• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Energy-Efficient 12b 2.56 MS/s SAR ADC Using Successive Scaling of Reference Voltages

    2022-08-24 12:57:12HojinKangSyedAsmatAliShahandHyungWonKim
    Computers Materials&Continua 2022年7期

    Hojin Kang, Syed Asmat Ali Shahand HyungWon Kim,*

    1Department of Electronics Engineering, College of Electrical and Computer Engineering, Chungbuk National University,Cheongju, 28644, Korea

    2Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus,Abbottabad, 22060, Pakistan

    Abstract: This paper presents an energy efficient architecture for successive approximation register (SAR) analog to digital converter (ADC).SAR ADCs with a capacitor array structure have been widely used because of its simple architecture and relatively high speed.However, conventional SAR ADCs consume relatively high energy due to the large number of capacitors used in the capacitor array and their sizes scaled up along with the number of bits.The proposed architecture reduces the energy consumption as well as the capacitor size by employing a new array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.The proposed 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13 um library using Cadence Virtuoso design tool.Simulation results and mathematical model demonstrate the overall energy savings of up to 97.3% compared with conventional SAR ADC, 67% compared with the SAR ADC with split capacitor, and 35% compared with the resistor and capacitor (R&C) Hybrid SAR ADC.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56 MS/s, offering an energy consumption of 9.8 fJ per conversion step.The proposed SAR ADC offers 95.5% reduction in chip core area compared to conventional architecture, while occupying an active area of 0.088 mm2.

    Keywords: Low voltage low power; successive approximation register; analog to digital converter; switching energy

    1 Introduction

    Wireless sensor networks and implantable biomedical devices has been gaining popularity in the recent years.These applications require low power consumption because of their limited power budget while achieving optimum performance.Also, it is required to include an analog to digital converter(ADC) for converting sensor data to digital.So, energy and area efficient ADCs plays a pivotal role.

    For many ADC architectures, analog circuits are often employed such as operational amplifiers,which usually consume high energy.But the successive approximation register (SAR) ADCs, however,only need a simple analog circuit like a comparator since they carry out the rest of the operations using the digital circuits.SAR ADCs can, therefore, result in an improved performance and reduced power consumption.Despite these advantages, however, SAR ADCs are not selected for high resolution applications, because their capacitor array requires an excessively large capacitors for high resolution.Various techniques have been proposed to overcome this short coming of SAR ADC.The technique in [1] reduced the supply voltage to reduce the energy consumption, while [2] proposed the merged capacitor switching scheme, to reduce the switching power.In [3,4], a reduction in total capacitor size is realized by using the split capacitor scheme and the R&C Hybrid scheme.

    Literature reveals several techniques to reduce the capacitor array size without digital calibration for fully differential architecture [5].To reduce the capacitor array size by half a top plate sampling technique is used in [6], but at the expense of non-linearity and common mode input dependency.In[7] a digital to analog converter (DAC) configurable window switching technique to ensure reusing the capacitors inDACis incorporated in SARADCs for overall smaller capacitances.However, the benefit of energy efficiency drops.In order to reduce the switching energy and improve the DAC linearity floating DAC switching technique is presented in [8].

    In this paper, we propose a SAR ADC architecture based on successive scaling of the reference voltages instead of conventional scaling of capacitor size to reduce the switching energy consumption and chip area.

    The rest of this paper is organized as follows: Section 2 describes the general architecture of SAR ADCs.Section 3 presents the proposed architecture and the analysis of its switching energy.Section 4 describes a 12-bit ADC implementation based on the proposed architecture.Section 5 analyzes the performance of the 12-bit ADC implementation followed by the conclusions in Section 6.

    2 SAR ADC Algorithm

    Fig.1 shows a structure of a general SAR ADC, which consists of a DAC capacitor array, a comparator circuit, and a SAR control logic.The DAC capacitor array combines the functionality of digital to analog conversion and sample and hold to produce an approximated common mode voltage Vcm.The comparator determines whether the approximated voltage is greater than the predefined common mode voltage.If the voltage is greater, the SAR logic keeps the most significant bit (MSB) bit as one, or otherwise, it flips the MSB bit to zero.The above process is repeated with the next capacitor switched on and the new approximation value compared with the reference voltage.Each comparison result determines each bit of the digital output,where each bit successively improves the accuracy of the conversion.This process of successive comparison continues until the entire digital word is decoded.Fig.2 shows the conventional DAC capacitor array [9].The operation of the conventional SAR ADC is described below.

