• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification

    2022-08-24 12:58:36NebojsaBudimirovicPrabhuMilosAntonijevicMiodragZivkovicNebojsaBacaninIvanaStrumbergerandVenkatachalam
    Computers Materials&Continua 2022年7期

    Nebojsa Budimirovic, E.Prabhu, Milos Antonijevic, Miodrag Zivkovic, Nebojsa Bacanin,*,Ivana Strumbergerand K.Venkatachalam

    1Singidunum University, Belgrade, 11000, Serbia

    2Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa

    Vidyapeetham, Coimbatore, 641112, India

    3Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, Hradec Králové, 50003, Czech Republic

    Abstract: Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia.On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool.Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient.To overcome these issues, our proposed study implements four cascaded stages.First, for pre-processing, a mean filter is used.Second, texture feature extraction uses principal component analysis (PCA).Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm.The severity of lung infection is detected on the basis of age group.Fourth,image classification is done by using the proposedMWOAwith the salp swarm algorithm (MWOA-SSA).MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.This proposed method improves the effective classification of lung affected images from large datasets.

    Keywords: PCA; WOA; CT-image; lung infection; COVID-19

    1 Introduction

    COVID-19 is a virus infection that has changed human life in various aspects including finance,education, health care, and supply chains.People with COVID-19 infection are facing respiratory problems and can recover with appropriate treatment effectively [1].Many studies have been done in implementing classification and determining the presence of COVID-19 as well as in detecting the severity of pneumonia.CT and X-ray image modalities are non-invasive and used to detect and severity of lung infection [2,3].In this study, we used principal component analysis (PCA) for feature extraction of CT images and a modified whale optimization algorithm (MWOA) for feature selection.To classify COVID-affected images from a large dataset and detect severity using the modified whale optimization algorithm (MWA) with the salp swarmalgorithm (MWOA-SSA).Themain disadvantage of existing algorithms are inefficiency, high execution time, and maximized error rate.To overcome these issues, our proposed MWOA-SSA has high potential in detecting the severity of lung infections such as pneumonia and classifying COVID-19 in affected and unaffected images from a large dataset effectively and quickly.

    To predict coronavirus, X-ray images play a more important role than CT because the former is less sensitive.Furthermore, X-ray images are used to diagnose the early and mild stages of coronavirus patients.CT images are also is used in the diagnosis of coronavirus and improving efficiency in terms of dosage in radiation [4].To enhance the improvement in scanning images in a sliced manner effectively by usingmulti-slice computerized tomography (MSCT) [5].To achieve improvement in larger temporal resolution achieved by dual source CT image [6].

    Machine learning algorithms have been used for the last decades in medical applications for computer-based diagnosis, helping physicians diagnose at earlier stages of diseases and providing better customized therapies to patients [7,8].Approaches to find the best solution from all possible solutions of a particular radiology problem are known as meta-heuristic algorithms.The acceptable best solution of the optimization technique requires less computational effort within a stipulated time[9].For the feature selection, the proposed MWOA is implemented with a binary optimizer in terms of average select size, error rate, mean, standard deviation, average fitness, best fitness, and worst fitness.The main contributions of this study are as follows,

    1.ACOVID-19 classification based on proposed algorithms for feature classification ofWMOASSAis developed.

    2.A novel approach in detecting severity of lung infection based on severity level is implemented.

    3.The proposed WMOA-SSA can effectively classify the input CT images as COVID-19 or non-COVID-19.

    The paper has been organized as follows.Section 2 presents the literature review.Section 3 introduces the classification of COVID-19 images using MWOA-SSA.Section 4 discusses the experimented results.Section 5 concludes the paper and provides future directions.

