• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling Reliability Engineering Data Using Scale-Invariant Quasi-Inverse Lindley Model

    2022-08-24 12:56:54MohamedKayidandTareqAlsayed
    Computers Materials&Continua 2022年7期

    Mohamed Kayidand Tareq Alsayed

    Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi Arabia

    Abstract: An important property that any lifetime model should satisfy is scale invariance.In this paper, a new scale-invariant quasi-inverse Lindley(QIL)model is presented and studied.Its basic properties, including moments,quantiles, skewness, kurtosis, and Lorenz curve, have been investigated.In addition, the well-known dynamic reliability measures, such as failure rate(FR), reversed failure rate (RFR), mean residual life (MRL), mean inactivity time (MIT), quantile residual life (QRL), and quantile inactivity time (QIT)are discussed.The FR function considers the decreasing or upside-down bathtub-shaped, and the MRL and median residual lifetime may have a bathtub-shaped form.The parameters of the model are estimated by applying the maximum likelihood method and the expectation-maximization (EM)algorithm.The EM algorithm is an iterative method suitable for models with a latent variable, for example, when we have mixture or competing risk models.A simulation study is then conducted to examine the consistency and efficiency of the estimators and compare them.The simulation study shows that the EM approach provides a better estimation of the parameters.Finally, the proposed model is fitted to a reliability engineering data set along with some alternatives.The Akaike information criterion (AIC),Kolmogorov-Smirnov (K-S), Cramer-von Mises (CVM), and Anderson Darling (AD)statistics are used to compare the considered models.

    Keywords: Inverse Lindley distribution; reliability measures; maximum likelihood estimation; EM algorithm

    1 Introduction

    Lindley [1] and inverse Lindley models have attracted much attention in the last decade.There is a long list of research on the Lindley model and its generalizations.Ghitany et al.[2] studied some features of the Lindley model.Sankaran [3] applied the Lindley model to define a compound Poisson-Lindley distribution.Ghitany et al.[4] considered the distribution introduced by Sankaran [3] to study a compound Poisson-Lindley model truncated to zero.Zamani et al.[5] proposed and studied a ccompound negative binomial Lindley model.Ghitany et al.[6] considered a power Lindley model with two parameters.Al-Mutairi et al.[7] estimated the probability of stress strength for two independent Lindley distributions.Al-babtain et al.[8] generalized the Lindley model to a distribution with fiveparameters.Shanker et al.[9,10] introduced an extended version of the Lindley model.Shankeret al.[11] investigated somemathematical properties of the extended Lindley model defined by Shankeret al.[10].Moreover, Shanker et al.[12] introduced and studied a new quasi-Lindley model.Merovci et al.[13] proposed a beta Lindley model and studied its properties.Zakerzade et al.[14], Ibrahim et al.[15], and Shanker et al.[16] defined generalizations of the Lindley distribution with three parameters.Moreover, Broderick et al.[17] proposed a generalization of the Lindley model with four parameters.

    Sharma et al.[18] introduced the inverse Lindley distribution and considered it as a stress-strength model.The probability density function (PDF) of the inverse Lindley distribution is

    and follows an upside-down bathtub (unimodal) hazard rate function, so it is useful when the data has a unimodal hazard rate.Sharma et al.[19] have presented some data examples that follow models with such a hazard rate function.Alkarni [20] and Sharma et al.[19] proposed an extension of the inverse Lindley distribution with three parameters and a new generalized inverse Lindley distribution, respectively.Also, Barco et al.[21] have obtained a new distribution from the power Lindley distribution and the inverse Lindley distribution.Recently, Eltehiwy [22] studied the logarithmic transformation of the inverse Lindley distribution.

    An important property that any lifetime model should satisfy is scale invariance.A distribution family with scale parameter θ and PDFfθ(x) is scale invariant if the change fromxtokx,k>0, does not change the family.More precisely,fθ(kx) =Jfθ′(x) whereJis the Jacobian of the transformation.Unfortunately, the inverse Lindley and the generalized versions mentioned above are not scale invariant.In this paper, we therefore present and study a scale-invariant extension of the inverse Lindley distribution.

