• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Energy-Efficient 12b 2.56 MS/s SAR ADC Using Successive Scaling of Reference Voltages

    2022-08-24 12:57:12HojinKangSyedAsmatAliShahandHyungWonKim
    Computers Materials&Continua 2022年7期

    Hojin Kang, Syed Asmat Ali Shahand HyungWon Kim,*

    1Department of Electronics Engineering, College of Electrical and Computer Engineering, Chungbuk National University,Cheongju, 28644, Korea

    2Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus,Abbottabad, 22060, Pakistan

    Abstract: This paper presents an energy efficient architecture for successive approximation register (SAR) analog to digital converter (ADC).SAR ADCs with a capacitor array structure have been widely used because of its simple architecture and relatively high speed.However, conventional SAR ADCs consume relatively high energy due to the large number of capacitors used in the capacitor array and their sizes scaled up along with the number of bits.The proposed architecture reduces the energy consumption as well as the capacitor size by employing a new array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.The proposed 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13 um library using Cadence Virtuoso design tool.Simulation results and mathematical model demonstrate the overall energy savings of up to 97.3% compared with conventional SAR ADC, 67% compared with the SAR ADC with split capacitor, and 35% compared with the resistor and capacitor (R&C) Hybrid SAR ADC.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56 MS/s, offering an energy consumption of 9.8 fJ per conversion step.The proposed SAR ADC offers 95.5% reduction in chip core area compared to conventional architecture, while occupying an active area of 0.088 mm2.

    Keywords: Low voltage low power; successive approximation register; analog to digital converter; switching energy

    1 Introduction

    Wireless sensor networks and implantable biomedical devices has been gaining popularity in the recent years.These applications require low power consumption because of their limited power budget while achieving optimum performance.Also, it is required to include an analog to digital converter(ADC) for converting sensor data to digital.So, energy and area efficient ADCs plays a pivotal role.

    For many ADC architectures, analog circuits are often employed such as operational amplifiers,which usually consume high energy.But the successive approximation register (SAR) ADCs, however,only need a simple analog circuit like a comparator since they carry out the rest of the operations using the digital circuits.SAR ADCs can, therefore, result in an improved performance and reduced power consumption.Despite these advantages, however, SAR ADCs are not selected for high resolution applications, because their capacitor array requires an excessively large capacitors for high resolution.Various techniques have been proposed to overcome this short coming of SAR ADC.The technique in [1] reduced the supply voltage to reduce the energy consumption, while [2] proposed the merged capacitor switching scheme, to reduce the switching power.In [3,4], a reduction in total capacitor size is realized by using the split capacitor scheme and the R&C Hybrid scheme.

    Literature reveals several techniques to reduce the capacitor array size without digital calibration for fully differential architecture [5].To reduce the capacitor array size by half a top plate sampling technique is used in [6], but at the expense of non-linearity and common mode input dependency.In[7] a digital to analog converter (DAC) configurable window switching technique to ensure reusing the capacitors inDACis incorporated in SARADCs for overall smaller capacitances.However, the benefit of energy efficiency drops.In order to reduce the switching energy and improve the DAC linearity floating DAC switching technique is presented in [8].

    In this paper, we propose a SAR ADC architecture based on successive scaling of the reference voltages instead of conventional scaling of capacitor size to reduce the switching energy consumption and chip area.

    The rest of this paper is organized as follows: Section 2 describes the general architecture of SAR ADCs.Section 3 presents the proposed architecture and the analysis of its switching energy.Section 4 describes a 12-bit ADC implementation based on the proposed architecture.Section 5 analyzes the performance of the 12-bit ADC implementation followed by the conclusions in Section 6.

    2 SAR ADC Algorithm

    Fig.1 shows a structure of a general SAR ADC, which consists of a DAC capacitor array, a comparator circuit, and a SAR control logic.The DAC capacitor array combines the functionality of digital to analog conversion and sample and hold to produce an approximated common mode voltage Vcm.The comparator determines whether the approximated voltage is greater than the predefined common mode voltage.If the voltage is greater, the SAR logic keeps the most significant bit (MSB) bit as one, or otherwise, it flips the MSB bit to zero.The above process is repeated with the next capacitor switched on and the new approximation value compared with the reference voltage.Each comparison result determines each bit of the digital output,where each bit successively improves the accuracy of the conversion.This process of successive comparison continues until the entire digital word is decoded.Fig.2 shows the conventional DAC capacitor array [9].The operation of the conventional SAR ADC is described below.

