• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling the ZR Relationship of Precipitation Nowcasting Based on Deep Learning

    2022-08-24 12:57:08JianbingMaXianghaoCuiandNanJiang
    Computers Materials&Continua 2022年7期

    Jianbing Ma, Xianghao Cuiand Nan Jiang

    1Chengdu University of Information Technology, Chengdu, 610225, China

    2Bournemouth University, Bournemouth, BH12 5BB, UK

    Abstract: Sudden precipitations may bring troubles or even huge harm to people’s daily lives.Hence a timely and accurate precipitation nowcasting is expected to be an indispensable part of our modern life.Traditionally, the rainfall intensity estimation from weather radar is based on the relationship between radar reflectivity factor (Z) and rainfall rate (R), which is typically estimated by location-dependent experiential formula and arguably uncertain.Therefore, in this paper, we propose a deep learning-based method to model the ZR relation.To evaluate, we conducted our experiment with the Shenzhen precipitation dataset.We proposed a combined method of deep learning and the ZR relationship, and compared it with a traditional ZR equation, a ZR equation with its parameters estimated by the least square method, and a pure deep learning model.The experimental results show that our combined model performsmuch better than the equation-based ZRformula and has the similar performance with a pure deep learning nowcasting model, both for all level precipitation and heavy ones only.

    Keywords: Deep learning; meteorology; precipitation nowcasting; weather forecasting; ZR formula

    1 Introduction

    Nowcasting has always played an important role in the field of weather forecast.Whilst it also works in predicting phenomenons such as lightning [1], Hailstorm [2], convective storm [3-5],straight-line convective wind [6] and tropical cyclone [7], most of the nowcasting efforts are applied to forecasting precipitation.Traditionally, precipitation nowcasting methods were generally based on weather radar extrapolation, or physical-numerical models on precipitation processses (among which the Numerical Weather Prediction (NWP) model that utilizes high-resolution data increased in popularity), or the combination of the two (i.e., knowledge-based expert systems [8]).NWP performs well on minute-level prediction and day-level forecasting, leaving the middle level (i.e., 1-2 h) not as well predicted as the two ends.Whilst the traditional NWP technique had been proved to be infeasible in precipition nowcasting [9,10], the linear extrapolation methods [11,12] were then introduced and showed better performance than NWP.However, these methods could not capture the underlying patterns of aberrations and trends from the historical data as the dynamic and non-linear nature of nowcasting.So nowadays, scientists have been beginning to deploy deep neural networks [10,11,13,14]to deal with the spatio-temporal inputs of precipitation nowcasting, such as Long Short-TermMemory(LSTM) [13,14], Gated Recurrent Unit (GRU) [15], 3-Dimensional Convolutional Neural Network(3D-CNN) [10], and the recent Transformer model which is based on the attention mechanism [11],were widely used in the applications.The drawback of the deep learning models might be that they are not easily understood, especially for those working in the meteorology area.

    The relationship between radar reflectivity (Z) and precipitation (R) also plays an important role in predicting precipitation in the literature.Many experiments directly used the ZR formula (Z =aRb)derived from the data to predict rainfall rates according to the Z values [16,17], dating back to the Marshall-Palmer formula [18] (Z=200 R1.6where Z is in mm6/m3and R is in mm/h) which links radar reflectivity and precipitation rate.Although the formula was intensively used, it comes with arguably uncertainty, as the values of the parameters are usually estimated through an empirical approach,based on the comparison of radar and rain gauge.People argue that an improper selection of the parameters (for instance the conventional settinga=200 andb=1.6) may lead to a bad prediction.

    There were quite a few efforts proposed to improve the ZR relation, for instance, [12,19] tried to introduce additional features to reduce the estimation error, such as type of precipitation, distance from the radar, etc., while [20-22] added seasonal, monthly, or multi-daily time scale feature information.However, these features are not always available, and the results are not universally better than that of the simple ZR formula.

    To this end, in this paper, we propose a deep learning-based method to model the ZR relation.That is, we incorporate the estimation of the parameters of the ZR relationship into a deep learning model.By having such a model, we do not need to introduce additional features like in [12,19-22], so the model can be universally used in different regions and time scales.To evaluate its performance, we compared our result to those of equation-based ZR models and a pure deep learning network.The experiment shows that our model performs much better than the equation-based models and has the similar performance with the pure deep learning one, while our model is much easier to be understood by meteorologists than the deep learning model.