    2 Review of Literature

    This section describes the recent literature on feature classification and prediction of coronavirus.COVID-19 has affected human beings in every aspect of their daily lives.To diagnosis the coronavirus disease by using various modalities of image such as CT and X-ray image.Through these images,physicians scan and diagnose at early stages and during disease progression.Many studies have been published on the prediction of coronavirus.Our aim is to achieve effectiveness in classifying COVID-19 case images from a large dataset and detect the severity of lung infections such as pneumonia.A previous paper [10] proposed evaluating the infection rate in CT scans of lungs using visual and coronal axes.By using visual inspection COVID-19 disease is used to identify the lung infection [11].

    Another paper [12] proposed implementing a visual infection-based method to detect lung infection using lung CT scan.Authors in [13] implemented deep learning algorithms to identify and screen COVID-19 patients using the modality of CT images accurately.By using an artificial intelligence (AI) technique for diagnosis, COVID-19 patients are identified based on convolutional neural network (CNN) using CT slices images, helping accurately classify COVID-19 from non-COVID-19 groups [14].The machine learning algorithm fractional multichannel exponent moments method is used to extract features from the chest X-ray image and used to classify COVID-19 or non-COVID-19 patients [15].Tab.1 shows a summary of recent research work in COVID-19.

    Table 1: Survey on existing algorithms

    3 Enhanced Whale with Salp Swarm Optimization Methodology

    This work introduces the concept of classification of affected lung disease and its severity.This proposed work has four stages.First, a median filter is used for pre-processing.Second, PCA is used for texture feature extraction.Third, A MWOA is used for selecting features.Fourth, the proposed MWOA-SSA is used for classification and identifying the severity.The architecture of our proposed method is given in Fig.1.CT scan images are collected and preprocessed using a median filter.PCA is used to remove unwanted textures in the images.Then, the images are processed using MWOA-SSA to classify the affected image.

    This proposed work consists of four phases:

    Phase 1:Pre-processing using a median filter.

    Phase 2:Feature extraction using PCA.

    Phase 3:Feature selection using MWOA.

    Phase 4:Proposed work on classification of infected lung images from a large dataset using MWOA-SSA.

    Figure 1: Architecture of proposed work

    3.1 Pre-Processing

    The aim of pre-processing is to improve the high quality of the CT scan chest image.We need to denoise the image by applying a median filter.This median filter scans the entire image using an 8×8 matrix and replaces the center pixel value by choosing the median of all pixel values inside the 8×8 matrix by using

    whereyis the neighborhood pixel value represented by the user andi,jis the center pixel value’s location.

    3.2 Texture Feature Extraction Using PCA

    The idea behind PCA is to map m-dimensional features to n dimensions that have a set of orthogonal feature values.Feature extraction using PCA meets the variance of sample pixel values after reduction of dimensionality and minimizes the error rate.The steps needed for texture feature extraction using PCA are given below, and Fig.2.Provides an overview of PCA operation.

    Algorithm 1: Texture Feature Extraction using PCA Step 1: To standardize the original pixel values, subtract all sample pixel values from the mean value of corresponding feature value by using s s Aj=1 n nimages/BZ_1651_410_2391_475_2436.pngi=1 Aij(2)Step 2: Evaluate the covariance matrix C (c = (Ajk)n×nwhere n is the number of features; Ajkis the correlation between jthand kthfeature value, where j = 1,2,...,n;k = 1,2,...,n.C =■ ■■■A11 A12···A1n A21 A22···A2n............An1 An2···Ann■■■■(3)(Continued)

    Algorithm 1: Continued Step 3:For the covariance matrix, calculate the eigen value of λi, and the eigenvector value is eii.λieii= Ceii(4)Step 4: Store the output values of eigenvector from large to small values λ1≥λ2≥...λnand calculate the rate of contribution for each principal component.The rate of contribution is given below:λk∑n k=1λk(5)Step 5: Transform the original matrix A into a new matrix B (B = (Bjk)n×n1, where j=1,2...n and k=1,2,...n.B = A×f1,f2,...,fn1(6)where f1,f2,...,fndenotes a new feature space which is composed of n1 vector feature values, and n1 is extracted features by PCA.Fig.2 shows the working principle of PCA.