    Initially, Ssampleis high and the entire capacitor array stores the voltage Vcm- VIN.Then, the MSB capacitor Cb, is connected to Vrefand the remaining capacitors are connected to ground, and so VXis expressed by Eq.(1).

    Then, the comparator output is given by Eq.(2).

    The comparator output determines the MSB bit of the digital output.If the output voltageVOUTis low, the MSB is kept at one and so the voltage of Cbis kept.On the other hand, ifVOUTis high, the MSB is flipped to zero, and so the voltage ofCbis returned to ground.The next largest capacitor Cb-1in the capacitor array is then be connected toVref, increasing the output voltage at VX.

    Figure 1: Block diagram of a general SAR ADC

    Figure 2: Conventional capacitor array of a b-bit SAR ADC

    The above process is repeated for successive capacitors in the array.In each stage, the updated value of VXis expressed by Eq.(3).

    Here, CTis the sum of all capacitors connected to the reference voltage, and CBis the sum of all capacitors connected to ground terminal.

    3 Proposed Architecture

    During every bit cycle, the connections of the capacitors are changed.This section analyzes the switching energy [10] of the conventional architecture and the proposed scheme.For simplicity of analysis, a 2-bit capacitor array is selected in this section.A conventional 2-bit capacitor array is first analyzed, which is illustrated in Fig.3.

    Figure 3: Capacitor array of a conventional 2-bit SAR ADC

    At time 0-, the input voltage is fully sampled by switchSsampleof the capacitor array, while all other switches are OFF.In the 1st iteration of the approximation process, at time 0, the bottom plate of the capacitor C2is connected to Vref, while the other capacitors are connected to ground.Then VXof the capacitor array is charged to the value expressed by Eq.(1).If the capacitor array settles in time TP,the energy drawn by the capacitor array is given by Eq.(4).

    Sinceiref(t) = -dQC2/dt, Eq.(4) can be simplified as Eq.(5).

    HereVX[1] =Vcm-VIN+Vref/2, whileVX[0] =Vcm-VIN.For all the following calculations,TPis assumed to be 1 for the sake of simplicity.At the end of each approximation iteration, the comparator in Fig.1 comparesVXwithVcm, and producesVOUT, which sets the corresponding digital bit to high value ifVX<Vcm.

    In the 2nd iteration of the approximation process,C1in Fig.3 is then connected toVref.Then the energy drawn by the capacitor array is computed by Eqs.(6) and (7).Here we assume that the MSB was determined as 1, and thus the capacitor ratio gives the output voltage ratio (2C0+C0) / 4C0= 3/4.

    Fig.4 shows the proposed capacitor array architecture.The proposed architecture applies to each capacitor different reference voltageVrefscaled down by the factor of 2m-i, while keeping all the capacitor size asC0.HereVrefi=Vref/2iwhereiis the bit position with 0 indicating the MSB and so on.For the proposed architecture of Fig.5, the energy drawn by the capacitor array for the 1st and the 2nd iterations of the approximation process are given by Eqs.(8)-(11), respectively.

    Figure 4: Capacitor array of a 2-bit SAR ADC based on scaled reference

    Figure 5: Capacitor array of a b-bit SAR ADC based on scaled reference

    It is evident from Eqs.(9) and (11) that the proposed SAR ADC architecture can substantially reduce the energy consumption as well as the size of capacitor array compared to the conventional architecture.For another example, Fig.5 illustrates a b-bit SAR ADC based on the proposed scaled reference.Eqs.(12) and (13) compares the energy consumption of the capacitor array for the case of a conventional b-bit SAR ADC with the proposed one in Fig.5.

    By comparing Eqs.(12) and (13), it is observed that the energy reduction effect of the proposed SAR ADC is becoming drastically increasing.While the proposed architecture can substantially reduce the energy consumption and capacitor size, however, it has a restriction on the input dynamic range due to the reduced DAC maximum output voltage.This restriction can be acceptable for many ultra-low power and Internet of Things (IoT) application.