    The rest of the paper is organized as follows.In Section 2, we introduce the new quasi-inverse Lindley model and study some of its properties.In Section 3, we apply maximum likelihood and EM to estimate the parameters of the model.In Section 4, we investigate the behaviour of the estimators through a simulation study.In Section 5, we fit the proposed model to a reliability engineering data set to show its applicability.Finally, we conclude the paper in Section 6.

    2 Quasi Inverse Lindley Distribution

    The scale invariant quasi inverse Lindley distribution,QIL(α,θ), is defined by the cumulative distribution function (CDF)

    The PDF of QIL is

    It can be checked by differentiation that the sign of thef′(x) is equal with the sign of -+(α- 3)x+θ.Thusf′(0)>0 andfincreases at an early interval and then decreases, i.e., the PDF is unimodal for all values of the parameters.The PDF of the inverse gamma (IG) distribution with parameters (ν,θ),IG(ν,θ), is of the form

    so the PDF of QIL is a mixture of the PDF of inverse gamma distributionsIG(1,θ) andIG(2,θ) with weightsand.The QIL is an scale invariant extension of the the inverse Lindley distribution investigated by Sharma et al.[18], see scale invariance property discusssed in the Introduction section.If α be replaced by θ this new model will reduce to inverse Lindley.Moreover, if a random variableXfollows the QIL, then its reciprocal follows the model proposed by Shanker et al.[11].

    Proposition 1.Fork<1, thekthmoment of theQIL(α,θ) is finite and equals

    while fork≥1 it is infinite.

    Proof:Thekthmoment of theQIL(α,θ) is

    The first integral of (6) simplifies to

    fork<1 equal to αθk-2Γ(1 -k).But, fork= 1,I1reduces to

    in which arbitrarya>0.It shows that fork≥1,E(Xk) is infinite.On the other hand, the second integral of (6) is

    Thus by (6) the proof is completed.□

    As a result of Proposition 1, and by the fact that

    it follows that the moment generating function is infinite.

    The quantile functionq(p) is defined by the inverse of the CDF.The quantile function has not a closed form for QIL and should be computed through the following

    The quantile functionq(p) can be used to describe distribution characteristics, especially skewness kurtosis and to estimate parameters.The skewness of theQILcan be measured by

    whereu∈(0,0.5), (see MacGillivray [23]).The special caseu= 0.25 is referred to Bowley’s measure of skewness (Bowley [24]).Also, the kurtosis of QIL is measured by (see Moors [25])

    The well-known Lorenz curve is a graphical representation for the inequality of distribution of wealth or income.It measures the proportion of overall wealth or income of the bottomppercent of the people.The line of perfect equality is represented by the straight line between (0, 0) and (1, 1).The Lorenz curve is also a curve connecting these points and lies below the perfect equality line, see Bishop et al.[26].For a model with the CDFF, the Lorenz curve is defined by

    For QIL, due to the fact that μ is infinite, but μpis finite for everypsuch thatq(p)<∞, the Lorenz curve is zero and gives no information about income inequality.Fortunately, Prendergast et al.[27] defined three quantile versions of the Lorenz curve that can be applied toQIL.The main idea is to replace μ by median of the distribution and μpby its alternative quantile, i.e.,q.So, their alternatives for Lorenz curve are as follows.

    and

    Dynamic Measures

    The FR, RFR, MRL, MIT,p-QRL andp p-QIT play key role in the reliability and survival analysis.Let the reliability function of QIL beR(x) = 1 -F(x), then the FR λ(x) and RFR η(x)functions of QIL are respectively,

    and

    The FR function λ(x) tends to zero whenxtends to zero or infinity.By differentiating from λ(x)with respect tox, we find that the FR function shows a unimodal form.The RFR function η(x) tends to infinity at zero and tends to zero at infinity and is a decreasing function, refer to Lai et al.[28].

    The MRL functionm(x) represents the expectation of the conditional remaining life of an object given that it has been survived up to timexand equalsm(x) =E(X-x|X≥x), see Lai et al.[28].

    Proposition 2.The MRL functionm(x) of the QIL is infinite forx≥0.