    The rest of the paper is organized as follows.Section 2 introduces the dataset, followed by Section 3that provides the example design details.In Section 4, we discuss and evaluate our model performance.Finally, Section 5 concludes the paper.

    2 The Shenzhen Dataset

    We used a dataset containing real radar images and precipitation rate at the target sites, which were collected by the Meteorological Observation Center of Shenzhen.

    The characteristics of a typical sample of the dataset is as follows:

    1.Each radar image contains a target site (located in the center of the image);

    2.Each radar image contains the total amount of precipitation at the target site for the time interval of the next 1 to 2 h.Here we should note that it does not provide the amount of precipitation for the next hour;

    3.In each sample, there are four groups of images, each of which contains 15 radar images of a successive time period.Each two adjacent images come with an interval of 6 min.Each group of radar images were measured at the same area but at a different height, with an interval of 1km, ranging from a distance of 0.5 to 3.5km;

    4.According to the latitude and longitude of the target location, each radar image covers an area of 101×101 square kilometers.The area is marked as 101×101 grids (with the starting index as 0 for each coordinate), and the target position is in the center, that is, with a coordinate(50, 50).

    Since each sample contains radar echo maps of 4 heights and covers 15 time points, it has a dimension (15, 4, 101, 101).

    The following Fig.1 is an example of a visualization of radar echo data for a given sample at a given height.From left to right and top to bottom are arranged in chronological order.Above each graph is the average pixel value (average of reflected echo intensity) for that graph.From left to right and top to bottom are arranged in a chronological order.The average pixel value (average of reflected echo intensity) for that plot is shown above each plot, with row being the sample ordinate, high being the height ordinate, and rain being the precipitation amount.

    Figure 1: An example of the radar echo maps coming from the fourth altitude

    In the dataset, there are 5000 training samples and 3000 testing samples, with around 18% heavy precipitation samples (>30mm/h), as shown in Tab.1 below.

    Table 1: The characteristics of the precipitation of different intensities in the dataset

    3 The Example Design

    In our experiments, we chose the radar echo data at the fourth altitude (3.5km) for training due to its higher prediction accuracy at this altitude.In our experiments concerning deep learning, the general idea is to use CNN to extract features from the radar images, and then use the Transformer blocks to process the features in a temporal order.

    In summary, here we present four experiments to model the relation between the radar reflectivity factor (Z) and rainfall rate (R):

    Case 1: We used the direct ZR formula Z=a*Rb.Two parameter settings were used.The first pair ofaandbin the ZR formula is the traditional one i.e.,a=200,b=1.6, while the second pair ofaandbare fitted using the least square method from the training data, and they werea=0.3,b=2.6.

    Case 2: We fitted the ZR relation into a deep learning model, so as to combine human knowledge and deep learning algorithms.The model hence relies on the existing mathematical equation to shape the deep learning model to reduce the potential overfitting problem.

    Case 3: To compare, here we also proposed a pure deep learning model to predict the precipitation amount.We used a model that contains CNN, Transformer, and fully connected neural network blocks.

    3.1 The Direct ZR Formula Case

    As mentioned above, we have used two parameter settings foraandbin the formula.Since the geographical area of the radar echo map is too large, we intercepted the 15*15 area in the center of the radar map for the Z values, as indicated by Fig.2 below.

    Figure 2: The interception of the central area of the radar echo map for the Z values

    With the dataset setting, we then transformed the pixel values into the dbz values as follows:

    The dbz values were converted into Z values by the equation:

    Finally, we took the average Z-values of the central 15*15 region to be used in the ZR formula,i.e.,

    With the Z values and the corresponding R values, we use the least square method to train the parameters, and geta=0.3,b=2.6.

    3.2 The CNN + LSTM + FC + ZR Case

    In this model, we fit the ZR relation into a deep learning model that contains CNN, LSTM, and fully connected neural network blocks, as indicated by Fig.3.