    Conventional:

    Proposed:

    4 Circuit Implementation

    To evaluate the performance of the proposed architecture, a 12-bit SAR ADC is implemented based on the proposed successive reference scaling architecture, which is shown in Fig.6.We implemented it in a fully differential structure to suppress the common mode noise.It also helps to inhibit even harmonic noise, thus improving the dynamic performance of ADC.The key building blocks of the implementation consists of bootstrapped switches, a dynamic comparator, a SAR control logic,and capacitor array DACs including the scaled reference voltages.The following sections describe the design considerations of the building blocks.

    4.1 Bootstrapped Switch

    An input sampling switch often has large impact on the performance of ADC circuits.To improve the linearity of the switch’s transfer function, bootstrapped switch circuits have been widely studied.In this paper, thick gate oxide nMOS transistors are used to minimize the leakage current.To turn on the transistors, series cascaded bootstrap circuits [11] are used.It can generate twice the supply voltage as a gate-source voltage.

    Figure 6: Block diagram of a proposed 12-bit SAR ADC

    Fig.7 explains the simplified operation of the cascaded bootstrapped switch circuit.Input clock is only a single-phase clock φ.When φ is low, the bootstrapping circuit is in the Hold mode.During the Hold mode, the voltage differences between the top plate and the bottom plate of both C1 and C2 are charged to VDD by S1, S2 and S5, S7, respectively.And Vgis discharged to ground by S8 to turn off the switch transistor MNsw.

    Figure 7: The operation of the bootstrapped switch

    When φ goes high, the bootstrapping circuit moves to Sample mode.Then the series cascaded C1 and C2 provide 2XVDD as the gate-source voltage to MNsw, by turning S3, S4, and S6 on.Therefore,the bootstrapped switch circuits achieve low on-resistance and high linearity by applying twice the supply voltage to the transistor gate.This results in VOUTbecoming almost equal to VIN, and so the sampling operation can be conducted with high linearity regardless of input signal level.

    4.2 Hybrid Structure of Capacitor Array

    While the proposed architecture can substantially reduce the switching energy of the capacitor array, it has some limitations.The input dynamic range is reduced by the reduced reference voltage.Generating different reference voltages can be challenging if it requires a large number of reference voltages.To alleviate this challenge, we propose a hybrid structure of capacitor array, which combines the proposed reference-scaling array along with the conventional capacitor-scaling array.For example,Fig.8 shows a 12-bit capacitor array using the hybrid architecture.It employs the reference-scaling architecture for a 4-bit segment (Bit8~Bit5) and uses the capacitor-scaling architecture for the rest of the array (Bit11~Bit9 and Bit4~Bit0).We assume that these 4 reference voltages can be provided by a power management integrated circuit (PMIC) or internal voltage regulators.

    Furthermore, the size of the capacitor array can be further reduced by using a split capacitor.The split capacitor is used to split the array into a least significant bit (LSB) array and a MSB array.Fig.8 shows a split capacitor of size (32/31)C0inserted between the capacitors for Bit5 an Bit4.The capacitance value of a split capacitor is calculated by Eq.(14).

    CLSB array=Sum of the LSB array capacitors

    C0=Csplit/CLSB array=Csplit/32C0

    In the example of Fig.8, the proposed hybrid array architecture reduces the overall capacitor size by 98.8% compared to the conventional capacitor-scaling array.The reduced input dynamic range is only 15.8%, which is considered very small cost given the size reduction is significant.

    Figure 8: Architecture of proposed 12-bit capacitor array DAC

    In addition, the proposed architecture eliminates the needs for an extra reference voltage Vcm,which was used by the conventional architecture shown in Fig.3.The conventional architecture samples the input voltage using the bottom-plate of the capacitor array while connecting the topplate to the reference voltage (Vcm).The proposed architecture illustrated in Fig.8, however, samples the input voltage using the top plate of the capacitors, and thus does not need Vcm.During the input sampling,theMSB is preset to achieve a full-range sampling, which also eliminates an extra reset cycle.As shown in Fig.9, the differential inputs are initially connected to the top plates of the capacitor array, and simultaneously the MSB is set to high (connecting S11 to VREFP) and all other bits are set to low (connecting Sito VREFP).Next, the top-plate sampling switchSsampleis open and the sampled input voltage is kept in the capacitor array.A similar approach has also been reported in [12].