    Figure 2: Overview of PCA

    3.3 Feature Selection Using MWOA

    Feature selection of brain image using MWOA, which is based on the behavior of whales, in which for trapping the prey bubbles are involved for searching in a spiral-shaped [27,28].The whale is randomly selected, and it can be updated by the best whale value that gives the optimal solution.

    To improve this result, the performance of three whales are randomly chosen, and it cannot be affected by the leader’s position.Eq.(6) is modified as follows:

    where t represents iteration number, andMaxitrepresents the maximum number of iterations.

    The algorithm is given as follows:

    Algorithm 2: MWOA Input: Lung Image Output: Detecting COVID presence images Step 1: Initialize Population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t=1.Step 4: Convert output into binary values as 0 or 1.Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Find best individual value by-→F*.Step 7: While n≤max_iter do Step 8: For i = (1;i<n + 1) do Step 9: If (-→u3<0.5) then Step 10: If (|→B|<1) then Step 11: Update current position of agent for search by using Eqs.(2), (3).Step 12: Else Step 13: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 14: Update agent’s exponential form by using Eq.(9).Step 15: Update current position of agent for search in exponential form by using Eq.(8).Step 16: End if Step 17: Else Step 18: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 19: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h(Continued)

    Algorithm 2: Continued Step 25: Binary optimizer the updated solution/prey by using--→F(t+1)n =images/BZ_1654_419_578_448_624.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*.

    3.4 Proposed Feature Classification Using MWOA-SSA

    In this phase, classification of infected lung images froma large dataset is done usingMWOA-SSA.To improve the accuracy and optimal solution, the SSA) is used with MWOA.This SSA randomly initializes the swarm of N salps.The swarm is represented by the 2-D matrixmat.Searching food for swarm is represented assf, and leader’s movement in the form of a chain is denoted as.It is represented by using

    whereiis swarm’s dimension position, and it is updated.sfiis theithposition for a source of food.upliandlowliare the upper and lower limits of theithelement.r1is a dynamic variable for iteration.r2andr3are random numbers between [0,1] calculated as

    whereitrepresents the current iteration anditeris the maximum number of iterations.r1is a control variablethatcontrols thebalance between exploitation and exploration ofthe optimizationalgorithm.It is represented as

    The procedure for SSA is given as follows.

    Algorithm 3: Feature Classification using MWOA-SSA Input: Lung CT Scan Image Output: COVID-detected image Step 1: Initialize population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t = 1 and swarm of salps sxii = 1,2,.....,n.Step 4: Convert output into binary values as 0 or 1 Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Evaluate fitness value for each salp of the swarm(Continued)

    Algorithm 3: Continued Step 7: Find best individual value by-→F*.Step 8: Assign F as best salp’s position.Step 9: Update r1by Eq.(11).Step 10: While n≤max_iter do Step 11: For i = (1;i<n + 1) do Step 12: If (-→u3<0.5) then Step 13: If (|→B|<1) and (i == 1) then Step 14: Update current position of agent for search by using Eqs.(2) and (3).Step 15: Update position of leader by using Eq.(10).Step 16: Else Step 17: Update position of followers by using Eq.(12).Step 18: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 19: Update agent’s exponential form by using Eq.(9).Step 20: Update current position of agent for search in exponential form by using Eq.(8).Step 21: End if Step 22: Else Step 23: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 24: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h Step 25: Binary optimize the updated solution/prey by using--→F(t+1)n =images/BZ_1655_420_1969_448_2015.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*, F.

    4 Results and Analysis

    For the experimental result, data are collected from the Kaggle dataset [29], which has 1,500 CT images of COVID-19 and non-COVID 19.MWOA-SSA is compared with the existing algorithms MWOA [30] and SSA [31] by using performance metric measures of sensitivity, specificity, accuracy,precision (PPV), F-score, and negative predictive value (NPV).