    Proof:The MRL can be expressed by

    With straightforward algebra we have

    The first integral (8) is not finite since

    which shows the proposition.□

    The MIT ν(x) describes the conditional expectation of the elapsed time of an event given that it has been happened sometime beforex, more formally ν(x) =E(x-X|X<x), see Lai et al.[28].The following proposition shows that the MIT of QIL is finite for allx>0.

    Proposition 3.The MIT is finite for allx>0 and

    Proof:The MIT can be written as

    and for the QIL, we have

    The first integral (10) can be simplified to

    The second integral of (10) reduces to

    which completes the proof.□

    Thep-QRL function, denoted byqp(x), represents the conditionalpth quantile of the remaining life of an object, given that it has been survived up to timex,

    where the quantile functionqis defined in (7) and= 1 -p.

    Thep-QIT(x), represents the conditionalpth quantile of the elapsed time of an event, given that it has been happened sometime beforex, more formally

    Similar to the quantile functionqdefined by (7), thep-QRL andp-QIT have not closed form for QIL.Thus, we should be computed them numerically.Whenp= 0.5,thep-QRLandp-QITareknown as the median residual life and the median inactivity time respectively.

    Fig.1 draws the density andFRfunctions of QIL for some parameters.The density ismore skewed to right for larger θ.The FR shows upside down bathtub shape (unimodal form).

    Figure 1: The PDF and FR function of QIL(α,θ) for some values of parameters

    3 Estimation of the Parameters

    In this section, we discuss the maximum likelihood estimation (MLE) method and the EM algorithm for estimating the parameters of the proposed model (1).

    3.1 The MLE

    Letx1,x2,...,xnbe an independent and identically distributed (iid) realization fromQIL(α,θ),the log-likelihood function of the parameters is

    Then, the likelihood equations are and

    The MLE can compute by maximizing the log-likelihood function directly, or solving the likelihood equations.The first approach has applied in the next sections.

    Letl= lnf(X), then the following matrix shows the Fisher information.

    3.2 The EM Algorithm

    As explained earlier, theQIL(α,θ) is a mixture of two inverse gamma distributionsIG(1,θ) andIG(2,θ) and α determines the weights of the mixture.Letxibe an instance of the QIL model.Imagine one unobserved latent random variableZiwhich determines thatxicomes fromIG(1,θ) orIG(2,θ).LetXi,i= 1,2,...,nbe an iid random sample,Xi|Zi=j~I(xiàn)G(j,θ),j= 1,2,P(Zi= 1) =andP(Zi= 2) =.ThenXifollowsQIL(α,θ).For simplicity, let β= (α,θ).The likelihood function is

    whereI(zi=j) equals 1 whenzi=jand equals 0 otherwise.Also,PZi(j) =P(Zi=j) =and

    is the PDF of theIG(j,θ).Then the log-likelihood function can be simplified to the following form.

    The following expectation (E) and maximization (M) steps:

    The E Step

    Given the estimate of the parameters at iterationt,βt, the conditional distribution ofZican compute by Bayes theorem as

    which are known as membership probabilities at iterationt, and applied to obtain the expectation functionQ(β|βt) as follows.

    Thus the expectation function can be arranged as a sum of two expressions which one expression just depends on α and the other term just depends on θ.

    where

    and

    The M Step

    To find the estimation of the parameters att+1 iteration, the objective expressionQ(β|βt) should be maximized in terms of β.So, it results that

    which by (18) can reduce to the two following separate maximization problems

    and

    whereQ1(α|βt) andQ2(θ|βt) are determined by (19) and (20) respectively and by differentiating fromQ1(α|βt) andQ2(θ|βt) with respect to α and θ respectively, it follows that

    and

    The iterative process can conclude for some predefined small ?>0,

    4 Simulation

    By a simulation study, the efficiency of the MLE and EM estimator have been investigated and compared.The fact that QIL is a mixture of two inverse gamma distribution to provide random samples.More specifically, the following steps should be performed:

    ?Simulate one sample of multinomial distribution with parametersn,p=and 1 -p.Let the generated instance ben1andn2, corresponding to probabilitiespand 1 -prespectively.

    ?Generate one sample with sizen1from gamma distributionG(1,θ) and another sample fromG(2,θ) with sizen2.Combine two generated samples to provide one sample ofQIL(α,θ) with sizen.