    Initially, Ssampleis high and the entire capacitor array stores the voltage Vcm- VIN.Then, the MSB capacitor Cb, is connected to Vrefand the remaining capacitors are connected to ground, and so VXis expressed by Eq.(1).

    Then, the comparator output is given by Eq.(2).

    The comparator output determines the MSB bit of the digital output.If the output voltageVOUTis low, the MSB is kept at one and so the voltage of Cbis kept.On the other hand, ifVOUTis high, the MSB is flipped to zero, and so the voltage ofCbis returned to ground.The next largest capacitor Cb-1in the capacitor array is then be connected toVref, increasing the output voltage at VX.

    Figure 1: Block diagram of a general SAR ADC

    Figure 2: Conventional capacitor array of a b-bit SAR ADC

    The above process is repeated for successive capacitors in the array.In each stage, the updated value of VXis expressed by Eq.(3).

    Here, CTis the sum of all capacitors connected to the reference voltage, and CBis the sum of all capacitors connected to ground terminal.

    3 Proposed Architecture

    During every bit cycle, the connections of the capacitors are changed.This section analyzes the switching energy [10] of the conventional architecture and the proposed scheme.For simplicity of analysis, a 2-bit capacitor array is selected in this section.A conventional 2-bit capacitor array is first analyzed, which is illustrated in Fig.3.

    Figure 3: Capacitor array of a conventional 2-bit SAR ADC

    At time 0-, the input voltage is fully sampled by switchSsampleof the capacitor array, while all other switches are OFF.In the 1st iteration of the approximation process, at time 0, the bottom plate of the capacitor C2is connected to Vref, while the other capacitors are connected to ground.Then VXof the capacitor array is charged to the value expressed by Eq.(1).If the capacitor array settles in time TP,the energy drawn by the capacitor array is given by Eq.(4).

    Sinceiref(t) = -dQC2/dt, Eq.(4) can be simplified as Eq.(5).

    HereVX[1] =Vcm-VIN+Vref/2, whileVX[0] =Vcm-VIN.For all the following calculations,TPis assumed to be 1 for the sake of simplicity.At the end of each approximation iteration, the comparator in Fig.1 comparesVXwithVcm, and producesVOUT, which sets the corresponding digital bit to high value ifVX<Vcm.

    In the 2nd iteration of the approximation process,C1in Fig.3 is then connected toVref.Then the energy drawn by the capacitor array is computed by Eqs.(6) and (7).Here we assume that the MSB was determined as 1, and thus the capacitor ratio gives the output voltage ratio (2C0+C0) / 4C0= 3/4.

    Fig.4 shows the proposed capacitor array architecture.The proposed architecture applies to each capacitor different reference voltageVrefscaled down by the factor of 2m-i, while keeping all the capacitor size asC0.HereVrefi=Vref/2iwhereiis the bit position with 0 indicating the MSB and so on.For the proposed architecture of Fig.5, the energy drawn by the capacitor array for the 1st and the 2nd iterations of the approximation process are given by Eqs.(8)-(11), respectively.

    Figure 4: Capacitor array of a 2-bit SAR ADC based on scaled reference

    Figure 5: Capacitor array of a b-bit SAR ADC based on scaled reference

    It is evident from Eqs.(9) and (11) that the proposed SAR ADC architecture can substantially reduce the energy consumption as well as the size of capacitor array compared to the conventional architecture.For another example, Fig.5 illustrates a b-bit SAR ADC based on the proposed scaled reference.Eqs.(12) and (13) compares the energy consumption of the capacitor array for the case of a conventional b-bit SAR ADC with the proposed one in Fig.5.

    By comparing Eqs.(12) and (13), it is observed that the energy reduction effect of the proposed SAR ADC is becoming drastically increasing.While the proposed architecture can substantially reduce the energy consumption and capacitor size, however, it has a restriction on the input dynamic range due to the reduced DAC maximum output voltage.This restriction can be acceptable for many ultra-low power and Internet of Things (IoT) application.

    Conventional:

    Proposed:

    4 Circuit Implementation

    To evaluate the performance of the proposed architecture, a 12-bit SAR ADC is implemented based on the proposed successive reference scaling architecture, which is shown in Fig.6.We implemented it in a fully differential structure to suppress the common mode noise.It also helps to inhibit even harmonic noise, thus improving the dynamic performance of ADC.The key building blocks of the implementation consists of bootstrapped switches, a dynamic comparator, a SAR control logic,and capacitor array DACs including the scaled reference voltages.The following sections describe the design considerations of the building blocks.