    TP-True Positive,TN-True Negative,FN-False Negative,FP-False Positive,

    These metric measures are defined by using:

    Sensitivity

    It is also called true positive rate or recall.

    Specificity

    It is called true negative rate (TNR).

    Accuracy

    Precision

    It is called positive predictive value (PPV).

    Negative Predictive Value

    It evaluates true negatives for all negative values by using

    F-Score

    It is used to measure sensitivity and mean of harmonic by using

    Tab.2 shows the performance metric measures of feature extraction.

    Table 2: Performance metric measures of feature extraction

    Tab.2 shows that for the sensitivity rate, MWOA-SSA is better than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.For PPV, MWOASSA has a percentage of 88.3%.For NPV, MWOA-SSA has 93.6%.MWOA-SAA outperforms other algorithms with an F-score of 96.4%.

    4.1 Feature Selection

    MWOA-SSA is used for feature selection, and it is compared with existing algorithms of PCA and MWOA in terms of average fitness, average error, best fitness, mean, standard deviation, and worst fitness.The parameter values for the fitness function are 0.97 and 0.03.

    Average Error

    It shows the classifier’s accuracy for the feature selection for the COVID-19 dataset, and it is calculated by using

    whereCliis classifier’s label for the pixeliandlbiis the class label for the pixeliof the image andCompcalculates the matching between two inputs.

    Mean

    Standard Deviation

    where mean is obtained from Eq.(17)

    Best Fitness

    It calculates the minimum function of fitness, and it is calculated as

    Average Fitness

    The average size of features in the COVID-19 dataset is calculated as

    Worst Fitness

    The worst solution of fitness is calculated as

    Tab.3 shows the performance of the proposed algorithm in feature selection

    The results of the proposed MWOA-SSA algorithm in Tab.3 show the lower error and select featuresfromthe COVID-19dataset.The TheMWOA-SSA algorithm achieved the minimumaverage error of 0.1114 in selecting the features of infected lung images.The minimum errors for PCA, MWOA, and MWOA-SSA are used to select the features from best fitness to worst fitness.The proposed algorithm MWOA-SSA outperforms other existing algorithms, and the best fitness value is 0.1034, the worst fitness value is 0.2115, and the average fitness value is 0.2034.

    Table 3: Performance metric measures for feature selection

    4.2 Detection and Severity Classification of COVID-19

    To detect the infection severity, lung images have been examined by using ground truths of CT0-CT4 as given below.Tab.4 presents the severity levels in the lungs.

    Table 4: Severity levels for infection in lungs [32,33]

    In this work, we collected data on 500 patients with COVID-19 infection.Infection was confirmed by a nasopharyngeal swab using a U-TOP COVID-19 Detection Kit.Age, gender, d-dimer, ferritin levels, C-reactive protein test (CRP), and O2 were collected.Patient’s age was classified into<20, 21-40, 41-49, 50-60, 61-70, and>70 years.The correlation (p<0.05) between CT severity score was used to detect lung infection.Tab.5 shows a survey of 500 patients who are affected by pneumonia.Fig.3.shows the CT severity of COVID-19 patients.

    Table 5: Demographic data of 500 patients

    Fig.3 shows that negative disease was mainly seen in the age group of 21 to 40 (30%), mild lung mainly infection was seen in the 41 to 60 age group (60%).Moderate lung infection was mainly seen in the 61 to 70 age group (68%), and severe lung infection was mainly seen in the age group of 41 to 60 (70%).This is the highest risk factor for COVID-19 affected patients [34-37].Fig.4.shows the time taken for the classification of COVID-19 affected cases and non-COVID-19 cases from the large dataset.