    In each run, some suitable values for the parameters are selected.Then,r= 5000 repetitions of random samples of QIL are simulated.The size of samples aren= 50, 150 or 250.For each repetition,the parameters were estimated using the maximum likelihood method or the EM approach.

    The function“nleqslv”of the library“l(fā)neqslv”in R was used to calculate the MLE.This function solves the likelihood Eqs.(12) and (13) to find the MLE.The initial values were randomly generated by a uniform distribution in both the MLE and EM approaches.In the EM algorithm, checking the termination condition in each EM iteration causes the runs very slow.Therefore, the EM algorithm was tested many times to find out how many iterations are sufficient.We found that 5 iterations is sufficient.Tab.1 shows the bias (B) and mean square error (MSE) of the computed estimators.In every cell of this table the first and second lines show B and MSE for α and θ respectively.Letrepresent the MLE of α, then its corresponding B and MSE are defined by the following relations:

    and

    Table 1: Simulation results for MLE and EMestimator of the parameters of QIL distribution.In every cell the first and second lines are related to α and θ respectively

    Other measurements are defined similarly.Some of the simulation results are listed in the following:

    ?As sample size increases, the MSE decrease, in both MLE and EM approaches, i.e., the MLE and EM estimators are consistent.

    ?The MSE of MLE shows unexpectedly large values especially for α.Fortunately, the EM approach shows far smaller MSEs for both α and θ.Thus, the EM outperforms MLE in terms of the MSE.

    5 Applications

    In this section, we fit the proposed model to a data set to show its applicability.Tab.2 represents one data set consists of 46 observations reported on active repair times in terms of hours for an airborne communication transceiver discussed by Alven [29].TheQILis fitted to this data set and the parameters have been estimated by the maximum likelihood method and EM algorithm.The computed MLE and EM estimation are (?,) = (14.997, 1.2066) and (?,?) = (19.6777, 1.1911)respectively.In a comparative analysis, the IG, inverse Weibull (IW) and power inverse Lindley (PIL)distributions are fitted to this dataset.The PDF of the IG is defined by (4) and the PDF of the IW and PIL are respectively

    and

    Table 2: Active repair times (hours) for an airborne communication transceiver

    The results of fitting models are abstracted in Tab.3.The estimates of the parameters, AIC, K-S,CVM and A-D statistics are computed.The QIL model outperforms the other candidates in terms of the AIC, K-S, CVM and A-D statistics.Also, the great p-values (near one) indicates good and competitive fits for allmodels.The empirical and fitted CDFs ofQIL along with the alternative models aredrawnin Fig.2.Also,the rightside of Fig.3shows upside down bathtub shape for the FRfunction of all of the estimated models.The total time on test plot of the data set presented by Fig.4 shows a plot which is above the identity line at the beginning and then falls below the identity line.Thus, Fig.4 confirms an upside down bathtub shape for the FR function, too.

    Table 3: The results of fitting the QIL model and some alternative models to dataset of Tab.2

    Figure 2: The 0.5-QRL function and the MIT function of QIL(α,θ) for some values of parameters

    Figure 3: Left: The empirical distribution and fitted distributions to the data set of Tab.2.Right: The FR function of the estimated distributions

    Figure 4: The total time on test plot for data set of Tab.2.This plot reveals an upside-down bathtub shape form for the FR function

    6 Conclusions

    A new scale-invariant quasi-Lindley distribution was introduced and studied.It is useful for the analysis of lifetime data with an upside-down bathtub shape FR function.The elementary properties of the proposed model were explored.Also, some dynamic reliability measures were investigated.The maximum likelihood and EM methods were discussed.A simulation study was conducted to investigate and compare the behavior of the two approaches.It found that the EMmethod can estimate the parameters more efficiently.

    Acknowledgement:The authors are grateful to anonymous referees for their constructive comments and suggestions, which has greatly improved this paper.