    Figure 3: The ZR relation fitted deep learning model

    Note that the equation Z = a*Rbcan be converted into:

    We replace 1/b and z/a in the above figure with b2 and a2 respectively, and we get:

    With Eq.(6), we introduce a deep learning model to train the parameters a2 and b2 instead of simply fitting them by the least square method as in case 1.The parameters obtained in this way are hence spatially and temporally characterized and can be dynamically adjusted according to the radar image characteristics to obtain more flexible prediction values.

    The model structure of the CNN block used to extract feature maps is illustrated in the following two figures (Fig.4 and Fig.5).

    Figure 4: The model structure of the CNN block

    Figure 5: The convolution layer used in the CNN block

    In the CNN block, six convolution layers of the same structure are used (as shown in yellow in Fig.5) to extract features, which are then compressed and output by a GlobalAveragePooling layer.

    3.3 The CNN + Transformer + FC Case

    To compare, in this subsection, we propose a pure deep learning model to predict the precipitations.In this model, we use the transformer network to replace the working part of LSTM.The transformer block has no recursion and convolution, and its ability to process time series is entirely due to its attention mechanism.It has been shown in [11] that the transformer block has a higher accuracy and efficiency than that of LSTM on many natural language tasks.

    In our experiment, we made a few changes to the transformer block in [11] such that we remove the decoding layer of transformer since in our scenario we only need the encoding layer to get the location feature vectors, and temporal features are obtained by adding position encoding and attention mechanisms to each graph.

    The model structure is illustrated by the following Fig.6.

    Figure 6: The model structure with transformer

    4 Evaluation and Discussion

    In this section, we evaluate the effectiveness of the ZR relation based models and the pure deep learning model on precipitation prediction.The RMSE losses of the models on test sets are presented in Tab.2.

    Table 2: Comparison of all-level RMSE loss for each model

    It can be found that the pure deep learning model performs the best, while the deep learning +ZR combined model gives an RMSE 18.01 which is very close to the best result (17.47), and is much better than those of the traditional ZRrelationship Z = 200R1.6and the ZR relation based on the least square estimation, showing that deep learning does extract more accurate features than restricting the ZR relationship into the simple equation.In addition, the deep learning + ZR combined model has a similar performance with the pure one and also is more explainable than the pure model since the traditional ZR relation is fitted into deep learning.

    The same phenomena also appear in Tab.3, where we focus on heavy rainfall (precipitation samples>30mm/h) samples since in reality people are usually only concerned about heavy rainfalls.

    Table 3: Comparison on heavy rainfall samples

    As an illustration, here we present how these four models behave on the samples.

    Fig.7 shows the predicted rainfall rates for each model.The green horizontal line is the comparison line for rainfall rate=30mm/h.The vertical coordinate is the rainfall rate, and the blue bar is the predicted rainfall value and the red bar is the true value.

    Figure 7: (Continued)

    Figure 7: Precipitation prediction for each model

    From the visualized rainfall rate histogram, we can clearly see that the accuracy of the deep learning model is higher than the equation-based ZR relationships, which suggests the equation-based ZR relationship might be too simple to model real precipitation, while the deep learning model can learn more features, so the performance is better than the ZR relationship.The combination of the two also performs well and improves the accuracy over the equation-based ZR model.We should also notice that for some very concentrated heavy rainfalls, for instance the ones around the 100thsample, are hardly predicted.This may imply that there should be special improvements needed for those concentrated heavy rainfalls.

    Overall, our result suggests that a combination of deep learning and the traditional ZR relationship can perform similar accurate results to a pure deep learning model whilst in the meantime inherit part of the explainability of the ZR relationship, and hence could be a suitable choice for meteorologists.

    5 Conclusion

    In this paper, we studied how tomodel the ZR relationship with the help of deep learningmethods.We compared a traditional ZR equation, a ZR equation with its parameters estimated by the least square model, a combined deep learning andZRrelation model, and a pure deep learningmodelwith a meteorological dataset from Shenzhen, and found that the combinedmodel had a similar performance to the pure deep learning model, and both models performed much better than the equation-based models.The same conclusion also holds if we focus on heavy precipitations only.