    4.3 Dynamic Comparator

    In SAR ADCs, the comparator also considerably contributes to the power consumption.We employ a two-stage dynamic circuit design similar to [13].The comparator is shown in Fig.10.The first stage is a voltage amplification stage.The second stage is a latch structure with cross-coupled inverters acting as a positive-feedback amplifier.It obtains the rail-to-rail digital output (SP and SN).Prior to the comparison, the nodes FN and FP are discharged by a high value of the clock.

    Figure 9: Timing diagram of capacitor array

    Figure 10: Architecture of dynamic comparator

    4.4 SAR Control Logic

    For SAR control logic, asynchronous control circuits have been often used to achieve high speed[14].The circulation behavior of the asynchronous circuits, however, can incur serious stability problems, when the asynchronous circuits experience variations in the process, voltage, and temperature.To avoid such risk, therefore, we employ synchronous control circuit based on a ring counter structure.Fig.11 shows the SAR control circuit used by the proposed SAR ADC.

    The operation of the control circuit is summarized below.For each conversion, in the first cycle,the End of Conversion (EOC) signal is set to high, and all D-type flip flop (DFFs) are reset, and for rest of the cycles EOC is kept low until the final cycle.In the next cycle the most significant DFF is set to one which corresponds to MSB of the digital word of the ADC.Then the counter shifts‘1’through the DFF from MSB to LSB.

    Figure 11: Architecture of SAR control logic

    In each clock cycle, one of the outputs in the ring counter sets a DFF in the code register.The output of this DFF which is set by the ring counter is used as the clock signal for the previous DFF.At the rising edge of the clock, this DFF loads the result from the comparator.At the end of the conversion, EOC signal turns to high.This SAR control circuit produces very few signal transitions leading to low power consumption.

    5 Simulation Results

    The proposed SARADCwas implemented and fabricated using a 0.13 umCMOSprocess.Fig.12 shows the layout result of the chip, where the chip area is 262 um×335um, occupying an active area of 0.088 mm2Based on the process design rule, we used the minimum met al-insulation- met al (MIM)capacitor of size 67.35 fF as the unit capacitor (C0) for the proposed capacitor array.

    Figure 12: Layout view of proposed 12-bit SAR ADC

    Fig.13 compares the energy consumption of the proposed SAR ADC with various previous SAR ADCs: conventional, split capacitor, and R&C Hybrid SAR ADC.For fair comparison of various capacitor array architectures, the same dynamic comparator and SAR control circuit are used in all ADCs architectures compared above.The proposed SAR ADC provides the lowest energy consumption throughout all range of input voltages (X-axis indicates the corresponding digital output code).

    Figure 13: Comparison results of the energy consumption

    Fig.14 shows spectral analysis for the output of the proposed SAR ADC.Under a supply voltage of 1.5 V and a sampling frequency of 2.56 MS/s, the proposed ADC provides an SNDR of 69.63 dB,which is equivalent to 11.27 ENOB.

    Figure 14: Output spectrum operating at 2.56 MS/s

    Under the same operating conditions, we conducted detailed comparison between the proposed SAR ADC and the previous SAR ADCs.Tab.1 demonstrates that the proposed SAR ADC achieves the lowest power consumption.It reduces the power consumption by 35% compared with the R&C Hybrid ADC, 67% compared with the ADC with split capacitor, and 97.3% compared with the conventional SAR ADC.In addition, the proposed SAR ADC reduces the chip area by 95.5%compared with the conventional SAR ADC.

    Table 1: Performance comparison

    6 Conclusion

    This paper proposed an energy-efficient architecture of successive approximation register (SAR)analog to digital converter (ADC) based on successive scaling of reference voltage.The proposed architecture incorporates a hybrid array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.To illustrate the concept, a 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13um library using Cadence Virtuoso design suite and compared with conventional SAR ADC, SAR ADC with split capacitor, and Resistor &capacitor (R&C) Hybrid SAR ADC.Simulation results demonstrates an overall energy saving of 97.3%, 67%, and 35% respectively compared to conventional, with split capacitor, and R&C Hybrid SAR ADCs.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56MS/s, offering an energy efficiency of 9.8fJ per conversion step.The proposed architecture reduces the capacitor array size by 98.8% and offers 95.5% reduction in the overall chip core area, while occupying an active area of 0.088 mm2.