    Funding Statement:This work is supported by Researchers Supporting Project Number (RSP-2021/392), King Saud University, Riyadh, Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一二三区| 色婷婷av一区二区三区视频| 看非洲黑人一级黄片| 中文精品一卡2卡3卡4更新| 亚洲成人手机| 久热久热在线精品观看| 人人妻人人爽人人添夜夜欢视频 | 麻豆精品久久久久久蜜桃| 日本黄色片子视频| 狂野欧美白嫩少妇大欣赏| 狂野欧美激情性bbbbbb| 欧美精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 少妇 在线观看| 中文字幕亚洲精品专区| 久久久久久久久久成人| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 免费少妇av软件| 女人久久www免费人成看片| 蜜臀久久99精品久久宅男| 国产男女内射视频| 美女xxoo啪啪120秒动态图| 亚洲精品久久午夜乱码| 国产精品女同一区二区软件| 亚洲精品久久午夜乱码| 日韩欧美精品免费久久| 18禁在线无遮挡免费观看视频| 久久韩国三级中文字幕| 国产免费一区二区三区四区乱码| videossex国产| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| a级毛色黄片| 中文字幕亚洲精品专区| 久热久热在线精品观看| 在线观看一区二区三区激情| 人妻 亚洲 视频| 亚洲国产高清在线一区二区三| 亚洲精品aⅴ在线观看| 纵有疾风起免费观看全集完整版| 99久久精品一区二区三区| 国产又色又爽无遮挡免| 国产熟女欧美一区二区| 七月丁香在线播放| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 联通29元200g的流量卡| 麻豆成人av视频| 看免费成人av毛片| 欧美日韩视频精品一区| av国产精品久久久久影院| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 日韩人妻高清精品专区| 男女下面进入的视频免费午夜| 亚洲av男天堂| 在线观看免费高清a一片| 男人狂女人下面高潮的视频| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 国产精品三级大全| 国内精品宾馆在线| 热re99久久精品国产66热6| 最近的中文字幕免费完整| 97精品久久久久久久久久精品| 免费黄色在线免费观看| 免费少妇av软件| 一级毛片黄色毛片免费观看视频| 亚洲国产精品专区欧美| 国产片特级美女逼逼视频| 久久久a久久爽久久v久久| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久| 欧美性感艳星| 最后的刺客免费高清国语| 卡戴珊不雅视频在线播放| 性色avwww在线观看| 久久久久久久国产电影| 直男gayav资源| 成人午夜精彩视频在线观看| 国产日韩欧美亚洲二区| 亚洲av中文字字幕乱码综合| 欧美人与善性xxx| 亚洲一区二区三区欧美精品| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影小说 | 一级毛片电影观看| www.色视频.com| 国产亚洲欧美精品永久| 男人爽女人下面视频在线观看| 国产深夜福利视频在线观看| 看免费成人av毛片| 日本与韩国留学比较| 多毛熟女@视频| 嫩草影院入口| 国产一级毛片在线| 亚洲精品一二三| 永久免费av网站大全| 汤姆久久久久久久影院中文字幕| av免费观看日本| 少妇人妻久久综合中文| 色婷婷av一区二区三区视频| 视频区图区小说| 国产亚洲午夜精品一区二区久久| 国产 精品1| 天堂俺去俺来也www色官网| 亚洲国产精品国产精品| 又爽又黄a免费视频| 日韩国内少妇激情av| 国产精品成人在线| 97超视频在线观看视频| 精品一区在线观看国产| 春色校园在线视频观看| 国产在线男女| 亚洲成人中文字幕在线播放| 日韩免费高清中文字幕av| 国产色婷婷99| 亚洲欧美精品专区久久| 18禁裸乳无遮挡动漫免费视频| 综合色丁香网| 麻豆成人午夜福利视频| 欧美日韩亚洲高清精品| 亚洲欧美日韩东京热| 中文字幕av成人在线电影| 久久久成人免费电影| 啦啦啦在线观看免费高清www| 搡老乐熟女国产| 亚洲va在线va天堂va国产| 下体分泌物呈黄色| 亚洲第一av免费看| 日本av免费视频播放| 亚洲,一卡二卡三卡| 极品教师在线视频| 天堂中文最新版在线下载| 夫妻午夜视频| 六月丁香七月| 亚洲精品乱码久久久v下载方式| 大陆偷拍与自拍| 日韩三级伦理在线观看| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 