• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Energy-Efficient 12b 2.56 MS/s SAR ADC Using Successive Scaling of Reference Voltages

    2022-08-24 12:57:12HojinKangSyedAsmatAliShahandHyungWonKim
    Computers Materials&Continua 2022年7期

    Hojin Kang, Syed Asmat Ali Shahand HyungWon Kim,*

    1Department of Electronics Engineering, College of Electrical and Computer Engineering, Chungbuk National University,Cheongju, 28644, Korea

    2Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus,Abbottabad, 22060, Pakistan

    Abstract: This paper presents an energy efficient architecture for successive approximation register (SAR) analog to digital converter (ADC).SAR ADCs with a capacitor array structure have been widely used because of its simple architecture and relatively high speed.However, conventional SAR ADCs consume relatively high energy due to the large number of capacitors used in the capacitor array and their sizes scaled up along with the number of bits.The proposed architecture reduces the energy consumption as well as the capacitor size by employing a new array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.The proposed 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13 um library using Cadence Virtuoso design tool.Simulation results and mathematical model demonstrate the overall energy savings of up to 97.3% compared with conventional SAR ADC, 67% compared with the SAR ADC with split capacitor, and 35% compared with the resistor and capacitor (R&C) Hybrid SAR ADC.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56 MS/s, offering an energy consumption of 9.8 fJ per conversion step.The proposed SAR ADC offers 95.5% reduction in chip core area compared to conventional architecture, while occupying an active area of 0.088 mm2.

    Keywords: Low voltage low power; successive approximation register; analog to digital converter; switching energy

    1 Introduction

    Wireless sensor networks and implantable biomedical devices has been gaining popularity in the recent years.These applications require low power consumption because of their limited power budget while achieving optimum performance.Also, it is required to include an analog to digital converter(ADC) for converting sensor data to digital.So, energy and area efficient ADCs plays a pivotal role.

    For many ADC architectures, analog circuits are often employed such as operational amplifiers,which usually consume high energy.But the successive approximation register (SAR) ADCs, however,only need a simple analog circuit like a comparator since they carry out the rest of the operations using the digital circuits.SAR ADCs can, therefore, result in an improved performance and reduced power consumption.Despite these advantages, however, SAR ADCs are not selected for high resolution applications, because their capacitor array requires an excessively large capacitors for high resolution.Various techniques have been proposed to overcome this short coming of SAR ADC.The technique in [1] reduced the supply voltage to reduce the energy consumption, while [2] proposed the merged capacitor switching scheme, to reduce the switching power.In [3,4], a reduction in total capacitor size is realized by using the split capacitor scheme and the R&C Hybrid scheme.

    Literature reveals several techniques to reduce the capacitor array size without digital calibration for fully differential architecture [5].To reduce the capacitor array size by half a top plate sampling technique is used in [6], but at the expense of non-linearity and common mode input dependency.In[7] a digital to analog converter (DAC) configurable window switching technique to ensure reusing the capacitors inDACis incorporated in SARADCs for overall smaller capacitances.However, the benefit of energy efficiency drops.In order to reduce the switching energy and improve the DAC linearity floating DAC switching technique is presented in [8].

    In this paper, we propose a SAR ADC architecture based on successive scaling of the reference voltages instead of conventional scaling of capacitor size to reduce the switching energy consumption and chip area.

    The rest of this paper is organized as follows: Section 2 describes the general architecture of SAR ADCs.Section 3 presents the proposed architecture and the analysis of its switching energy.Section 4 describes a 12-bit ADC implementation based on the proposed architecture.Section 5 analyzes the performance of the 12-bit ADC implementation followed by the conclusions in Section 6.

    2 SAR ADC Algorithm

    Fig.1 shows a structure of a general SAR ADC, which consists of a DAC capacitor array, a comparator circuit, and a SAR control logic.The DAC capacitor array combines the functionality of digital to analog conversion and sample and hold to produce an approximated common mode voltage Vcm.The comparator determines whether the approximated voltage is greater than the predefined common mode voltage.If the voltage is greater, the SAR logic keeps the most significant bit (MSB) bit as one, or otherwise, it flips the MSB bit to zero.The above process is repeated with the next capacitor switched on and the new approximation value compared with the reference voltage.Each comparison result determines each bit of the digital output,where each bit successively improves the accuracy of the conversion.This process of successive comparison continues until the entire digital word is decoded.Fig.2 shows the conventional DAC capacitor array [9].The operation of the conventional SAR ADC is described below.