    As a future work, we will try to introduce more methods to cope with the ZR relation, such as the rough set model [23], the spatio-temporal network [24,25], and methods employed in visual tracking[26].We will also check if our conclusion can be applied to other datasets such as [27] to increase the credibility of the conclusion.A special consideration for concentrated heavy rainfalls will also be studied further.

    Acknowledgement:We would like to thank Prof.Xi Wu and Ms.Yanfei Xiang for their great support and helpful suggestions to the paper.

    Funding Statement:This work is supported by Sichuan Provincial Key Research and Development Program (No.2021YFG0345, to J.Ma) and the National Key Research and Development Program of China (No.2020YFA0608001, to J.Ma).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品偷伦视频观看了| 日韩国内少妇激情av| 麻豆国产97在线/欧美| 一级爰片在线观看| 一级毛片 在线播放| 亚洲精品一区蜜桃| 啦啦啦啦在线视频资源| 人妻系列 视频| 偷拍熟女少妇极品色| 日韩一本色道免费dvd| 久久97久久精品| 一级毛片aaaaaa免费看小| 精品国产乱码久久久久久小说| 亚洲精品第二区| 最近中文字幕2019免费版| 欧美一区二区亚洲| av专区在线播放| 国产一级毛片在线| av黄色大香蕉| 97超碰精品成人国产| 校园人妻丝袜中文字幕| 国产极品天堂在线| 日韩人妻高清精品专区| 亚洲精品亚洲一区二区| 日本wwww免费看| 国产男人的电影天堂91| 亚洲欧美成人综合另类久久久| 在线观看av片永久免费下载| 久久久久久九九精品二区国产| 久久女婷五月综合色啪小说 | 日日摸夜夜添夜夜爱| 国产一区二区亚洲精品在线观看| 一级毛片久久久久久久久女| 各种免费的搞黄视频| 久久精品国产自在天天线| 精品国产乱码久久久久久小说| www.色视频.com| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品蜜桃在线观看| 久久精品久久久久久久性| 99热6这里只有精品| 啦啦啦啦在线视频资源| 免费看日本二区| 成年av动漫网址| 亚洲成人久久爱视频| 日本爱情动作片www.在线观看| 久久久精品欧美日韩精品| 久久人人爽av亚洲精品天堂 | 高清日韩中文字幕在线| 各种免费的搞黄视频| 国产黄a三级三级三级人| 日韩欧美精品v在线| 欧美日韩视频精品一区| 婷婷色麻豆天堂久久| 国产午夜精品久久久久久一区二区三区| 我的老师免费观看完整版| 亚洲精品自拍成人| 亚洲av中文av极速乱| 免费观看a级毛片全部| 亚洲av.av天堂| 草草在线视频免费看| 亚洲av福利一区| 精品一区在线观看国产| 欧美激情在线99| 欧美成人一区二区免费高清观看| av卡一久久| 国产男人的电影天堂91| 婷婷色综合大香蕉| www.色视频.com| 少妇人妻久久综合中文| 精品久久久久久电影网| 日韩伦理黄色片| freevideosex欧美| 在线观看av片永久免费下载| 伦理电影大哥的女人| 人人妻人人爽人人添夜夜欢视频 | 国产 一区 欧美 日韩| 国产爽快片一区二区三区| 最近最新中文字幕大全电影3| 国产一区二区三区综合在线观看 | 亚洲性久久影院| 天天躁夜夜躁狠狠久久av| 一区二区三区精品91| 高清av免费在线| av国产久精品久网站免费入址| 干丝袜人妻中文字幕| 久热这里只有精品99| 国产黄片美女视频| 黄色一级大片看看| 亚州av有码| 免费播放大片免费观看视频在线观看| av网站免费在线观看视频| 国产欧美亚洲国产| 91精品一卡2卡3卡4卡| 80岁老熟妇乱子伦牲交| 国产精品人妻久久久久久| 欧美潮喷喷水| 欧美一级a爱片免费观看看| av线在线观看网站| 久热这里只有精品99| 我的老师免费观看完整版| 亚洲综合色惰| 日日摸夜夜添夜夜爱| 国产69精品久久久久777片| 国产欧美日韩精品一区二区| 黄色日韩在线| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 在线观看免费高清a一片| 啦啦啦啦在线视频资源| 久久久久久久久久成人| 国产成人免费观看mmmm| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 国产午夜福利久久久久久| 日韩中字成人| 美女cb高潮喷水在线观看| 