē)駕駛員疲勞狀態(tài)監(jiān)測(cè)技術(shù)的汽車(chē)主動(dòng)安全系統(tǒng)研究[D]. 重慶: 重慶大學(xué), 2007.
HUANG Han-min. Based on Detecting Driver’s Fatigue Status of Vehicle Active Safety[D]. Chongqing: Chong-qing University, 2007.
[9] 唐曉. 基于表面肌電的運(yùn)動(dòng)單位活動(dòng)特性分析及應(yīng)用[D]. 合肥: 中國(guó)科學(xué)技術(shù)大學(xué), 2021.
TANG Xiao. Analysis and Application of Motor Unit Activities Derived from Surface Electromyography[D]. Hefei: University of Science and Technology of China, 2021.
[10] GONZáLEZ-ZAMORA P, BENITEZ V H, PACHECO J. A Feature-Based Processing Framework for Real- Time Implementation of Muscle Fatigue Measurement [J]. Cluster Computing, 2022: 1-10.
[11] LAMBAY A, LIU Ying, JI Ze, et al. Effects of Demographic Factors for Fatigue Detection in Manufacturing[J]. IFAC-PapersOnLine, 2022, 55(2): 528-533.
[12] CHEN Yi-lang. Effects of Work Experience and Exertion Height on Static Lifting Strengths and Lift Strategies of Experienced and Novice Female Participants[J]. International Journal of Industrial Ergonomics, 2014, 44(5): 607-614.
[13] 丁玉蘭. 人機(jī)工程學(xué)[M]. 4版. 北京: 北京理工大學(xué)出版社, 2011.
DING Yu-lan. Human engineering[M]. 4th ed. Beijing: Beijing Insititute of Technology Press, 2011.
[14] Nissan. Driver Attention Alert System[EB/OL]. (2015-07- 25)[2022-07-13]. https://www.nissanusa.com/experience- nissan/news-and-events/drowsy-driver-attention-alert-car- feature.html
[15] Ford. What Is the Ford Driver Alert System?[EB/OL]. (2021-04-22)[2022-07-13]. https://www.ford.com/ support/how-tos/ford-technology/driver-assist-features/ what-is-the-driver-alert-system/.
[16] 張永建, 景世才, 唐健鈞, 等. 面向飛機(jī)總裝的人機(jī)工程仿真技術(shù)[J]. 航空制造技術(shù), 2018, 61(20): 96-101.
ZHANG Yong-jian, JING Shi-cai, TANG Jian-jun, et al. Ergonomic Simulation Technology for Aircraft Final Assembly[J]. Aeronautical Manufacturing Technology, 2018, 61(20): 96-101.
[17] 張非若, 丁嘉順, 戴文濤, 等. 重復(fù)作業(yè)上肢肌肉疲勞的表面肌電實(shí)驗(yàn)研究[J]. 工業(yè)衛(wèi)生與職業(yè)病, 2007, 33(1): 5-8.
ZHANG Fei-ruo, DING Jia-shun, DAI Wen-tao, et al. Experimental Study on Muscle Fatigue of Upper Limbs during Repetitive Performance by Using sEMG[J]. Industrial Health and Occupational Diseases, 2007, 33(1): 5-8.
[18] BARNES K, KAUFFMAN V, CONNOLLY C. Health Wearables: Early Days[R]. Delaware: Pricewater House Coopers LLP 2014.
[19] Cometa. PicoEMG[EB/OL]. (2021-06-22) [2022-07-13]. https://www.cometasystems.com/products/picoemg.
[20] LEE R, JAMES C, EDWARDS S, et al. Evidence for the Effectiveness of Feedback from Wearable Inertial Sensors during Work-Related Activities: A Scoping Review[J]. Sensors, 2021, 21(19): 6377.
Investigating Fatigue Assessment Mechanism for Aviation Manufacturing and Application of the Device Design
ZHANG Lan-yun, HE Yan, YANG Jing-yi, ZHOU Hai-hai, CHEN Bing-fa
(Department of Industrial Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China)
In aviation manufacturing industry,fatigue is a common problem among operators. In order to monitor operators's muscle fatigue, sEMG signal and self-perceived fatigue level are collected between novice and skilled operators. The collected data are further analyzed. It is found that a few sEMG features indicated directional changes with the increase of dynamic muscle fatigue. Spearman correlation analysis indicates that Borg ratings have strong correlations with RMS and FInsm5slopes. Significant differences in the sEMG signals between novice and skilled operators are found. Combined with experimental results, a model is proposed for muscle fatigue assessment. Furthermore, design implications to guide fatigue monitoring devices are discussed for aviation manufacturing workers: design of wearable device, how to apply the proposed model to assess muscle fatigue, and the design of the feedback signal. At last, the design and application of a wearable device for human-computer interaction in this context is explored.
fatigue detection; wearable device; interaction design; industrial design
TB472
A
1001-3563(2022)16-0001-09
10.19554/j.cnki.1001-3563.2022.16.001
2022–07–15
江蘇省雙創(chuàng)博士基金(JSSCBS20210190);南京航空航天大學(xué)科研基金(56YAH20099);南京航空航天大學(xué)前瞻布局科研專(zhuān)項(xiàng)(ILA22060)
張嵐云(1988—),女,博士,講師,主要從事人機(jī)交互設(shè)計(jì)與研究。
陳炳發(fā)(1963—),男,碩士,教授,主要從事人機(jī)工程與交互、CAD&CG等研究。
責(zé)任編輯:陳作