    Initially, Ssampleis high and the entire capacitor array stores the voltage Vcm- VIN.Then, the MSB capacitor Cb, is connected to Vrefand the remaining capacitors are connected to ground, and so VXis expressed by Eq.(1).

    Then, the comparator output is given by Eq.(2).

    The comparator output determines the MSB bit of the digital output.If the output voltageVOUTis low, the MSB is kept at one and so the voltage of Cbis kept.On the other hand, ifVOUTis high, the MSB is flipped to zero, and so the voltage ofCbis returned to ground.The next largest capacitor Cb-1in the capacitor array is then be connected toVref, increasing the output voltage at VX.

    Figure 1: Block diagram of a general SAR ADC

    Figure 2: Conventional capacitor array of a b-bit SAR ADC

    The above process is repeated for successive capacitors in the array.In each stage, the updated value of VXis expressed by Eq.(3).

    Here, CTis the sum of all capacitors connected to the reference voltage, and CBis the sum of all capacitors connected to ground terminal.

    3 Proposed Architecture

    During every bit cycle, the connections of the capacitors are changed.This section analyzes the switching energy [10] of the conventional architecture and the proposed scheme.For simplicity of analysis, a 2-bit capacitor array is selected in this section.A conventional 2-bit capacitor array is first analyzed, which is illustrated in Fig.3.

    Figure 3: Capacitor array of a conventional 2-bit SAR ADC

    At time 0-, the input voltage is fully sampled by switchSsampleof the capacitor array, while all other switches are OFF.In the 1st iteration of the approximation process, at time 0, the bottom plate of the capacitor C2is connected to Vref, while the other capacitors are connected to ground.Then VXof the capacitor array is charged to the value expressed by Eq.(1).If the capacitor array settles in time TP,the energy drawn by the capacitor array is given by Eq.(4).

    Sinceiref(t) = -dQC2/dt, Eq.(4) can be simplified as Eq.(5).

    HereVX[1] =Vcm-VIN+Vref/2, whileVX[0] =Vcm-VIN.For all the following calculations,TPis assumed to be 1 for the sake of simplicity.At the end of each approximation iteration, the comparator in Fig.1 comparesVXwithVcm, and producesVOUT, which sets the corresponding digital bit to high value ifVX<Vcm.

    In the 2nd iteration of the approximation process,C1in Fig.3 is then connected toVref.Then the energy drawn by the capacitor array is computed by Eqs.(6) and (7).Here we assume that the MSB was determined as 1, and thus the capacitor ratio gives the output voltage ratio (2C0+C0) / 4C0= 3/4.

    Fig.4 shows the proposed capacitor array architecture.The proposed architecture applies to each capacitor different reference voltageVrefscaled down by the factor of 2m-i, while keeping all the capacitor size asC0.HereVrefi=Vref/2iwhereiis the bit position with 0 indicating the MSB and so on.For the proposed architecture of Fig.5, the energy drawn by the capacitor array for the 1st and the 2nd iterations of the approximation process are given by Eqs.(8)-(11), respectively.

    Figure 4: Capacitor array of a 2-bit SAR ADC based on scaled reference

    Figure 5: Capacitor array of a b-bit SAR ADC based on scaled reference

    It is evident from Eqs.(9) and (11) that the proposed SAR ADC architecture can substantially reduce the energy consumption as well as the size of capacitor array compared to the conventional architecture.For another example, Fig.5 illustrates a b-bit SAR ADC based on the proposed scaled reference.Eqs.(12) and (13) compares the energy consumption of the capacitor array for the case of a conventional b-bit SAR ADC with the proposed one in Fig.5.

    By comparing Eqs.(12) and (13), it is observed that the energy reduction effect of the proposed SAR ADC is becoming drastically increasing.While the proposed architecture can substantially reduce the energy consumption and capacitor size, however, it has a restriction on the input dynamic range due to the reduced DAC maximum output voltage.This restriction can be acceptable for many ultra-low power and Internet of Things (IoT) application.