亚洲图色成人| 亚洲成色77777| 草草在线视频免费看| 国产精品久久久久久av不卡| 亚洲人成网站在线播| 大又大粗又爽又黄少妇毛片口| 亚洲精品视频女| 国国产精品蜜臀av免费| 99热全是精品| 成年女人在线观看亚洲视频 | 男女国产视频网站| 国产美女午夜福利| 亚洲欧美成人精品一区二区| 22中文网久久字幕| 搡老乐熟女国产| 国产成人aa在线观看| 成人综合一区亚洲| 亚洲精品aⅴ在线观看| 精品一区二区免费观看| 亚洲高清免费不卡视频| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 久久久久久久久大av| 日韩强制内射视频| 成年人午夜在线观看视频| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 久久精品人妻少妇| 97在线视频观看| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 看十八女毛片水多多多| 97人妻精品一区二区三区麻豆| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 在线播放无遮挡| 免费看a级黄色片| 国国产精品蜜臀av免费| 97精品久久久久久久久久精品| 国产淫语在线视频| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 日韩免费高清中文字幕av| av黄色大香蕉| 国产成人精品久久久久久| 日韩三级伦理在线观看| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 天堂中文最新版在线下载 | 亚洲成人久久爱视频| 久久这里有精品视频免费| 午夜福利高清视频| 精品久久久久久久久av| 狂野欧美激情性bbbbbb| 亚洲国产精品999| 国产一区二区三区av在线| 69人妻影院| 99热这里只有精品一区| 最近中文字幕2019免费版| 日本色播在线视频| 国产精品无大码| 欧美国产精品一级二级三级 | 搡女人真爽免费视频火全软件| 欧美另类一区| 啦啦啦啦在线视频资源| 少妇高潮的动态图| 亚洲国产精品专区欧美| 毛片女人毛片| 男女那种视频在线观看| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 日本一二三区视频观看| 国产淫语在线视频| 亚洲av国产av综合av卡| 噜噜噜噜噜久久久久久91| 国产精品国产三级国产专区5o| 亚洲欧美成人精品一区二区| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 国产综合懂色| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 岛国毛片在线播放| 99久久精品热视频| 亚洲最大成人手机在线| 久热这里只有精品99| 亚洲欧洲国产日韩| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 久久热精品热| 嫩草影院精品99| 婷婷色av中文字幕| 日本熟妇午夜| www.色视频.com| 国产精品熟女久久久久浪| 久热这里只有精品99| 亚洲精品久久久久久婷婷小说| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 黄色配什么色好看| 欧美精品国产亚洲| 日韩一区二区三区影片| 日本熟妇午夜| 久久久久久伊人网av| 国产高清有码在线观看视频| 久久久久网色| 欧美xxxx性猛交bbbb| 免费看av在线观看网站| 久热久热在线精品观看| 欧美日韩亚洲高清精品| 欧美日韩亚洲高清精品| 国产色爽女视频免费观看| 欧美人与善性xxx| 夜夜看夜夜爽夜夜摸| 午夜福利高清视频| 国产精品秋霞免费鲁丝片| 高清av免费在线| 久久久久久久精品精品| 亚洲va在线va天堂va国产| 国产人妻一区二区三区在| 亚洲国产成人一精品久久久| kizo精华| 日韩av在线免费看完整版不卡| 久久99热这里只有精品18| 禁无遮挡网站| 日韩成人伦理影院| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 午夜免费观看性视频| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 超碰av人人做人人爽久久| 真实男女啪啪啪动态图| 国产乱人视频| 一个人观看的视频www高清免费观看| 久久久欧美国产精品| 3wmmmm亚洲av在线观看| 亚洲精品中文字幕在线视频 | 国产老妇伦熟女老妇高清| 观看免费一级毛片| 国产成人精品福利久久| 黄色一级大片看看| 久久精品国产鲁丝片午夜精品| 在线观看一区二区三区激情| 亚洲无线观看免费| 高清午夜精品一区二区三区| 神马国产精品三级电影在线观看| 日韩精品有码人妻一区| 精品午夜福利在线看| 欧美少妇被猛烈插入视频| 最近中文字幕高清免费大全6| 亚洲va在线va天堂va国产| 国产精品伦人一区二区| 日韩视频在线欧美| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 久久ye,这里只有精品| 老司机影院成人| 91精品一卡2卡3卡4卡| 成人国产麻豆网| 国产人妻一区二区三区在| 免费看光身美女| 高清日韩中文字幕在线| 韩国av在线不卡| 