    Funding Statement:This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01304, Development of Self-learnable Mobile Recursive Neural Network Processor Technology)and also supported by the MSIT(Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program(IITP-2020-0-01462) supervised by the IITP(Institute for Information & communications Technology Planning & Evaluation)”.And also financially supported by the Ministry of Small and Medium-sized Enterprises(SMEs) and Startups(MSS),Korea, under the“Regional Specialized Industry Development Plus Program(R&D, S3091644)”supervised by the Korea Institute for Advancement of Technology(KIAT) and supported by the AURI(Korea Association of University, Research institute and Industry) grant funded by the Korea Government(MSS: Ministry of SMEs and Startups).(No.S2929950, HRD program for 2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    视频在线观看一区二区三区| 大香蕉久久网| 黄色视频在线播放观看不卡| 18禁裸乳无遮挡动漫免费视频| 男女之事视频高清在线观看 | 亚洲免费av在线视频| 80岁老熟妇乱子伦牲交| 天堂俺去俺来也www色官网| 丝袜脚勾引网站| 女性被躁到高潮视频| 日本午夜av视频| 欧美激情 高清一区二区三区| 精品亚洲成a人片在线观看| 女性被躁到高潮视频| 中文字幕制服av| 国产精品国产av在线观看| 18禁国产床啪视频网站| 久久久精品区二区三区| 色尼玛亚洲综合影院| 欧美日韩瑟瑟在线播放| 色尼玛亚洲综合影院| 精品无人区乱码1区二区| aaaaa片日本免费| 欧美人与性动交α欧美精品济南到| 99国产极品粉嫩在线观看| 精品福利观看| 亚洲自偷自拍图片 自拍| 久久 成人 亚洲| 狂野欧美激情性xxxx| 免费看十八禁软件| 在线观看午夜福利视频| 亚洲第一青青草原| 亚洲成人精品中文字幕电影| 熟女电影av网| 中文字幕高清在线视频| 国产成人精品久久二区二区免费| 黄色 视频免费看| 午夜福利在线在线| 妹子高潮喷水视频| 啦啦啦韩国在线观看视频| 久久久久久亚洲精品国产蜜桃av| 欧美日韩福利视频一区二区| 中文字幕人妻熟女乱码| 高潮久久久久久久久久久不卡| 亚洲国产高清在线一区二区三 | 后天国语完整版免费观看| 亚洲国产中文字幕在线视频| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 人妻丰满熟妇av一区二区三区| 免费在线观看亚洲国产| 亚洲激情在线av| 日韩三级视频一区二区三区| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 亚洲欧美日韩高清在线视频| 日本一区二区免费在线视频| 男女视频在线观看网站免费 | 99久久综合精品五月天人人| 亚洲性夜色夜夜综合| 亚洲成人国产一区在线观看| 久久天堂一区二区三区四区| 丰满的人妻完整版| av有码第一页| 哪里可以看免费的av片| 777久久人妻少妇嫩草av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人一区二区免费高清观看 | 亚洲人成网站高清观看| 变态另类丝袜制服| 人人妻人人澡欧美一区二区| 老汉色∧v一级毛片| 久久久久久免费高清国产稀缺| 久久狼人影院| 国产色视频综合| 欧美中文综合在线视频| 亚洲在线自拍视频| 夜夜爽天天搞| 久久人人精品亚洲av| 在线观看66精品国产| av电影中文网址| av电影中文网址| 激情在线观看视频在线高清| 成人三级做爰电影| 久久中文字幕人妻熟女| 一区二区日韩欧美中文字幕| 在线永久观看黄色视频| 久久精品国产清高在天天线| 亚洲精品国产区一区二| 国产激情欧美一区二区| 国产又黄又爽又无遮挡在线| 国产av一区在线观看免费| 淫妇啪啪啪对白视频| 老司机靠b影院| 欧美黄色片欧美黄色片| 免费观看人在逋| avwww免费| 999久久久国产精品视频| 99国产精品一区二区三区| 波多野结衣巨乳人妻| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| 午夜激情福利司机影院| 欧美黑人巨大hd| 露出奶头的视频| 88av欧美| 国产午夜精品久久久久久| av视频在线观看入口| 久久欧美精品欧美久久欧美| 中文字幕高清在线视频| 男女那种视频在线观看| 国产成人av激情在线播放| xxx96com| 