    Conventional:

    Proposed:

    4 Circuit Implementation

    To evaluate the performance of the proposed architecture, a 12-bit SAR ADC is implemented based on the proposed successive reference scaling architecture, which is shown in Fig.6.We implemented it in a fully differential structure to suppress the common mode noise.It also helps to inhibit even harmonic noise, thus improving the dynamic performance of ADC.The key building blocks of the implementation consists of bootstrapped switches, a dynamic comparator, a SAR control logic,and capacitor array DACs including the scaled reference voltages.The following sections describe the design considerations of the building blocks.

    4.1 Bootstrapped Switch

    An input sampling switch often has large impact on the performance of ADC circuits.To improve the linearity of the switch’s transfer function, bootstrapped switch circuits have been widely studied.In this paper, thick gate oxide nMOS transistors are used to minimize the leakage current.To turn on the transistors, series cascaded bootstrap circuits [11] are used.It can generate twice the supply voltage as a gate-source voltage.

    Figure 6: Block diagram of a proposed 12-bit SAR ADC

    Fig.7 explains the simplified operation of the cascaded bootstrapped switch circuit.Input clock is only a single-phase clock φ.When φ is low, the bootstrapping circuit is in the Hold mode.During the Hold mode, the voltage differences between the top plate and the bottom plate of both C1 and C2 are charged to VDD by S1, S2 and S5, S7, respectively.And Vgis discharged to ground by S8 to turn off the switch transistor MNsw.

    Figure 7: The operation of the bootstrapped switch

    When φ goes high, the bootstrapping circuit moves to Sample mode.Then the series cascaded C1 and C2 provide 2XVDD as the gate-source voltage to MNsw, by turning S3, S4, and S6 on.Therefore,the bootstrapped switch circuits achieve low on-resistance and high linearity by applying twice the supply voltage to the transistor gate.This results in VOUTbecoming almost equal to VIN, and so the sampling operation can be conducted with high linearity regardless of input signal level.

    4.2 Hybrid Structure of Capacitor Array

    While the proposed architecture can substantially reduce the switching energy of the capacitor array, it has some limitations.The input dynamic range is reduced by the reduced reference voltage.Generating different reference voltages can be challenging if it requires a large number of reference voltages.To alleviate this challenge, we propose a hybrid structure of capacitor array, which combines the proposed reference-scaling array along with the conventional capacitor-scaling array.For example,Fig.8 shows a 12-bit capacitor array using the hybrid architecture.It employs the reference-scaling architecture for a 4-bit segment (Bit8~Bit5) and uses the capacitor-scaling architecture for the rest of the array (Bit11~Bit9 and Bit4~Bit0).We assume that these 4 reference voltages can be provided by a power management integrated circuit (PMIC) or internal voltage regulators.

    Furthermore, the size of the capacitor array can be further reduced by using a split capacitor.The split capacitor is used to split the array into a least significant bit (LSB) array and a MSB array.Fig.8 shows a split capacitor of size (32/31)C0inserted between the capacitors for Bit5 an Bit4.The capacitance value of a split capacitor is calculated by Eq.(14).

    CLSB array=Sum of the LSB array capacitors

    C0=Csplit/CLSB array=Csplit/32C0

    In the example of Fig.8, the proposed hybrid array architecture reduces the overall capacitor size by 98.8% compared to the conventional capacitor-scaling array.The reduced input dynamic range is only 15.8%, which is considered very small cost given the size reduction is significant.

    Figure 8: Architecture of proposed 12-bit capacitor array DAC

    In addition, the proposed architecture eliminates the needs for an extra reference voltage Vcm,which was used by the conventional architecture shown in Fig.3.The conventional architecture samples the input voltage using the bottom-plate of the capacitor array while connecting the topplate to the reference voltage (Vcm).The proposed architecture illustrated in Fig.8, however, samples the input voltage using the top plate of the capacitors, and thus does not need Vcm.During the input sampling,theMSB is preset to achieve a full-range sampling, which also eliminates an extra reset cycle.As shown in Fig.9, the differential inputs are initially connected to the top plates of the capacitor array, and simultaneously the MSB is set to high (connecting S11 to VREFP) and all other bits are set to low (connecting Sito VREFP).Next, the top-plate sampling switchSsampleis open and the sampled input voltage is kept in the capacitor array.A similar approach has also been reported in [12].