    4.1 Bootstrapped Switch

    An input sampling switch often has large impact on the performance of ADC circuits.To improve the linearity of the switch’s transfer function, bootstrapped switch circuits have been widely studied.In this paper, thick gate oxide nMOS transistors are used to minimize the leakage current.To turn on the transistors, series cascaded bootstrap circuits [11] are used.It can generate twice the supply voltage as a gate-source voltage.

    Figure 6: Block diagram of a proposed 12-bit SAR ADC

    Fig.7 explains the simplified operation of the cascaded bootstrapped switch circuit.Input clock is only a single-phase clock φ.When φ is low, the bootstrapping circuit is in the Hold mode.During the Hold mode, the voltage differences between the top plate and the bottom plate of both C1 and C2 are charged to VDD by S1, S2 and S5, S7, respectively.And Vgis discharged to ground by S8 to turn off the switch transistor MNsw.

    Figure 7: The operation of the bootstrapped switch

    When φ goes high, the bootstrapping circuit moves to Sample mode.Then the series cascaded C1 and C2 provide 2XVDD as the gate-source voltage to MNsw, by turning S3, S4, and S6 on.Therefore,the bootstrapped switch circuits achieve low on-resistance and high linearity by applying twice the supply voltage to the transistor gate.This results in VOUTbecoming almost equal to VIN, and so the sampling operation can be conducted with high linearity regardless of input signal level.

    4.2 Hybrid Structure of Capacitor Array

    While the proposed architecture can substantially reduce the switching energy of the capacitor array, it has some limitations.The input dynamic range is reduced by the reduced reference voltage.Generating different reference voltages can be challenging if it requires a large number of reference voltages.To alleviate this challenge, we propose a hybrid structure of capacitor array, which combines the proposed reference-scaling array along with the conventional capacitor-scaling array.For example,Fig.8 shows a 12-bit capacitor array using the hybrid architecture.It employs the reference-scaling architecture for a 4-bit segment (Bit8~Bit5) and uses the capacitor-scaling architecture for the rest of the array (Bit11~Bit9 and Bit4~Bit0).We assume that these 4 reference voltages can be provided by a power management integrated circuit (PMIC) or internal voltage regulators.

    Furthermore, the size of the capacitor array can be further reduced by using a split capacitor.The split capacitor is used to split the array into a least significant bit (LSB) array and a MSB array.Fig.8 shows a split capacitor of size (32/31)C0inserted between the capacitors for Bit5 an Bit4.The capacitance value of a split capacitor is calculated by Eq.(14).

    CLSB array=Sum of the LSB array capacitors

    C0=Csplit/CLSB array=Csplit/32C0

    In the example of Fig.8, the proposed hybrid array architecture reduces the overall capacitor size by 98.8% compared to the conventional capacitor-scaling array.The reduced input dynamic range is only 15.8%, which is considered very small cost given the size reduction is significant.

    Figure 8: Architecture of proposed 12-bit capacitor array DAC

    In addition, the proposed architecture eliminates the needs for an extra reference voltage Vcm,which was used by the conventional architecture shown in Fig.3.The conventional architecture samples the input voltage using the bottom-plate of the capacitor array while connecting the topplate to the reference voltage (Vcm).The proposed architecture illustrated in Fig.8, however, samples the input voltage using the top plate of the capacitors, and thus does not need Vcm.During the input sampling,theMSB is preset to achieve a full-range sampling, which also eliminates an extra reset cycle.As shown in Fig.9, the differential inputs are initially connected to the top plates of the capacitor array, and simultaneously the MSB is set to high (connecting S11 to VREFP) and all other bits are set to low (connecting Sito VREFP).Next, the top-plate sampling switchSsampleis open and the sampled input voltage is kept in the capacitor array.A similar approach has also been reported in [12].

    4.3 Dynamic Comparator

    In SAR ADCs, the comparator also considerably contributes to the power consumption.We employ a two-stage dynamic circuit design similar to [13].The comparator is shown in Fig.10.The first stage is a voltage amplification stage.The second stage is a latch structure with cross-coupled inverters acting as a positive-feedback amplifier.It obtains the rail-to-rail digital output (SP and SN).Prior to the comparison, the nodes FN and FP are discharged by a high value of the clock.

    Figure 9: Timing diagram of capacitor array

    Figure 10: Architecture of dynamic comparator

    4.4 SAR Control Logic

    For SAR control logic, asynchronous control circuits have been often used to achieve high speed[14].The circulation behavior of the asynchronous circuits, however, can incur serious stability problems, when the asynchronous circuits experience variations in the process, voltage, and temperature.To avoid such risk, therefore, we employ synchronous control circuit based on a ring counter structure.Fig.11 shows the SAR control circuit used by the proposed SAR ADC.