    Figure 3: CT-COVID severity score

    Figure 4: Execution time (proposed method executes faster than PCA and MWOA)

    5 Conclusion

    MWOA-SSA is used for the classification of COVID-19 cases in four phases.In the first phase,to classify accurate COVID-19 and non-COVID-19 images from a large dataset, pre-processing work has been done using a median filter.Features are extracted for the training CT images by PCA.For the feature selection of CT lung images, MWOA is implemented.For the selected features of the CT image, MWOA-SSA is implemented to classify the COVID-19 and non-COVID-19 images from the large dataset.This paper also proposes detecting and identifying the severity of lung infection by using different severity levels of COVID-19 cases.The main advantage of MWOA-SSA is that it efficiently and quickly classifies COVID-19 and non-COVID-19 cases and detects severity of lung infection using severity levels.MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.In future work, we suggest the use of various deep learning algorithms and various modalities of images and clinical reports.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产伦在线观看视频一区| 国产精品一二三区在线看| 免费观看的影片在线观看| 最近手机中文字幕大全| 精品一区二区三区视频在线| 国产无遮挡羞羞视频在线观看| 成年av动漫网址| a级毛色黄片| 日韩精品免费视频一区二区三区 | 老司机亚洲免费影院| 99热这里只有精品一区| 国产男女超爽视频在线观看| 久久久久精品久久久久真实原创| 亚洲高清免费不卡视频| 97在线人人人人妻| 国产精品久久久久久久电影| xxx大片免费视频| 国产免费一区二区三区四区乱码| 亚洲美女搞黄在线观看| 久久国产精品大桥未久av | av在线app专区| 亚洲三级黄色毛片| 精品一品国产午夜福利视频| 欧美 亚洲 国产 日韩一| 日本与韩国留学比较| 少妇人妻久久综合中文| 精品久久国产蜜桃| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩综合在线一区二区 | 九色成人免费人妻av| 久久韩国三级中文字幕| 国产美女午夜福利| 亚洲av综合色区一区| 男人添女人高潮全过程视频| 99国产精品免费福利视频| 亚洲精品aⅴ在线观看| 亚洲一区二区三区欧美精品| 亚洲国产精品专区欧美| 午夜久久久在线观看| 18禁在线播放成人免费| 美女内射精品一级片tv| 建设人人有责人人尽责人人享有的| 久久久久久人妻| 欧美高清成人免费视频www| 热re99久久精品国产66热6| 人妻系列 视频| 欧美丝袜亚洲另类| av在线app专区| 久久毛片免费看一区二区三区| 国产黄片美女视频| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 五月玫瑰六月丁香| 人人澡人人妻人| 最近手机中文字幕大全| 韩国高清视频一区二区三区| 九九爱精品视频在线观看| 国产色爽女视频免费观看| 色94色欧美一区二区| 精品国产一区二区久久| 亚洲四区av| 免费少妇av软件| 寂寞人妻少妇视频99o| 亚州av有码| 我要看黄色一级片免费的| 久久久久久久亚洲中文字幕| 亚洲精品亚洲一区二区| 午夜免费鲁丝| av线在线观看网站| 国产成人精品无人区| 一级片'在线观看视频| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 男人舔奶头视频| 伦理电影免费视频| 亚洲精品国产av蜜桃| 五月开心婷婷网| 视频区图区小说| 嫩草影院入口| 精品人妻一区二区三区麻豆| 边亲边吃奶的免费视频| a级毛片免费高清观看在线播放| 简卡轻食公司| 亚洲在久久综合| 亚洲天堂av无毛| 国产高清有码在线观看视频| 亚洲图色成人| 91久久精品电影网| 男女边吃奶边做爰视频| 国产一级毛片在线| 高清午夜精品一区二区三区| 精品一区在线观看国产| 男人狂女人下面高潮的视频| 99精国产麻豆久久婷婷| 亚洲国产av新网站| 久久久久精品性色| 中文资源天堂在线| 精品久久久久久电影网| 国产精品久久久久成人av| 在线观看一区二区三区激情| 国产极品天堂在线| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 