在线观看舔阴道视频| 91大片在线观看| 国产成人欧美在线观看| 18禁裸乳无遮挡免费网站照片 | 免费av毛片视频| 久久天堂一区二区三区四区| 99精品欧美一区二区三区四区| 亚洲精品中文字幕一二三四区| av在线播放免费不卡| 国产精品国产高清国产av| 国产免费男女视频| 中文字幕最新亚洲高清| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 欧美又色又爽又黄视频| 一级a爱视频在线免费观看| 18禁黄网站禁片午夜丰满| 精品国产美女av久久久久小说| 日韩欧美国产一区二区入口| 村上凉子中文字幕在线| 国产av一区二区精品久久| 成人一区二区视频在线观看| xxxwww97欧美| 国产精品永久免费网站| 国产精品一区二区免费欧美| 久久久久久久久中文| 老汉色∧v一级毛片| 97碰自拍视频| 亚洲国产欧美网| 国产精品永久免费网站| 高清在线国产一区| 级片在线观看| 午夜久久久久精精品| 亚洲一区二区三区不卡视频| 看黄色毛片网站| 国产精品 欧美亚洲| 老司机福利观看| 久久这里只有精品19| 国产精品亚洲av一区麻豆| 精品第一国产精品| 在线十欧美十亚洲十日本专区| 色综合婷婷激情| 欧美丝袜亚洲另类 | 久久人妻av系列| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 欧美色欧美亚洲另类二区| 亚洲午夜精品一区,二区,三区| 麻豆久久精品国产亚洲av| 亚洲 国产 在线| 超碰成人久久| 搞女人的毛片| 国产视频一区二区在线看| 亚洲av成人不卡在线观看播放网| 日韩欧美三级三区| 国产精品久久视频播放| 在线观看舔阴道视频| 国产成人系列免费观看| 俄罗斯特黄特色一大片| 精品无人区乱码1区二区| 91九色精品人成在线观看| 日韩免费av在线播放| av欧美777| 男人舔女人下体高潮全视频| 精品人妻1区二区| 久久人人精品亚洲av| 久久精品影院6| 国产成人精品无人区| 操出白浆在线播放| 午夜久久久久精精品| 亚洲av片天天在线观看| 精品午夜福利视频在线观看一区| 精品午夜福利视频在线观看一区| 亚洲欧美日韩高清在线视频| 在线十欧美十亚洲十日本专区| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品999在线| 精品电影一区二区在线| 亚洲精品在线观看二区| av中文乱码字幕在线| 搡老岳熟女国产| 亚洲,欧美精品.| 国产伦人伦偷精品视频| 51午夜福利影视在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情高清一区二区三区| 一本久久中文字幕| 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 久热爱精品视频在线9| 曰老女人黄片| 亚洲一区中文字幕在线| 一边摸一边做爽爽视频免费| 久久精品91蜜桃| 久久久久亚洲av毛片大全| 两性夫妻黄色片| 国内精品久久久久精免费| 国产精品亚洲美女久久久| 午夜日韩欧美国产| av电影中文网址| 精品一区二区三区视频在线观看免费| 欧美在线黄色| 精品国产美女av久久久久小说| 搡老妇女老女人老熟妇| 亚洲欧美激情综合另类| 波多野结衣巨乳人妻| 精品国产超薄肉色丝袜足j| 亚洲国产精品合色在线| 欧美绝顶高潮抽搐喷水| 老熟妇乱子伦视频在线观看| 一进一出抽搐gif免费好疼| 91成人精品电影| 亚洲无线在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美在线二视频| 久久人妻av系列| 一本综合久久免费| 午夜两性在线视频| 男人舔奶头视频| 亚洲av成人av| 性欧美人与动物交配| 国产精品免费视频内射| 无遮挡黄片免费观看| 午夜影院日韩av| 午夜影院日韩av| 1024香蕉在线观看| 日本免费a在线| 一进一出抽搐动态| 午夜久久久久精精品| 免费无遮挡裸体视频| 丁香六月欧美| 国产精品乱码一区二三区的特点| 国产亚洲av高清不卡| 婷婷六月久久综合丁香| 淫秽高清视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品久久男人天堂| 国产高清videossex| 脱女人内裤的视频| 少妇 在线观看| 久久人人精品亚洲av| 哪里可以看免费的av片| 国产欧美日韩一区二区精品| 亚洲国产中文字幕在线视频| 在线播放国产精品三级| 国产1区2区3区精品| 欧美三级亚洲精品| 国产主播在线观看一区二区| 日本免费a在线| 最新在线观看一区二区三区| 亚洲在线自拍视频| 亚洲精品国产一区二区精华液| 男女那种视频在线观看| 亚洲自偷自拍图片 自拍| 免费在线观看影片大全网站| 亚洲,欧美精品.