    4.3 Dynamic Comparator

    In SAR ADCs, the comparator also considerably contributes to the power consumption.We employ a two-stage dynamic circuit design similar to [13].The comparator is shown in Fig.10.The first stage is a voltage amplification stage.The second stage is a latch structure with cross-coupled inverters acting as a positive-feedback amplifier.It obtains the rail-to-rail digital output (SP and SN).Prior to the comparison, the nodes FN and FP are discharged by a high value of the clock.

    Figure 9: Timing diagram of capacitor array

    Figure 10: Architecture of dynamic comparator

    4.4 SAR Control Logic

    For SAR control logic, asynchronous control circuits have been often used to achieve high speed[14].The circulation behavior of the asynchronous circuits, however, can incur serious stability problems, when the asynchronous circuits experience variations in the process, voltage, and temperature.To avoid such risk, therefore, we employ synchronous control circuit based on a ring counter structure.Fig.11 shows the SAR control circuit used by the proposed SAR ADC.

    The operation of the control circuit is summarized below.For each conversion, in the first cycle,the End of Conversion (EOC) signal is set to high, and all D-type flip flop (DFFs) are reset, and for rest of the cycles EOC is kept low until the final cycle.In the next cycle the most significant DFF is set to one which corresponds to MSB of the digital word of the ADC.Then the counter shifts‘1’through the DFF from MSB to LSB.

    Figure 11: Architecture of SAR control logic

    In each clock cycle, one of the outputs in the ring counter sets a DFF in the code register.The output of this DFF which is set by the ring counter is used as the clock signal for the previous DFF.At the rising edge of the clock, this DFF loads the result from the comparator.At the end of the conversion, EOC signal turns to high.This SAR control circuit produces very few signal transitions leading to low power consumption.

    5 Simulation Results

    The proposed SARADCwas implemented and fabricated using a 0.13 umCMOSprocess.Fig.12 shows the layout result of the chip, where the chip area is 262 um×335um, occupying an active area of 0.088 mm2Based on the process design rule, we used the minimum met al-insulation- met al (MIM)capacitor of size 67.35 fF as the unit capacitor (C0) for the proposed capacitor array.

    Figure 12: Layout view of proposed 12-bit SAR ADC

    Fig.13 compares the energy consumption of the proposed SAR ADC with various previous SAR ADCs: conventional, split capacitor, and R&C Hybrid SAR ADC.For fair comparison of various capacitor array architectures, the same dynamic comparator and SAR control circuit are used in all ADCs architectures compared above.The proposed SAR ADC provides the lowest energy consumption throughout all range of input voltages (X-axis indicates the corresponding digital output code).

    Figure 13: Comparison results of the energy consumption

    Fig.14 shows spectral analysis for the output of the proposed SAR ADC.Under a supply voltage of 1.5 V and a sampling frequency of 2.56 MS/s, the proposed ADC provides an SNDR of 69.63 dB,which is equivalent to 11.27 ENOB.

    Figure 14: Output spectrum operating at 2.56 MS/s

    Under the same operating conditions, we conducted detailed comparison between the proposed SAR ADC and the previous SAR ADCs.Tab.1 demonstrates that the proposed SAR ADC achieves the lowest power consumption.It reduces the power consumption by 35% compared with the R&C Hybrid ADC, 67% compared with the ADC with split capacitor, and 97.3% compared with the conventional SAR ADC.In addition, the proposed SAR ADC reduces the chip area by 95.5%compared with the conventional SAR ADC.