97在线视频观看| 久久99热6这里只有精品| 日本黄色日本黄色录像| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看| 久久鲁丝午夜福利片| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 久久久精品免费免费高清| 日本与韩国留学比较| 日本猛色少妇xxxxx猛交久久| 亚洲高清免费不卡视频| 欧美极品一区二区三区四区| 欧美高清成人免费视频www| 欧美日韩视频精品一区| 久久久色成人| 免费黄频网站在线观看国产| 国产乱人偷精品视频| 永久免费av网站大全| 国产淫语在线视频| 亚洲国产毛片av蜜桃av| 精品人妻熟女av久视频| 日韩大片免费观看网站| 免费av中文字幕在线| 99久久精品国产国产毛片| 午夜精品国产一区二区电影| 亚洲国产日韩一区二区| 九九久久精品国产亚洲av麻豆| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 国产 一区精品| 久久国产亚洲av麻豆专区| 乱码一卡2卡4卡精品| 两个人的视频大全免费| 亚洲国产精品一区三区| 久久精品国产亚洲av天美| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 亚洲无线观看免费| 亚洲av男天堂| 日本黄色片子视频| 插逼视频在线观看| 国产精品爽爽va在线观看网站| 亚洲欧美日韩另类电影网站 | 精华霜和精华液先用哪个| 最后的刺客免费高清国语| 青春草视频在线免费观看| 国产极品天堂在线| 亚洲婷婷狠狠爱综合网| 久久毛片免费看一区二区三区| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 最近中文字幕2019免费版| 高清av免费在线| 亚洲精品中文字幕在线视频 | 精品人妻偷拍中文字幕| 天天躁日日操中文字幕| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人 | 汤姆久久久久久久影院中文字幕| 久久久午夜欧美精品| 亚洲成人中文字幕在线播放| 大码成人一级视频| 99久久综合免费| a级毛色黄片| 国产大屁股一区二区在线视频| 日韩一区二区视频免费看| 精品亚洲成a人片在线观看 | 在线观看免费日韩欧美大片 | 久久久欧美国产精品| 亚洲无线观看免费| www.av在线官网国产| 我的老师免费观看完整版| 高清黄色对白视频在线免费看 | 午夜福利网站1000一区二区三区| 亚洲精品日韩av片在线观看| 午夜福利影视在线免费观看| av视频免费观看在线观看| av在线观看视频网站免费| 嫩草影院入口| 内射极品少妇av片p| 我的女老师完整版在线观看| 嘟嘟电影网在线观看| 日本免费在线观看一区| 免费大片18禁| 最近最新中文字幕大全电影3| 汤姆久久久久久久影院中文字幕| 女性被躁到高潮视频| 久久av网站| 亚州av有码| 建设人人有责人人尽责人人享有的 | freevideosex欧美| 男人和女人高潮做爰伦理| 人人妻人人爽人人添夜夜欢视频 | 激情五月婷婷亚洲| 国产乱人偷精品视频| 日日啪夜夜撸| 久久久久网色| 国产av码专区亚洲av| 成人18禁高潮啪啪吃奶动态图 | 美女cb高潮喷水在线观看| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 欧美xxⅹ黑人| 精品久久久久久久末码| 国产在线视频一区二区| 七月丁香在线播放| 精品久久久精品久久久| 久久久久久久大尺度免费视频| 成人一区二区视频在线观看| 日韩欧美一区视频在线观看 | 人妻夜夜爽99麻豆av| 日韩大片免费观看网站| 日日摸夜夜添夜夜爱| 久久久色成人| 精品99又大又爽又粗少妇毛片| h视频一区二区三区| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产最新在线播放| 欧美激情极品国产一区二区三区 | 国产乱人偷精品视频| 久久精品熟女亚洲av麻豆精品| 欧美人与善性xxx| 午夜福利高清视频| 五月玫瑰六月丁香| 美女内射精品一级片tv| 插阴视频在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 国产在线一区二区三区精| 精品亚洲成a人片在线观看 | 欧美国产精品一级二级三级 | 韩国高清视频一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 一级片'在线观看视频| 亚洲图色成人| av播播在线观看一区| 我要看黄色一级片免费的| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜 | 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 人妻夜夜爽99麻豆av| 久久97久久精品| 国产欧美日韩精品一区二区| 各种免费的搞黄视频| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 日本黄色片子视频| av播播在线观看一区| a 毛片基地| 全区人妻精品视频| 天天躁日日操中文字幕| 女人久久www免费人成看片| 超碰av人人做人人爽久久| 国产欧美日韩精品一区二区| 午夜激情久久久久久久| 国产日韩欧美在线精品| 最近最新中文字幕免费大全7| 午夜精品国产一区二区电影| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 中文字幕精品免费在线观看视频 | 国产黄色视频一区二区在线观看| av.