    The operation of the control circuit is summarized below.For each conversion, in the first cycle,the End of Conversion (EOC) signal is set to high, and all D-type flip flop (DFFs) are reset, and for rest of the cycles EOC is kept low until the final cycle.In the next cycle the most significant DFF is set to one which corresponds to MSB of the digital word of the ADC.Then the counter shifts‘1’through the DFF from MSB to LSB.

    Figure 11: Architecture of SAR control logic

    In each clock cycle, one of the outputs in the ring counter sets a DFF in the code register.The output of this DFF which is set by the ring counter is used as the clock signal for the previous DFF.At the rising edge of the clock, this DFF loads the result from the comparator.At the end of the conversion, EOC signal turns to high.This SAR control circuit produces very few signal transitions leading to low power consumption.

    5 Simulation Results

    The proposed SARADCwas implemented and fabricated using a 0.13 umCMOSprocess.Fig.12 shows the layout result of the chip, where the chip area is 262 um×335um, occupying an active area of 0.088 mm2Based on the process design rule, we used the minimum met al-insulation- met al (MIM)capacitor of size 67.35 fF as the unit capacitor (C0) for the proposed capacitor array.

    Figure 12: Layout view of proposed 12-bit SAR ADC

    Fig.13 compares the energy consumption of the proposed SAR ADC with various previous SAR ADCs: conventional, split capacitor, and R&C Hybrid SAR ADC.For fair comparison of various capacitor array architectures, the same dynamic comparator and SAR control circuit are used in all ADCs architectures compared above.The proposed SAR ADC provides the lowest energy consumption throughout all range of input voltages (X-axis indicates the corresponding digital output code).

    Figure 13: Comparison results of the energy consumption

    Fig.14 shows spectral analysis for the output of the proposed SAR ADC.Under a supply voltage of 1.5 V and a sampling frequency of 2.56 MS/s, the proposed ADC provides an SNDR of 69.63 dB,which is equivalent to 11.27 ENOB.

    Figure 14: Output spectrum operating at 2.56 MS/s

    Under the same operating conditions, we conducted detailed comparison between the proposed SAR ADC and the previous SAR ADCs.Tab.1 demonstrates that the proposed SAR ADC achieves the lowest power consumption.It reduces the power consumption by 35% compared with the R&C Hybrid ADC, 67% compared with the ADC with split capacitor, and 97.3% compared with the conventional SAR ADC.In addition, the proposed SAR ADC reduces the chip area by 95.5%compared with the conventional SAR ADC.

    Table 1: Performance comparison

    6 Conclusion

    This paper proposed an energy-efficient architecture of successive approximation register (SAR)analog to digital converter (ADC) based on successive scaling of reference voltage.The proposed architecture incorporates a hybrid array architecture that scales down the reference voltages instead of scaling up the capacitor sizes.To illustrate the concept, a 12-bit SAR ADC is implemented in Complementary Met al Oxide Semiconductor (CMOS) 0.13um library using Cadence Virtuoso design suite and compared with conventional SAR ADC, SAR ADC with split capacitor, and Resistor &capacitor (R&C) Hybrid SAR ADC.Simulation results demonstrates an overall energy saving of 97.3%, 67%, and 35% respectively compared to conventional, with split capacitor, and R&C Hybrid SAR ADCs.The ADC achieves an effective number of bits (ENOB) of 11.27 bits and consumes 61.7 uW at sampling rate of 2.56MS/s, offering an energy efficiency of 9.8fJ per conversion step.The proposed architecture reduces the capacitor array size by 98.8% and offers 95.5% reduction in the overall chip core area, while occupying an active area of 0.088 mm2.