日日啪夜夜撸| 黄色毛片三级朝国网站 | 桃花免费在线播放| 日韩中文字幕视频在线看片| 97超视频在线观看视频| 嫩草影院新地址| 黄色视频在线播放观看不卡| 三上悠亚av全集在线观看 | 午夜久久久在线观看| 六月丁香七月| 日本黄色片子视频| 国产免费又黄又爽又色| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 99九九在线精品视频 | 精品国产乱码久久久久久小说| 18禁在线播放成人免费| 97精品久久久久久久久久精品| 欧美精品高潮呻吟av久久| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 女性生殖器流出的白浆| 久久久久视频综合| 亚洲欧美一区二区三区国产| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 久久婷婷青草| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 蜜桃在线观看..| 日本色播在线视频| 国产精品嫩草影院av在线观看| 80岁老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 狂野欧美白嫩少妇大欣赏| 久久av网站| 26uuu在线亚洲综合色| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 久久精品夜色国产| 国产黄片美女视频| av一本久久久久| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 日韩强制内射视频| 涩涩av久久男人的天堂| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品456在线播放app| 人人妻人人爽人人添夜夜欢视频 | 色视频www国产| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 国产精品一区www在线观看| 亚洲在久久综合| 桃花免费在线播放| 男人狂女人下面高潮的视频| 国产成人精品无人区| 国产综合精华液| 国产日韩欧美亚洲二区| 午夜av观看不卡| 午夜老司机福利剧场| 久热这里只有精品99| 亚洲欧美精品专区久久| av不卡在线播放| 人人妻人人看人人澡| 国产极品粉嫩免费观看在线 | 51国产日韩欧美| 久久久久国产网址| 一级毛片电影观看| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 综合色丁香网| 精品视频人人做人人爽| 国产一区二区在线观看日韩| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 国产成人freesex在线| 极品人妻少妇av视频| 国产亚洲精品久久久com| 久热这里只有精品99| 国产极品粉嫩免费观看在线 | 91精品国产九色| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| 国产精品福利在线免费观看| 曰老女人黄片| 三级经典国产精品| 精品一区在线观看国产| 新久久久久国产一级毛片| 亚洲精品久久久久久婷婷小说| 美女福利国产在线| 久久久久久久亚洲中文字幕| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 成人毛片60女人毛片免费| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 免费黄频网站在线观看国产| 午夜福利网站1000一区二区三区| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久| 久久6这里有精品| 国产色婷婷99| 亚洲怡红院男人天堂| 国产精品99久久99久久久不卡 | 国产一区二区在线观看av| 最近2019中文字幕mv第一页| 九九在线视频观看精品| 国产成人免费无遮挡视频| 欧美变态另类bdsm刘玥| 国产一区二区在线观看av| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 久久久久久久精品精品| 97在线人人人人妻| 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 少妇的逼水好多| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 欧美激情极品国产一区二区三区 | 99热国产这里只有精品6| 久久国内精品自在自线图片| 免费人成在线观看视频色| 日产精品乱码卡一卡2卡三| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃 | 插阴视频在线观看视频| 久久久久国产网址| 综合色丁香网| 欧美老熟妇乱子伦牲交| 九色成人免费人妻av| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 汤姆久久久久久久影院中文字幕| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 亚洲精品乱久久久久久| 国产69精品久久久久777片| 国产精品99久久久久久久久| 亚洲av福利一区| 国产 精品1| 波野结衣二区三区在线| 久久97久久精品| 日韩视频在线欧美| 桃花免费在线播放| 99热这里只有精品一区| 久久99精品国语久久久| 亚洲精品成人av观看孕妇| 午夜福利在线观看免费完整高清在| 亚洲,一卡二卡三卡| 久久毛片免费看一区二区三区| 各种免费的搞黄视频| 18禁动态无遮挡网站| 