在线天堂| 亚洲成人手机| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 亚洲性久久影院| 亚洲av中文av极速乱| 日本一二三区视频观看| 国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 欧美日本视频| av一本久久久久| 亚洲人成网站高清观看| 久久久久久伊人网av| 国产一级毛片在线| 国产 一区精品| 美女高潮的动态| 亚洲电影在线观看av| 日韩强制内射视频| 国内精品宾馆在线| 久久久久久久国产电影| 人妻 亚洲 视频| 全区人妻精品视频| 日韩欧美精品免费久久| 色网站视频免费| 久久韩国三级中文字幕| 亚洲色图av天堂| 91在线精品国自产拍蜜月| 尾随美女入室| 美女xxoo啪啪120秒动态图| 99久久精品一区二区三区| 777米奇影视久久| 99久久人妻综合| 又大又黄又爽视频免费| 久久久久久久大尺度免费视频| 国产精品福利在线免费观看| 欧美丝袜亚洲另类| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 不卡视频在线观看欧美| 欧美bdsm另类| 搡老乐熟女国产| 美女高潮的动态| 亚洲第一av免费看| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 老熟女久久久| 中文天堂在线官网| 2018国产大陆天天弄谢| 久久精品夜色国产| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 高清日韩中文字幕在线| 99久久综合免费| 尾随美女入室| 青春草亚洲视频在线观看| 国产伦精品一区二区三区四那| 精品午夜福利在线看| 极品少妇高潮喷水抽搐| 国产精品一及| 老师上课跳d突然被开到最大视频| 国产 一区精品| 久久久久性生活片| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 欧美精品一区二区大全| 一级二级三级毛片免费看| 免费看日本二区| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| 亚洲成人中文字幕在线播放| 激情 狠狠 欧美| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 精华霜和精华液先用哪个| 又粗又硬又长又爽又黄的视频| 六月丁香七月| 国产淫语在线视频| 观看av在线不卡| av一本久久久久| 日韩 亚洲 欧美在线| 精品一区二区三卡| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 黄色配什么色好看| 日韩中字成人| 国精品久久久久久国模美| 直男gayav资源| 亚洲成人av在线免费| 啦啦啦在线观看免费高清www| 国产欧美日韩一区二区三区在线 | 少妇人妻精品综合一区二区| av天堂中文字幕网| 青春草亚洲视频在线观看| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 三级国产精品欧美在线观看| 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片| 亚洲最大成人中文| 日韩中字成人| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 日本黄色日本黄色录像| 精品久久久久久久久亚洲| 国产精品久久久久久精品电影小说 | 一级毛片aaaaaa免费看小| 免费大片黄手机在线观看| 日韩av在线免费看完整版不卡| 欧美bdsm另类| 亚洲欧洲日产国产| 国产一级毛片在线| 亚洲电影在线观看av| xxx大片免费视频| 女性被躁到高潮视频| av在线app专区| 中文天堂在线官网| 久久久久久久精品精品| 欧美97在线视频| 日韩中字成人| av女优亚洲男人天堂| 国产黄片美女视频| 天堂8中文在线网| 成人一区二区视频在线观看| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 成人影院久久| 日本黄色日本黄色录像| 大片免费播放器 马上看| 亚洲av二区三区四区| 