    Table 1: Performance comparison

    6 Conclusion

    This paper proposed an energy-efficient architecture of successive approximation register (SAR)analog to digital converter (ADC) based on successive scaling of reference voltage.The proposed architecture incorporates a hybrid array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.To illustrate the concept, a 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13um library using Cadence Virtuoso design suite and compared with conventional SAR ADC, SAR ADC with split capacitor, and Resistor &capacitor (R&C) Hybrid SAR ADC.Simulation results demonstrates an overall energy saving of 97.3%, 67%, and 35% respectively compared to conventional, with split capacitor, and R&C Hybrid SAR ADCs.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56MS/s, offering an energy efficiency of 9.8fJ per conversion step.The proposed architecture reduces the capacitor array size by 98.8% and offers 95.5% reduction in the overall chip core area, while occupying an active area of 0.088 mm2.

    Funding Statement:This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01304, Development of Self-learnable Mobile Recursive Neural Network Processor Technology)and also supported by the MSIT(Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program(IITP-2020-0-01462) supervised by the IITP(Institute for Information & communications Technology Planning & Evaluation)”.And also financially supported by the Ministry of Small and Medium-sized Enterprises(SMEs) and Startups(MSS),Korea, under the“Regional Specialized Industry Development Plus Program(R&D, S3091644)”supervised by the Korea Institute for Advancement of Technology(KIAT) and supported by the AURI(Korea Association of University, Research institute and Industry) grant funded by the Korea Government(MSS: Ministry of SMEs and Startups).(No.S2929950, HRD program for 2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    大香蕉久久成人网| 亚洲全国av大片| 18禁国产床啪视频网站| 日本a在线网址| 国产成人一区二区三区免费视频网站| 50天的宝宝边吃奶边哭怎么回事| 美女国产高潮福利片在线看| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区| 日本av免费视频播放| 亚洲国产看品久久| 免费观看av网站的网址| 日本vs欧美在线观看视频| 久久人人爽av亚洲精品天堂| 国产精品免费视频内射| 免费黄频网站在线观看国产| 国产精品自产拍在线观看55亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 最新在线观看一区二区三区| 99国产精品99久久久久| 中文字幕制服av| 99精品欧美一区二区三区四区| 亚洲一区二区三区欧美精品| 欧美中文综合在线视频| 一边摸一边抽搐一进一出视频| 国产在线一区二区三区精| 久久精品熟女亚洲av麻豆精品| 丁香六月天网| 黑人巨大精品欧美一区二区蜜桃| 丝袜喷水一区| 午夜福利一区二区在线看| 亚洲久久久国产精品| 国产一区二区三区在线臀色熟女 | 国产精品久久久久久精品古装| 大型黄色视频在线免费观看| 午夜福利视频在线观看免费| 日韩欧美三级三区| 麻豆av在线久日| 亚洲欧洲日产国产| 亚洲一区中文字幕在线| 国产又爽黄色视频| 交换朋友夫妻互换小说| 首页视频小说图片口味搜索| 啦啦啦视频在线资源免费观看| 亚洲精品国产区一区二| 十八禁网站网址无遮挡| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9 | 又紧又爽又黄一区二区| 宅男免费午夜| 中文欧美无线码| 最新美女视频免费是黄的| 一级黄色大片毛片| 日韩欧美三级三区| 