久久久久久久久久久免费av| 亚洲内射少妇av| 在线亚洲精品国产二区图片欧美 | 国产成人91sexporn| 久久久久网色| 特级一级黄色大片| av又黄又爽大尺度在线免费看| 成年免费大片在线观看| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 午夜日本视频在线| 最近2019中文字幕mv第一页| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 亚洲欧美精品专区久久| 在线免费观看不下载黄p国产| 国产精品一区二区在线观看99| 色哟哟·www| 亚洲成人av在线免费| 美女cb高潮喷水在线观看| 欧美成人一区二区免费高清观看| 成年免费大片在线观看| 成人欧美大片| 国产黄色免费在线视频| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 国产久久久一区二区三区| 欧美区成人在线视频| 2018国产大陆天天弄谢| 又爽又黄无遮挡网站| 色综合色国产| 精品久久久久久久久av| 热re99久久精品国产66热6| 在线a可以看的网站| 久久久久久国产a免费观看| 欧美丝袜亚洲另类| 久久久精品免费免费高清| 亚洲天堂av无毛| 国语对白做爰xxxⅹ性视频网站| 80岁老熟妇乱子伦牲交| eeuss影院久久| 在线免费十八禁| 久久久久国产网址| 麻豆国产97在线/欧美| 日本黄色片子视频| av在线观看视频网站免费| 97热精品久久久久久| 赤兔流量卡办理| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 黄色怎么调成土黄色| 亚洲av成人精品一区久久| 亚洲自拍偷在线| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| 观看美女的网站| 中文字幕久久专区| 日本wwww免费看| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 国精品久久久久久国模美| 可以在线观看毛片的网站| 免费播放大片免费观看视频在线观看| 色视频www国产| 精品熟女少妇av免费看| 精品久久久久久久末码| 亚洲在久久综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 制服丝袜香蕉在线| 国产av国产精品国产| 日韩一区二区视频免费看| 精品久久久久久电影网| 成年av动漫网址| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 白带黄色成豆腐渣| 一级a做视频免费观看| 在线观看一区二区三区激情| 国内揄拍国产精品人妻在线| 啦啦啦啦在线视频资源| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 国产黄片美女视频| 国产成年人精品一区二区| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 青春草亚洲视频在线观看| 国产成人午夜福利电影在线观看| 我的女老师完整版在线观看| 中文字幕制服av| 男女边摸边吃奶| 春色校园在线视频观看| 国产黄片美女视频| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 欧美国产精品一级二级三级 | 中文欧美无线码| 一本一本综合久久| av福利片在线观看| 王馨瑶露胸无遮挡在线观看| 国产毛片a区久久久久| 日韩强制内射视频| 国产淫语在线视频| 国产男人的电影天堂91| av在线app专区| 亚洲成人精品中文字幕电影| 啦啦啦啦在线视频资源| 日产精品乱码卡一卡2卡三| 五月天丁香电影| 午夜福利高清视频| 亚洲欧美清纯卡通| 在线a可以看的网站| 亚洲精品国产av成人精品| 看免费成人av毛片| 六月丁香七月| 黄色一级大片看看| 男男h啪啪无遮挡| 高清视频免费观看一区二区| 青春草亚洲视频在线观看| 亚洲,欧美,日韩| 成人特级av手机在线观看| 日本一本二区三区精品| 国产精品av视频在线免费观看| 国产在线一区二区三区精| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| av.在线天堂| 卡戴珊不雅视频在线播放| 亚洲国产精品999| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 成人特级av手机在线观看| 日韩电影二区| 激情 狠狠 欧美| av专区在线播放| 亚洲av免费在线观看| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 一区二区av电影网| 国产永久视频网站| 亚洲综合色惰| 日本爱情动作片www.