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 青春草国产在线视频| 亚洲成人中文字幕在线播放| 97在线人人人人妻| 又粗又硬又长又爽又黄的视频| 午夜视频国产福利| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 成人综合一区亚洲| 丰满迷人的少妇在线观看| 亚洲国产日韩一区二区| 国产精品秋霞免费鲁丝片| 最近最新中文字幕大全电影3| 国产亚洲欧美精品永久| 18+在线观看网站| 天美传媒精品一区二区| 国产精品一区二区在线观看99| videossex国产| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 91aial.com中文字幕在线观看| av女优亚洲男人天堂| 国产乱人视频| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 欧美一级a爱片免费观看看| 亚洲精品国产色婷婷电影| 亚洲最大成人中文| 精品少妇久久久久久888优播| 色5月婷婷丁香| 欧美zozozo另类| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| av播播在线观看一区| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 国产伦在线观看视频一区| av在线播放精品| 久久久久久久久久久免费av| 精品一区二区三区视频在线| 国产精品无大码| 丝瓜视频免费看黄片| 午夜激情久久久久久久| 欧美激情国产日韩精品一区| 六月丁香七月| 亚洲精品aⅴ在线观看| 妹子高潮喷水视频| 99热网站在线观看| 日韩一区二区视频免费看| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 男人爽女人下面视频在线观看| 国产亚洲5aaaaa淫片| 99热这里只有精品一区| xxx大片免费视频| 日日摸夜夜添夜夜添av毛片| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人 | 一级av片app| 99热国产这里只有精品6| 精品亚洲成国产av| 麻豆国产97在线/欧美| 人人妻人人爽人人添夜夜欢视频 | 99久久精品国产国产毛片| 男的添女的下面高潮视频| 热re99久久精品国产66热6| 九九久久精品国产亚洲av麻豆| 夜夜爽夜夜爽视频| 午夜免费鲁丝| av.在线天堂| 99热这里只有是精品在线观看| 99久久精品热视频| 亚洲丝袜综合中文字幕| 成人18禁高潮啪啪吃奶动态图 | 99久国产av精品国产电影| 国产乱人视频| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 内射极品少妇av片p| 国模一区二区三区四区视频| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 草草在线视频免费看| 精品一区二区三卡| 国产高清有码在线观看视频| 国产精品一区二区性色av| 啦啦啦啦在线视频资源| 草草在线视频免费看| 久久久久久久久久久丰满| av一本久久久久| 99re6热这里在线精品视频| 精品久久久精品久久久| 国产乱人视频| 直男gayav资源| 国产精品欧美亚洲77777| 亚洲最大成人中文| 麻豆成人午夜福利视频| 哪个播放器可以免费观看大片| 又爽又黄a免费视频| 夫妻午夜视频| 麻豆成人av视频| 亚洲四区av| 久久99蜜桃精品久久| 国产日韩欧美亚洲二区| 亚洲精品国产成人久久av| 性高湖久久久久久久久免费观看| 大香蕉97超碰在线| 22中文网久久字幕| 在线亚洲精品国产二区图片欧美 | 国产精品福利在线免费观看| 精品人妻一区二区三区麻豆| av一本久久久久| 色网站视频免费| 久久人人爽人人片av| 一本色道久久久久久精品综合| 亚洲欧美成人精品一区二区| 午夜福利影视在线免费观看| 欧美亚洲 丝袜 人妻 在线| 伊人久久国产一区二区| 99九九线精品视频在线观看视频| 色网站视频免费| 日本黄色片子视频| 大码成人一级视频| 日韩国内少妇激情av| 在现免费观看毛片| 欧美bdsm另类| 蜜桃在线观看..| 最近手机中文字幕大全| 街头女战士在线观看网站| 国产一区有黄有色的免费视频| 亚洲精品久久午夜乱码| 成人毛片60女人毛片免费| 国产精品久久久久久精品古装| 日韩中文字幕视频在线看片 | 久久韩国三级中文字幕| 男人舔奶头视频| 99久久人妻综合| 亚洲精品国产成人久久av| 人体艺术视频欧美日本| 国产无遮挡羞羞视频在线观看| av免费在线看不卡| 欧美老熟妇乱子伦牲交| 能在线免费看毛片的网站| 亚洲美女黄色视频免费看| 大又大粗又爽又黄少妇毛片口| 嫩草影院入口| 午夜福利在线在线| 99热这里只有是精品50| 久久久久久久精品精品| 亚洲欧美精品自产自拍| 嘟嘟电影网在线观看| 最近最新中文字幕免费大全7| 欧美人与善性xxx| 丝袜脚勾引网站|