成人黄色视频免费在线看| 国产在线精品亚洲第一网站| 超碰97精品在线观看| 亚洲成av片中文字幕在线观看| 国产黄频视频在线观看| 久久久久久久久免费视频了| 老司机靠b影院| www.999成人在线观看| 成年人黄色毛片网站| 黄色怎么调成土黄色| 不卡一级毛片| 大香蕉久久网| 老司机午夜十八禁免费视频| 精品国产国语对白av| 午夜免费成人在线视频| 香蕉丝袜av| 777米奇影视久久| 欧美性长视频在线观看| 成年动漫av网址| 国产精品 国内视频| 亚洲精品国产色婷婷电影| 又紧又爽又黄一区二区| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 亚洲九九香蕉| 精品久久蜜臀av无| 亚洲一区中文字幕在线| 一进一出好大好爽视频| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 999久久久国产精品视频| 成人免费观看视频高清| 亚洲成a人片在线一区二区| 一本综合久久免费| 亚洲国产看品久久| 99riav亚洲国产免费| 欧美久久黑人一区二区| 欧美 日韩 精品 国产| 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 欧美激情久久久久久爽电影 | 成人精品一区二区免费| 涩涩av久久男人的天堂| 亚洲七黄色美女视频| 亚洲avbb在线观看| 成人特级黄色片久久久久久久 | 国产片内射在线| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 三级毛片av免费| 美女福利国产在线| 久久久国产欧美日韩av| 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 色94色欧美一区二区| 最新在线观看一区二区三区| 欧美日韩精品网址| 高清视频免费观看一区二区| 欧美日韩福利视频一区二区| 我要看黄色一级片免费的| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 狠狠婷婷综合久久久久久88av| 久久久国产一区二区| 麻豆成人av在线观看| 久久av网站| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品国产高清国产av | 嫩草影视91久久| 亚洲九九香蕉| 夫妻午夜视频| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 国产精品免费大片| 丝袜在线中文字幕| 91av网站免费观看| av一本久久久久| 久久婷婷成人综合色麻豆| 国产精品自产拍在线观看55亚洲 | 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 亚洲人成伊人成综合网2020| 成年人午夜在线观看视频| 久久天堂一区二区三区四区| 99热国产这里只有精品6| 国产在视频线精品| 一进一出好大好爽视频| 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 国产精品国产高清国产av | 亚洲欧美精品综合一区二区三区| tube8黄色片| 久久国产精品大桥未久av| 后天国语完整版免费观看| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频| 国产区一区二久久| 美女福利国产在线| 成人av一区二区三区在线看| 18禁国产床啪视频网站| av超薄肉色丝袜交足视频| 日韩中文字幕视频在线看片| 黑人操中国人逼视频| 丝瓜视频免费看黄片| 国产免费现黄频在线看| 热99re8久久精品国产| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av香蕉五月 | 亚洲精华国产精华精| 老汉色av国产亚洲站长工具| 久久人妻熟女aⅴ| 久久性视频一级片| 欧美一级毛片孕妇| 午夜福利视频精品| 777久久人妻少妇嫩草av网站| 欧美+亚洲+日韩+国产| 亚洲视频免费观看视频| 免费观看av网站的网址| 久久这里只有精品19| 日韩精品免费视频一区二区三区| 深夜精品福利| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 侵犯人妻中文字幕一二三四区| 99re在线观看精品视频| videosex国产| 又大又爽又粗| 精品国产乱码久久久久久小说| 亚洲第一欧美日韩一区二区三区 | 一级毛片电影观看| 国产成人精品久久二区二区免费| 久久久久久免费高清国产稀缺| 国产精品影院久久| 日韩三级视频一区二区三区| 老司机午夜十八禁免费视频| 一级a爱视频在线免费观看| 国产高清激情床上av| 中亚洲国语对白在线视频| 亚洲伊人久久精品综合| 欧美一级毛片孕妇| 搡老乐熟女国产| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影 | 12—13女人毛片做爰片一| 国产精品二区激情视频| 一本色道久久久久久精品综合| 亚洲成人免费电影在线观看| 久久中文字幕一级| 久久久久久久久免费视频了| 国产日韩欧美在线精品| 最黄视频免费看| 久久久久网色| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 久久精品国产a三级三级三级| av超薄肉色丝袜交足视频| 国产免费视频播放在线视频| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 飞空精品影院首页| 精品亚洲成a人片在线观看| tube8黄色片| 国产精品九九99| 国产色视频综合| 久久久久精品国产欧美久久久| 另类精品久久| 狠狠狠狠99中文字幕| 亚洲色图综合在线观看| 精品国产一区二区三区四区第35| 亚洲av欧美aⅴ国产| 高清av免费在线| 我要看黄色一级片免费的| 亚洲精品在线美女| 国产精品久久久av美女十八| 国产欧美日韩精品亚洲av| 亚洲av国产av综合av卡| 成人三级做爰电影| 欧美人与性动交α欧美软件| av在线播放免费不卡| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 