    Funding Statement:This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01304, Development of Self-learnable Mobile Recursive Neural Network Processor Technology)and also supported by the MSIT(Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program(IITP-2020-0-01462) supervised by the IITP(Institute for Information & communications Technology Planning & Evaluation)”.And also financially supported by the Ministry of Small and Medium-sized Enterprises(SMEs) and Startups(MSS),Korea, under the“Regional Specialized Industry Development Plus Program(R&D, S3091644)”supervised by the Korea Institute for Advancement of Technology(KIAT) and supported by the AURI(Korea Association of University, Research institute and Industry) grant funded by the Korea Government(MSS: Ministry of SMEs and Startups).(No.S2929950, HRD program for 2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    狂野欧美激情性bbbbbb| 亚洲国产精品专区欧美| 久久这里有精品视频免费| 亚洲av免费高清在线观看| 亚洲av男天堂| 黄色配什么色好看| 久久人人爽人人片av| 狂野欧美激情性xxxx在线观看| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 日本爱情动作片www.在线观看| 国产福利在线免费观看视频| 欧美日韩亚洲高清精品| 狂野欧美激情性xxxx在线观看| 色吧在线观看| 国产免费福利视频在线观看| 老女人水多毛片| www日本在线高清视频| 在线观看免费日韩欧美大片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av天堂久久9| 日韩,欧美,国产一区二区三区| 如何舔出高潮| 丰满少妇做爰视频| 一边亲一边摸免费视频| 欧美日韩视频精品一区| 美女脱内裤让男人舔精品视频| 免费人成在线观看视频色| 日本欧美国产在线视频| √禁漫天堂资源中文www| 中文字幕人妻熟女乱码| 国产av码专区亚洲av| 国产又色又爽无遮挡免| 九色亚洲精品在线播放| 久久青草综合色| 在线观看国产h片| 免费播放大片免费观看视频在线观看| 国产高清不卡午夜福利| av线在线观看网站| 曰老女人黄片| 免费观看无遮挡的男女| 欧美日韩精品成人综合77777| 女人久久www免费人成看片| 天天躁夜夜躁狠狠躁躁| 亚洲综合精品二区| 久久影院123| 免费高清在线观看视频在线观看| 99视频精品全部免费 在线| 日韩在线高清观看一区二区三区| 亚洲国产精品国产精品| 99热这里只有是精品在线观看| 高清不卡的av网站| 亚洲精品乱久久久久久| freevideosex欧美| 亚洲人成77777在线视频| 久久久a久久爽久久v久久| 一二三四在线观看免费中文在 | 午夜激情久久久久久久| 国产av精品麻豆| 久久久久久久久久久免费av| 99国产精品免费福利视频| 免费av不卡在线播放| 少妇被粗大的猛进出69影院 | 国产在线一区二区三区精| a级毛片黄视频| 久久韩国三级中文字幕| 日韩av免费高清视频| 免费在线观看黄色视频的| 日韩av不卡免费在线播放| 插逼视频在线观看| 久久久欧美国产精品| 亚洲av在线观看美女高潮| 亚洲欧美中文字幕日韩二区| 国精品久久久久久国模美| √禁漫天堂资源中文www| 亚洲色图 男人天堂 中文字幕 | 亚洲激情五月婷婷啪啪| 在线精品无人区一区二区三| 国产av一区二区精品久久| 午夜福利视频在线观看免费| 中文字幕亚洲精品专区| 黄色视频在线播放观看不卡| 99九九在线精品视频| 一本大道久久a久久精品| 啦啦啦中文免费视频观看日本| 免费播放大片免费观看视频在线观看| 亚洲一区二区三区欧美精品| 亚洲经典国产精华液单| 18禁国产床啪视频网站| 新久久久久国产一级毛片| av不卡在线播放| 黑人欧美特级aaaaaa片| 成人国语在线视频| 精品一区二区三区四区五区乱码 | 久久人人爽人人爽人人片va| 国产精品一国产av| 天天操日日干夜夜撸| 精品酒店卫生间| 乱码一卡2卡4卡精品| 韩国av在线不卡| 国产精品久久久久成人av| av卡一久久| 中文字幕av电影在线播放| 久久精品国产自在天天线| 久久免费观看电影| 寂寞人妻少妇视频99o| 女性生殖器流出的白浆| 91精品三级在线观看| 