| 国产v大片淫在线免费观看| 女性被躁到高潮视频| 精华霜和精华液先用哪个| 国产主播在线观看一区二区| 色综合站精品国产| 亚洲av第一区精品v没综合| 精品熟女少妇八av免费久了| 国产人伦9x9x在线观看| 一二三四在线观看免费中文在| 国产精品爽爽va在线观看网站 | 日本成人三级电影网站| 午夜a级毛片| 亚洲国产看品久久| 欧美激情 高清一区二区三区| 亚洲久久久国产精品| 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 黑人操中国人逼视频| 美女午夜性视频免费| 久久香蕉国产精品| 淫秽高清视频在线观看| 欧美日韩亚洲综合一区二区三区_| 大香蕉久久成人网| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区mp4| 欧美午夜高清在线| 91麻豆精品激情在线观看国产| 在线免费观看的www视频| 露出奶头的视频| 操出白浆在线播放| 我的亚洲天堂| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 午夜久久久在线观看| 老司机在亚洲福利影院| 国产精品综合久久久久久久免费| 91麻豆精品激情在线观看国产| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲av中文字字幕乱码综合 | 欧美在线黄色| av欧美777| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 国产片内射在线| 一级黄色大片毛片| 香蕉av资源在线| 香蕉丝袜av| 免费人成视频x8x8入口观看| 在线观看免费午夜福利视频| 成人欧美大片| 国产一级毛片七仙女欲春2 | 日韩欧美国产在线观看| 久热这里只有精品99| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 精品久久久久久久末码| 久久久国产成人精品二区| 可以免费在线观看a视频的电影网站| 色尼玛亚洲综合影院| 黄色毛片三级朝国网站| 丝袜在线中文字幕| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 男女午夜视频在线观看| 老鸭窝网址在线观看| 日本一本二区三区精品| 色老头精品视频在线观看| 久久精品aⅴ一区二区三区四区| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器 | 国产片内射在线| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频| 国产午夜福利久久久久久| 国产精品久久久久久人妻精品电影| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 啦啦啦免费观看视频1| 国产一区二区三区在线臀色熟女| 香蕉国产在线看| 成人18禁高潮啪啪吃奶动态图| 韩国精品一区二区三区| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9| 岛国在线观看网站| 国产高清有码在线观看视频 | 两性夫妻黄色片| 国产精品亚洲av一区麻豆| 久久国产精品人妻蜜桃| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 99精品欧美一区二区三区四区| 久久九九热精品免费| 久久九九热精品免费| 亚洲成国产人片在线观看| 怎么达到女性高潮| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 成人永久免费在线观看视频| 两个人免费观看高清视频| 午夜免费激情av| 亚洲avbb在线观看| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| 亚洲精品国产精品久久久不卡| 国产视频内射| 国产精品免费视频内射| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩无卡精品| 99精品欧美一区二区三区四区| 99riav亚洲国产免费| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 国产精品日韩av在线免费观看| 国产成人一区二区三区免费视频网站| 午夜激情av网站| 啪啪无遮挡十八禁网站| 亚洲三区欧美一区| 国产真实乱freesex| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久 | 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 亚洲精品中文字幕一二三四区| 精品第一国产精品| 欧美日韩黄片免| 国产亚洲精品久久久久5区| 成人一区二区视频在线观看| 精品久久久久久久毛片微露脸| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 午夜免费观看网址| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 久久精品aⅴ一区二区三区四区| 久99久视频精品免费| 大型黄色视频在线免费观看| 性欧美人与动物交配| 中文字幕人成人乱码亚洲影| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 人人妻人人澡人人看| 国产99久久九九免费精品| 国产一区二区三区视频了| 宅男免费午夜| 国产真实乱freesex| 亚洲专区字幕在线| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 91成年电影在线观看| 黄色a级毛片大全视频| 久久国产乱子伦精品免费另类| 18美女黄网站色大片免费观看| 91在线观看av| 国产三级在线视频| 久久精品91蜜桃| 变态另类丝袜制服| 亚洲国产欧美网| 欧美激情极品国产一区二区三区| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 青草久久国产| 搞女人的毛片| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 