久久久久久久国产电影| 搡老岳熟女国产| 搡老岳熟女国产| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 中文亚洲av片在线观看爽 | 99久久国产精品久久久| 久久久精品区二区三区| 男女免费视频国产| 成人影院久久| 国产精品1区2区在线观看. | 怎么达到女性高潮| 国产精品熟女久久久久浪| 悠悠久久av| 国产一卡二卡三卡精品| 大香蕉久久成人网| 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美精品济南到| 亚洲欧洲日产国产| 欧美乱码精品一区二区三区| 悠悠久久av| 国产在线免费精品| 99热网站在线观看| 丰满少妇做爰视频| 精品亚洲乱码少妇综合久久| 19禁男女啪啪无遮挡网站| bbb黄色大片| 精品久久久精品久久久| 啦啦啦免费观看视频1| 久久精品成人免费网站| 淫妇啪啪啪对白视频| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 高清欧美精品videossex| av视频免费观看在线观看| 国产av又大| 亚洲欧美一区二区三区久久| 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 亚洲av成人一区二区三| 男女无遮挡免费网站观看| 18在线观看网站| 欧美中文综合在线视频| 亚洲av成人一区二区三| 午夜视频精品福利| 热99久久久久精品小说推荐| 亚洲精华国产精华精| 99精品在免费线老司机午夜| 久久久久久久国产电影| 亚洲九九香蕉| 色尼玛亚洲综合影院| 丁香欧美五月| 一本—道久久a久久精品蜜桃钙片| 日韩免费av在线播放| 中文欧美无线码| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 久久久久久久精品吃奶| 午夜精品久久久久久毛片777| 成人18禁在线播放| 亚洲色图av天堂| 1024香蕉在线观看| 中文欧美无线码| 看免费av毛片| 日韩欧美一区视频在线观看| 制服诱惑二区| 亚洲专区字幕在线| 91成人精品电影| 国产欧美日韩精品亚洲av| 中文字幕人妻熟女乱码| 中文字幕av电影在线播放| 日本黄色视频三级网站网址 | 日韩中文字幕欧美一区二区| 国产午夜精品久久久久久| 极品人妻少妇av视频| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 国产区一区二久久| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 免费av中文字幕在线| 国产亚洲av高清不卡| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成77777在线视频| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 80岁老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| 成年女人毛片免费观看观看9 | 免费一级毛片在线播放高清视频 | 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀| 亚洲免费av在线视频| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 免费看十八禁软件| 国产1区2区3区精品| 在线观看免费视频网站a站| 国产欧美日韩一区二区精品| 免费日韩欧美在线观看| 黄色视频不卡| www.精华液| 免费在线观看影片大全网站| 岛国毛片在线播放| 成人手机av| 午夜成年电影在线免费观看| 亚洲色图av天堂| 蜜桃在线观看..| aaaaa片日本免费| 下体分泌物呈黄色| 国产一区二区激情短视频| 日韩中文字幕视频在线看片| 好男人电影高清在线观看| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 青草久久国产| 女性被躁到高潮视频| 国产三级黄色录像| www.精华液| 水蜜桃什么品种好| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 99riav亚洲国产免费| 久久国产亚洲av麻豆专区| 成年人黄色毛片网站| 一本大道久久a久久精品| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成av片中文字幕在线观看| 成人手机av| 中文字幕av电影在线播放| 美女午夜性视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 手机成人av网站| 天堂动漫精品| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 男女边摸边吃奶| av不卡在线播放| 国产在线免费精品| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免费看| 一级片免费观看大全| 国产精品电影一区二区三区 | 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av | 97人妻天天添夜夜摸| 亚洲国产精品一区二区三区在线| 国产成人精品久久二区二区免费| 考比视频在线观看| 国产精品美女特级片免费视频播放器 | 亚洲视频免费观看视频| 国产麻豆69| 黄色成人免费大全| videosex国产| 色视频在线一区二区三区| 国产av一区二区精品久久| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 国产精品久久久久久人妻精品电影 | 丝袜美足系列| 亚洲精品久久成人aⅴ小说| 久久精品亚洲av国产电影网| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 在线av久久热| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 国产精品.