人人妻人人爽人人添夜夜欢视频| 少妇被粗大的猛进出69影院 | 亚洲中文av在线| 欧美激情极品国产一区二区三区 | 久久人人爽人人爽人人片va| 最近最新中文字幕免费大全7| 久久久久精品久久久久真实原创| 街头女战士在线观看网站| 天天操日日干夜夜撸| 边亲边吃奶的免费视频| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲精品一区在线观看| 精品人妻熟女毛片av久久网站| 国产午夜精品一二区理论片| 日韩欧美一区视频在线观看| 国产成人精品一,二区| 精品亚洲成国产av| videos熟女内射| 亚洲欧美色中文字幕在线| 国产成人精品一,二区| 丝袜喷水一区| 丝袜喷水一区| 国产午夜精品一二区理论片| 秋霞伦理黄片| 国产午夜精品一二区理论片| 免费少妇av软件| 日本91视频免费播放| 高清毛片免费看| 九九爱精品视频在线观看| 久久人人97超碰香蕉20202| 啦啦啦啦在线视频资源| 亚洲五月色婷婷综合| 韩国av在线不卡| 国产69精品久久久久777片| 一边摸一边做爽爽视频免费| 最近的中文字幕免费完整| 一本大道久久a久久精品| 一区二区三区乱码不卡18| 久久精品国产综合久久久 | 又黄又爽又刺激的免费视频.| 在线观看人妻少妇| 九草在线视频观看| 欧美激情极品国产一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 日本wwww免费看| 日本vs欧美在线观看视频| 国产麻豆69| 色婷婷av一区二区三区视频| 我的女老师完整版在线观看| 国产欧美另类精品又又久久亚洲欧美| 黑人高潮一二区| 制服诱惑二区| 国产精品一二三区在线看| 国产av精品麻豆| 男女无遮挡免费网站观看| 久久精品夜色国产| 日韩 亚洲 欧美在线| 建设人人有责人人尽责人人享有的| 久久久久久人人人人人| av线在线观看网站| 亚洲三级黄色毛片| 熟女av电影| 国产欧美亚洲国产| 香蕉丝袜av| 亚洲一码二码三码区别大吗| 91午夜精品亚洲一区二区三区| 久久免费观看电影| 国产精品偷伦视频观看了| 视频在线观看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲天堂av无毛| 精品一区二区免费观看| 2018国产大陆天天弄谢| 丰满乱子伦码专区| 观看美女的网站| 啦啦啦在线观看免费高清www| 日本vs欧美在线观看视频| 亚洲精品视频女| 2022亚洲国产成人精品| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 亚洲精品久久久久久婷婷小说| 日本色播在线视频| 国产国语露脸激情在线看| 亚洲综合色惰| 国产精品免费大片| 精品少妇内射三级| 少妇的逼好多水| 国产男女内射视频| 伦理电影免费视频| 久久影院123| 午夜福利视频精品| 国产1区2区3区精品| 国产精品一区二区在线不卡| 欧美日韩视频高清一区二区三区二| 亚洲情色 制服丝袜| 美女福利国产在线| 国产成人免费无遮挡视频| 精品卡一卡二卡四卡免费| 99久久精品国产国产毛片| 老司机影院成人| 另类精品久久| 新久久久久国产一级毛片| videos熟女内射| 国产色婷婷99| 人妻 亚洲 视频| 国产探花极品一区二区| 成人亚洲精品一区在线观看| 欧美xxⅹ黑人| 日韩av在线免费看完整版不卡| 这个男人来自地球电影免费观看 | 两个人看的免费小视频| 日本av手机在线免费观看| 又黄又粗又硬又大视频| 97精品久久久久久久久久精品| 中文字幕制服av| 国产精品久久久av美女十八| 国产av一区二区精品久久| 久久久久国产网址| 免费高清在线观看日韩| 亚洲精品自拍成人| 免费观看a级毛片全部| 国产一区二区在线观看日韩| 国产男人的电影天堂91| 亚洲情色 制服丝袜| 99久久综合免费| 午夜激情av网站| 午夜精品国产一区二区电影| 亚洲三级黄色毛片| 日本黄色日本黄色录像| 99精国产麻豆久久婷婷| 日韩av在线免费看完整版不卡| 日韩不卡一区二区三区视频在线| 啦啦啦在线观看免费高清www| 欧美性感艳星| 春色校园在线视频观看| 日韩一区二区三区影片| 成人午夜精彩视频在线观看| 欧美激情国产日韩精品一区| www.av在线官网国产| 美女大奶头黄色视频| 26uuu在线亚洲综合色| 亚洲欧洲日产国产| 丝袜美足系列| 国产精品国产三级国产专区5o| 三上悠亚av全集在线观看| 午夜免费男女啪啪视频观看| 香蕉丝袜av| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频 | 美女中出高潮动态图| 亚洲国产日韩一区二区| 天天操日日干夜夜撸| 极品人妻少妇av视频| 成人漫画全彩无遮挡| 性色avwww在线观看| 国产精品国产三级国产专区5o| 九九爱精品视频在线观看| 欧美激情 高清一区二区三区| 插逼视频在线观看| 久久99精品国语久久久| 久久久久视频综合| 亚洲色图综合在线观看| 水蜜桃什么品种好| 十八禁高潮呻吟视频| 国产一区二区三区综合在线观看 | 高清不卡的av网站| 久久人人爽人人片av| 欧美精品高潮呻吟av久久| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| 中文乱码字字幕精品一区二区三区| 三上悠亚av全集在线观看| 亚洲精品一二三| 最近最新中文字幕大全免费视频 | 