这个男人来自地球电影免费观看 | 国产高清三级在线| 欧美bdsm另类| 啦啦啦啦在线视频资源| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 天天操日日干夜夜撸| 六月丁香七月| 久久久国产精品麻豆| 我要看日韩黄色一级片| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 成年av动漫网址| 亚洲欧美精品专区久久| 久久99热6这里只有精品| 在线看a的网站| 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 精品久久久噜噜| 美女国产视频在线观看| 伊人久久国产一区二区| 最新中文字幕久久久久| 亚洲人成网站在线播| 一区二区三区精品91| 亚洲欧美中文字幕日韩二区| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 99九九在线精品视频 | 女性被躁到高潮视频| 大陆偷拍与自拍| 久久 成人 亚洲| 亚洲久久久国产精品| 男女国产视频网站| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 精品国产一区二区久久| 自线自在国产av| 亚洲天堂av无毛| 国产中年淑女户外野战色| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 日本黄色日本黄色录像| 日本黄大片高清| 欧美国产精品一级二级三级 | 天堂中文最新版在线下载| 成人特级av手机在线观看| 丝瓜视频免费看黄片| 成人亚洲精品一区在线观看| a级毛片在线看网站| 97在线视频观看| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 少妇人妻 视频| 乱系列少妇在线播放| 伊人久久精品亚洲午夜| 99热网站在线观看| 国产精品一区www在线观看| 日本黄色日本黄色录像| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 亚洲国产精品999| 激情五月婷婷亚洲| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院 | 成人毛片a级毛片在线播放| 精品国产国语对白av| 国产精品.久久久| 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 成人漫画全彩无遮挡| 少妇精品久久久久久久| av播播在线观看一区| 桃花免费在线播放| 亚洲av国产av综合av卡| 国产成人a∨麻豆精品| 国产一区有黄有色的免费视频| 久久国产乱子免费精品| 下体分泌物呈黄色| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 欧美精品亚洲一区二区| 色网站视频免费| 国产精品女同一区二区软件| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 一本大道久久a久久精品| 国产成人午夜福利电影在线观看| 国产熟女午夜一区二区三区 | av国产久精品久网站免费入址| 亚洲av成人精品一区久久| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 精品亚洲乱码少妇综合久久| 亚洲欧美精品专区久久| 大片免费播放器 马上看| 赤兔流量卡办理| 日韩不卡一区二区三区视频在线| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频 | 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 最近最新中文字幕免费大全7| 精品久久久精品久久久| h视频一区二区三区| 日韩中字成人| 婷婷色综合www| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 能在线免费看毛片的网站| 男人添女人高潮全过程视频| 老女人水多毛片| 国产免费福利视频在线观看| 免费观看性生交大片5| 99久久人妻综合| 街头女战士在线观看网站| 午夜福利影视在线免费观看| 91精品一卡2卡3卡4卡| 日韩精品有码人妻一区| 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区 | 久久av网站| 大码成人一级视频| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 国产国拍精品亚洲av在线观看| av女优亚洲男人天堂| 国产有黄有色有爽视频| 有码 亚洲区| 国产爽快片一区二区三区| 男女免费视频国产| 久久99热这里只频精品6学生| 午夜免费观看性视频| 亚洲伊人久久精品综合| 丝袜脚勾引网站| 久久久久久久久久成人| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 国产熟女欧美一区二区| 9色porny在线观看| 免费黄频网站在线观看国产| 久久久久久伊人网av| 久久久久久久国产电影| 只有这里有精品99| 最近的中文字幕免费完整| 日本免费在线观看一区| 日本猛色少妇xxxxx猛交久久| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 少妇丰满av| 99久国产av精品国产电影| 欧美人与善性xxx| 午夜激情久久久久久久| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 最后的刺客免费高清国语| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 