久久久| 黑人欧美特级aaaaaa片| 啦啦啦免费观看视频1| 久久性视频一级片| 啦啦啦在线免费观看视频4| 精品亚洲成a人片在线观看| 久久免费观看电影| 色综合婷婷激情| 精品少妇黑人巨大在线播放| 国产高清videossex| 久久人人97超碰香蕉20202| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品人与动牲交sv欧美| 一级a爱视频在线免费观看| 国产成人精品无人区| 99九九在线精品视频| 精品一品国产午夜福利视频| 精品熟女少妇八av免费久了| 最新美女视频免费是黄的| 国产高清激情床上av| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 精品国产亚洲在线| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影 | 国产免费现黄频在线看| www.熟女人妻精品国产| 国产成人系列免费观看| 一区在线观看完整版| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影 | 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 亚洲精品在线观看二区| 国产亚洲午夜精品一区二区久久| 深夜精品福利| av电影中文网址| 一级片免费观看大全| 蜜桃国产av成人99| 国产精品亚洲av一区麻豆| 免费黄频网站在线观看国产| 99热网站在线观看| 久久精品国产a三级三级三级| 香蕉国产在线看| 下体分泌物呈黄色| 国产精品自产拍在线观看55亚洲 | 伦理电影免费视频| 丁香欧美五月| 三级毛片av免费| 欧美日韩黄片免| 久久久久国内视频| 精品福利观看| 久久性视频一级片| 精品亚洲成a人片在线观看| √禁漫天堂资源中文www| 宅男免费午夜| 搡老乐熟女国产| kizo精华| 亚洲第一欧美日韩一区二区三区 | 国产91精品成人一区二区三区 | 男人舔女人的私密视频| a在线观看视频网站| 一二三四在线观看免费中文在| 最近最新中文字幕大全免费视频| 丝袜美足系列| 老汉色av国产亚洲站长工具| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 老熟女久久久| 午夜成年电影在线免费观看| av有码第一页| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一小说 | 蜜桃国产av成人99| 高清毛片免费观看视频网站 | 欧美在线黄色| 99热网站在线观看| 人人妻,人人澡人人爽秒播| 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 麻豆av在线久日| 亚洲中文字幕日韩| 桃花免费在线播放| 免费在线观看完整版高清| 香蕉久久夜色| 久久精品国产亚洲av高清一级| 五月天丁香电影| 亚洲黑人精品在线| 午夜福利影视在线免费观看| 天天添夜夜摸| 99国产精品99久久久久| 精品国产国语对白av| 欧美日本中文国产一区发布| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 亚洲成人免费av在线播放| 首页视频小说图片口味搜索| 男女午夜视频在线观看| e午夜精品久久久久久久| 国产深夜福利视频在线观看| 老司机午夜十八禁免费视频| 久久天堂一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 日韩大码丰满熟妇| videos熟女内射| 亚洲情色 制服丝袜| 黄频高清免费视频| 国产无遮挡羞羞视频在线观看| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 如日韩欧美国产精品一区二区三区| 女同久久另类99精品国产91| 亚洲av国产av综合av卡| 女性被躁到高潮视频| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 久久99一区二区三区| 精品福利观看| a在线观看视频网站| 亚洲成人免费av在线播放| 我的亚洲天堂| cao死你这个sao货| 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 中文字幕制服av| 亚洲人成伊人成综合网2020| 精品亚洲成国产av| 国产成人免费观看mmmm| 免费看a级黄色片| 国产成人一区二区三区免费视频网站| www.自偷自拍.com| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 亚洲第一欧美日韩一区二区三区 | 岛国毛片在线播放| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 丝袜在线中文字幕| 国产精品欧美亚洲77777| 国产精品一区二区在线观看99| 黄网站色视频无遮挡免费观看| 老司机午夜福利在线观看视频 | 最近最新中文字幕大全电影3 | 窝窝影院91人妻| 99国产精品免费福利视频| 丁香六月欧美| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 亚洲国产欧美一区二区综合| 一级a爱视频在线免费观看| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 精品国产一区二区久久| 日韩欧美三级三区| 亚洲午夜精品一区,二区,三区| 国产一区二区在线观看av| 午夜福利乱码中文字幕| 黄色a级毛片大全视频| 国产男女超爽视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久人妻精品电影 | 妹子高潮喷水视频| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃| 成人国产av品久久久| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 国产精品美女特级片免费视频播放器 | 久久中文字幕人妻熟女| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 国产精品免费一区二区三区在线 | 日本一区二区免费在线视频| 亚洲伊人色综图|