边亲边吃奶的免费视频| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 男女高潮啪啪啪动态图| 亚洲国产最新在线播放| 青春草国产在线视频| 亚洲国产精品国产精品| 国产不卡av网站在线观看| 日本免费在线观看一区| 亚洲天堂av无毛| 精品久久国产蜜桃| 午夜福利视频精品| 免费看av在线观看网站| 秋霞伦理黄片| 日韩在线高清观看一区二区三区| 精品国产一区二区三区四区第35| 亚洲,欧美,日韩| 大话2 男鬼变身卡| 精品久久久久久电影网| 免费大片18禁| 午夜激情av网站| 少妇精品久久久久久久| 少妇高潮的动态图| 日韩人妻精品一区2区三区| 最近最新中文字幕免费大全7| 看免费av毛片| 水蜜桃什么品种好| 国产高清三级在线| 亚洲经典国产精华液单| 只有这里有精品99| 黑人高潮一二区| 青青草视频在线视频观看| 黄色毛片三级朝国网站| 免费看av在线观看网站| 国产精品人妻久久久久久| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 国产1区2区3区精品| 亚洲av综合色区一区| 97超碰精品成人国产| 91午夜精品亚洲一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产精品国产三级专区第一集| 国产一区二区在线观看av| 最近最新中文字幕免费大全7| 午夜91福利影院| 内地一区二区视频在线| 国产成人精品福利久久| 91aial.com中文字幕在线观看| 亚洲精品国产色婷婷电影| 夜夜骑夜夜射夜夜干| 久久久久久人妻| 久久女婷五月综合色啪小说| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av成人精品| 麻豆精品久久久久久蜜桃| 欧美变态另类bdsm刘玥| 精品熟女少妇av免费看| 久久久久视频综合| 欧美日韩国产mv在线观看视频| 久久久精品区二区三区| 国产精品人妻久久久久久| 天天操日日干夜夜撸| 亚洲综合色网址| 另类精品久久| 久久久久久久亚洲中文字幕| 亚洲精品美女久久av网站| 哪个播放器可以免费观看大片| 中文字幕最新亚洲高清| 午夜激情av网站| 日韩一区二区视频免费看| 熟女电影av网| 精品久久久久久电影网| 好男人视频免费观看在线| 熟妇人妻不卡中文字幕| 成人免费观看视频高清| 欧美日韩精品成人综合77777| 亚洲色图综合在线观看| 久久久久久人人人人人| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到 | 欧美亚洲日本最大视频资源| 深夜精品福利| 国产精品无大码| 欧美性感艳星| 在线观看www视频免费| 亚洲精品一二三| 亚洲精品,欧美精品| 观看美女的网站| 黄色 视频免费看| 伦理电影大哥的女人| 国产极品粉嫩免费观看在线| 天美传媒精品一区二区| 如何舔出高潮| 国产一区二区激情短视频 | 丝袜美足系列| 成年av动漫网址| 亚洲人成77777在线视频| 极品人妻少妇av视频| 成人无遮挡网站| 新久久久久国产一级毛片| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频 | 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 一二三四在线观看免费中文在 | 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 亚洲高清免费不卡视频| 国产乱人偷精品视频| 全区人妻精品视频| 日韩三级伦理在线观看| 国产精品久久久久成人av| 欧美97在线视频| 国产福利在线免费观看视频| 日韩av免费高清视频| 一级黄片播放器| 热99久久久久精品小说推荐| 国产一区二区三区综合在线观看 | 一二三四在线观看免费中文在 | 丝袜喷水一区| 如何舔出高潮| 精品少妇内射三级| 搡女人真爽免费视频火全软件| 国产精品一区二区在线观看99| 日韩精品免费视频一区二区三区 | 日本与韩国留学比较| 91在线精品国自产拍蜜月| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 国产亚洲最大av| 激情视频va一区二区三区| 五月开心婷婷网| 精品午夜福利在线看| 日韩一区二区三区影片| 国产一区二区三区综合在线观看 | 午夜精品国产一区二区电影| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| 日韩一区二区三区影片| 亚洲精品美女久久av网站| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 十分钟在线观看高清视频www| 最近的中文字幕免费完整| 在线天堂中文资源库| 777米奇影视久久| 国产乱来视频区| 夫妻性生交免费视频一级片| 有码 亚洲区| 欧美日韩亚洲高清精品| 免费观看av网站的网址| 人成视频在线观看免费观看| 天堂8中文在线网| 国产日韩欧美亚洲二区| 男的添女的下面高潮视频| 精品少妇久久久久久888优播| 十八禁高潮呻吟视频| 91午夜精品亚洲一区二区三区| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 18在线观看网站| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 