在线观看| 成人毛片60女人毛片免费| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲最大成人av| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 高清av免费在线| 国产精品国产三级国产专区5o| 97超碰精品成人国产| av免费观看日本| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 午夜福利高清视频| 色视频在线一区二区三区| 午夜激情福利司机影院| 五月开心婷婷网| 亚洲自偷自拍三级| 亚洲最大成人手机在线| 另类亚洲欧美激情| eeuss影院久久| 午夜激情福利司机影院| 国产成人freesex在线| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 日韩电影二区| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 久久精品久久久久久久性| 成年女人看的毛片在线观看| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 美女高潮的动态| 夜夜爽夜夜爽视频| 亚洲av国产av综合av卡| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 久热这里只有精品99| av免费观看日本| 美女cb高潮喷水在线观看| 联通29元200g的流量卡| 永久网站在线| 国国产精品蜜臀av免费| 免费看日本二区| 欧美日韩综合久久久久久| 男女国产视频网站| 干丝袜人妻中文字幕| 大陆偷拍与自拍| 视频区图区小说| 久久久色成人| 伊人久久精品亚洲午夜| 国产精品av视频在线免费观看| 少妇 在线观看| 99久久九九国产精品国产免费| 欧美国产精品一级二级三级 | 亚洲va在线va天堂va国产| 最近中文字幕2019免费版| 插阴视频在线观看视频| 久久久久久久久久人人人人人人| 丝袜美腿在线中文| 色综合色国产| 国模一区二区三区四区视频| 精品国产露脸久久av麻豆| 18禁在线无遮挡免费观看视频| 一级毛片黄色毛片免费观看视频| 亚洲四区av| 两个人的视频大全免费| 黄色视频在线播放观看不卡| 亚洲精品,欧美精品| 极品教师在线视频| 最新中文字幕久久久久| 亚洲国产精品国产精品| 精品国产三级普通话版| 久久精品国产亚洲av天美| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 成人国产av品久久久| 综合色丁香网| 尾随美女入室| 午夜亚洲福利在线播放| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 亚洲av二区三区四区| videossex国产| 国产av码专区亚洲av| 日本一二三区视频观看| 午夜福利网站1000一区二区三区| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 99热这里只有是精品在线观看| 国产 一区精品| 晚上一个人看的免费电影| 国产精品秋霞免费鲁丝片| 蜜桃久久精品国产亚洲av| 精品一区二区免费观看| 丝瓜视频免费看黄片| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 69av精品久久久久久| 国产男女超爽视频在线观看| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 亚洲人成网站在线播| 久久久成人免费电影| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 国产淫语在线视频| 亚洲av电影在线观看一区二区三区 | 伦理电影大哥的女人| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频| av播播在线观看一区| 国产爽快片一区二区三区| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 一边亲一边摸免费视频| 久久久久久久久久久免费av| 性色avwww在线观看| 日本黄大片高清| 亚洲国产色片| 一区二区三区精品91| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 最近最新中文字幕大全电影3| 久久人人爽人人爽人人片va| 青春草视频在线免费观看| 国产精品一及| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 高清毛片免费看| 精品久久久久久电影网| 国产探花在线观看一区二区| 狂野欧美激情性xxxx在线观看| 高清视频免费观看一区二区| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 午夜爱爱视频在线播放| 午夜福利在线在线| 欧美成人精品欧美一级黄| 日本wwww免费看| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx在线观看| 久久久久国产网址| 插阴视频在线观看视频| 日韩av不卡免费在线播放| 亚洲成人一二三区av| 久久久成人免费电影| 老女人水多毛片| 男女国产视频网站| 国产成人freesex在线| 好男人视频免费观看在线| 欧美xxⅹ黑人| 一级黄片播放器| 亚洲精品成人久久久久久| 久久久久久久亚洲中文字幕| 欧美另类一区| 色综合色国产| 日日摸夜夜添夜夜爱| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 日本欧美国产在线视频| 日韩人妻高清精品专区| 美女视频免费永久观看网站| 精品一区二区免费观看| 联通29元200g的流量卡| 舔av片在线| 国产白丝娇喘喷水9色精品| 少妇 在线观看| 在线观看av片永久免费下载| 一本久久精品|