精品一区二区三区视频在线观看免费| 亚洲精品中文字幕一二三四区| 国内精品久久久久精免费| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 可以在线观看的亚洲视频| 女人高潮潮喷娇喘18禁视频| 久久久国产成人精品二区| 亚洲美女黄片视频| 日韩有码中文字幕| 成人特级黄色片久久久久久久| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 亚洲自偷自拍图片 自拍| 成人免费观看视频高清| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 很黄的视频免费| 亚洲精品国产区一区二| 日本 欧美在线| 一本大道久久a久久精品| 久久久久久久午夜电影| 国产精品 欧美亚洲| 久久中文看片网| 看片在线看免费视频| 日本免费a在线| 精品不卡国产一区二区三区| 黄色片一级片一级黄色片| 97人妻精品一区二区三区麻豆 | 悠悠久久av| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 成人三级做爰电影| 久久精品人妻少妇| 亚洲精华国产精华精| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 久久久久久人人人人人| 大香蕉久久成人网| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 免费在线观看日本一区| 免费女性裸体啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 亚洲人成伊人成综合网2020| 黄色女人牲交| 国产成人精品久久二区二区免费| 亚洲国产欧美一区二区综合| 少妇 在线观看| 精品久久久久久久末码| 老司机深夜福利视频在线观看| 国产一区二区在线av高清观看| 伦理电影免费视频| 97人妻精品一区二区三区麻豆 | 国产激情久久老熟女| 午夜福利18| 热99re8久久精品国产| 亚洲五月色婷婷综合| 一个人观看的视频www高清免费观看 | 后天国语完整版免费观看| 国产亚洲精品第一综合不卡| av福利片在线| 免费在线观看影片大全网站| 免费人成视频x8x8入口观看| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片| 在线看三级毛片| 老司机靠b影院| 青草久久国产| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 色婷婷久久久亚洲欧美| 亚洲七黄色美女视频| 国产一级毛片七仙女欲春2 | 国产又色又爽无遮挡免费看| 一级毛片精品| 欧美黑人巨大hd| 999久久久国产精品视频| 欧美中文综合在线视频| 亚洲无线在线观看| 日本成人三级电影网站| 97超级碰碰碰精品色视频在线观看| 免费av毛片视频| 欧美日本视频| 久久久久九九精品影院| 亚洲自拍偷在线| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站 | 此物有八面人人有两片| 国产av又大| 亚洲国产高清在线一区二区三 | 久久午夜亚洲精品久久| 亚洲欧美精品综合一区二区三区| 欧美成人性av电影在线观看| 无限看片的www在线观看| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 欧美成人一区二区免费高清观看 | 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 亚洲国产欧洲综合997久久, | 欧美性猛交╳xxx乱大交人| 国产熟女xx| 午夜福利免费观看在线| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| 亚洲久久久国产精品| xxx96com| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 精品久久久久久久毛片微露脸| 亚洲人成网站在线播放欧美日韩| 国产精品亚洲av一区麻豆| 免费高清视频大片| 午夜激情av网站| aaaaa片日本免费| 美女高潮喷水抽搐中文字幕| 久久青草综合色| 精品久久久久久久毛片微露脸| 国产伦一二天堂av在线观看| 俄罗斯特黄特色一大片| 亚洲午夜理论影院| a级毛片a级免费在线| 9191精品国产免费久久| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 国产黄色小视频在线观看| 成年版毛片免费区| a级毛片在线看网站| 少妇 在线观看| 久久久久九九精品影院| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波| 一夜夜www| 亚洲全国av大片| 国产aⅴ精品一区二区三区波| 51午夜福利影视在线观看| ponron亚洲| 亚洲免费av在线视频| 男女下面进入的视频免费午夜 | 日日摸夜夜添夜夜添小说| 啦啦啦 在线观看视频| 热re99久久国产66热| 天天添夜夜摸| 欧美国产精品va在线观看不卡| 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 波多野结衣高清无吗| 欧美中文日本在线观看视频| 99精品欧美一区二区三区四区| 亚洲色图av天堂| 十分钟在线观看高清视频www| 欧美激情极品国产一区二区三区| 国产亚洲精品久久久久久毛片|