伦精品一区二区三区| 久久久久人妻精品一区果冻| 黄色欧美视频在线观看| 日本wwww免费看| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 婷婷色麻豆天堂久久| 亚洲色图综合在线观看| 欧美高清成人免费视频www| 色哟哟·www| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 国产av国产精品国产| 欧美+日韩+精品| 婷婷色综合大香蕉| 亚洲精品乱码久久久v下载方式| 成人毛片60女人毛片免费| 久久久久网色| 在线天堂最新版资源| 亚洲成人手机| 日本黄色日本黄色录像| 多毛熟女@视频| 久久毛片免费看一区二区三区| 黑人高潮一二区| 纯流量卡能插随身wifi吗| av在线观看视频网站免费| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版| 一区二区三区乱码不卡18| 熟女电影av网| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 91久久精品国产一区二区三区| 男人添女人高潮全过程视频| 我的女老师完整版在线观看| 自线自在国产av| 免费观看a级毛片全部| 久久久久久久国产电影| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 国产极品天堂在线| 国产无遮挡羞羞视频在线观看| 深夜a级毛片| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 国产精品一区www在线观看| 久久久久久久久久久久大奶| 男人爽女人下面视频在线观看| 插逼视频在线观看| av不卡在线播放| 国产精品一区二区在线观看99| 18禁在线无遮挡免费观看视频| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 热re99久久国产66热| 亚洲欧美精品专区久久| 男女边吃奶边做爰视频| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 国产精品秋霞免费鲁丝片| 极品教师在线视频| 草草在线视频免费看| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 如日韩欧美国产精品一区二区三区 | 在线亚洲精品国产二区图片欧美 | 成人漫画全彩无遮挡| a级片在线免费高清观看视频| 精品午夜福利在线看| 丝袜在线中文字幕| 成人国产麻豆网| 晚上一个人看的免费电影| 欧美日韩在线观看h| 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 啦啦啦啦在线视频资源| 哪个播放器可以免费观看大片| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 久久精品国产a三级三级三级| 国产一区二区在线观看日韩| 免费黄色在线免费观看| 国产精品成人在线| 国产精品久久久久久精品电影小说| 寂寞人妻少妇视频99o| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 国产 精品1| 只有这里有精品99| 国产亚洲一区二区精品| 日本色播在线视频| 亚洲av综合色区一区| 视频区图区小说| 欧美97在线视频| 午夜激情久久久久久久| av专区在线播放| 亚洲精品国产成人久久av| 国产永久视频网站| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 亚洲国产色片| 亚洲一区二区三区欧美精品| 婷婷色av中文字幕| 看非洲黑人一级黄片| 国产深夜福利视频在线观看| 一级毛片 在线播放| 两个人免费观看高清视频 | 免费人成在线观看视频色| 一级a做视频免费观看| 国产精品人妻久久久久久| 亚洲欧洲精品一区二区精品久久久 | 日本av免费视频播放| 婷婷色av中文字幕| 日本与韩国留学比较| 晚上一个人看的免费电影| 人人妻人人澡人人看| 在线观看人妻少妇| 最近最新中文字幕免费大全7| h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 日日啪夜夜撸| 性色av一级| 亚洲天堂av无毛| 久久精品国产a三级三级三级| 亚洲av男天堂| 精品久久久噜噜| 日韩强制内射视频| 国产欧美亚洲国产| 国产免费一区二区三区四区乱码| 欧美三级亚洲精品| 成年人午夜在线观看视频| av在线观看视频网站免费| 亚洲av不卡在线观看| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 久久久精品94久久精品| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 亚洲电影在线观看av| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 99久久人妻综合| 啦啦啦在线观看免费高清www| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 九草在线视频观看| 中文字幕精品免费在线观看视频 | 97在线人人人人妻| 高清av免费在线| 午夜福利,免费看| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 亚洲精品第二区| 视频区图区小说| 欧美97在线视频| 综合色丁香网| 国产熟女欧美一区二区| 亚洲精品第二区| 国产真实伦视频高清在线观看| 中文字幕亚洲精品专区| 精品一区二区免费观看| 日韩电影二区|