2022亚洲国产成人精品| 精品少妇内射三级| 成年女人在线观看亚洲视频| 亚洲熟女精品中文字幕| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 国产麻豆69| 亚洲人与动物交配视频| 久久久久久久久久人人人人人人| xxxhd国产人妻xxx| 免费人成在线观看视频色| 黄片无遮挡物在线观看| 美国免费a级毛片| 97超碰精品成人国产| 亚洲国产av影院在线观看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 亚洲综合色惰| 欧美成人午夜精品| 精品国产露脸久久av麻豆| 亚洲精品国产色婷婷电影| 久久久久久久国产电影| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 久久 成人 亚洲| 成年女人在线观看亚洲视频| 五月伊人婷婷丁香| www日本在线高清视频| 在线精品无人区一区二区三| 亚洲一级一片aⅴ在线观看| 激情视频va一区二区三区| 最近中文字幕2019免费版| 免费大片18禁| 国产免费又黄又爽又色| 国产精品无大码| 丝袜脚勾引网站| 国产成人精品福利久久| 久久影院123| 在线观看一区二区三区激情| 哪个播放器可以免费观看大片| 一本久久精品| 在线天堂中文资源库| 午夜久久久在线观看| 国产精品一二三区在线看| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 一级,二级,三级黄色视频| 黄色毛片三级朝国网站| 少妇被粗大的猛进出69影院 | 黑人猛操日本美女一级片| 蜜桃国产av成人99| 22中文网久久字幕| 成人无遮挡网站| 99国产精品免费福利视频| 国产男人的电影天堂91| 美女视频免费永久观看网站| 国产免费一级a男人的天堂| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院 | 日本爱情动作片www.在线观看| 国产淫语在线视频| 亚洲伊人久久精品综合| 亚洲欧美日韩另类电影网站| av.在线天堂| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区 | 亚洲欧洲日产国产| 免费黄色在线免费观看| 日韩在线高清观看一区二区三区| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 精品一区二区三卡| 日韩精品有码人妻一区| 国产亚洲精品久久久com| 九草在线视频观看| 制服人妻中文乱码| 国产色婷婷99| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 五月伊人婷婷丁香| 欧美成人午夜精品| 伊人亚洲综合成人网| 欧美人与性动交α欧美软件 | 亚洲欧洲日产国产| 日日啪夜夜爽| 一区二区av电影网| 香蕉精品网在线| 免费人妻精品一区二区三区视频| 国产精品嫩草影院av在线观看| 久久女婷五月综合色啪小说| 免费av中文字幕在线| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 精品人妻偷拍中文字幕| 大香蕉97超碰在线| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 男人添女人高潮全过程视频| 精品一区二区三区四区五区乱码 | 综合色丁香网| 久久精品aⅴ一区二区三区四区 | 久久精品人人爽人人爽视色| 校园人妻丝袜中文字幕| 尾随美女入室| www.熟女人妻精品国产 | 国产成人免费观看mmmm| 午夜精品国产一区二区电影| 国产熟女午夜一区二区三区| 日韩一区二区三区影片| 亚洲av中文av极速乱| 国产精品一区www在线观看| 永久网站在线| 婷婷色综合www| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 免费大片黄手机在线观看| 色视频在线一区二区三区| 亚洲精品一二三| 男女国产视频网站| 久久这里有精品视频免费| www.熟女人妻精品国产 | av片东京热男人的天堂| 99久久人妻综合| 最新中文字幕久久久久| 18禁动态无遮挡网站| 亚洲色图 男人天堂 中文字幕 | 青春草视频在线免费观看| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 国产精品免费大片| 秋霞伦理黄片| 夫妻午夜视频| 国产不卡av网站在线观看| 中文字幕最新亚洲高清| 日韩成人伦理影院| 午夜免费鲁丝| 九草在线视频观看| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 99久久综合免费| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 9191精品国产免费久久| 熟女电影av网| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版| 精品一区二区三区视频在线| 久久99一区二区三区| 精品人妻一区二区三区麻豆| 建设人人有责人人尽责人人享有的| 丝袜人妻中文字幕| 一二三四在线观看免费中文在 | 精品人妻偷拍中文字幕| 久久人人爽人人片av| 欧美日韩视频精品一区| 女人被躁到高潮嗷嗷叫费观|