• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification

    2022-08-24 12:58:36NebojsaBudimirovicPrabhuMilosAntonijevicMiodragZivkovicNebojsaBacaninIvanaStrumbergerandVenkatachalam
    Computers Materials&Continua 2022年7期

    Nebojsa Budimirovic, E.Prabhu, Milos Antonijevic, Miodrag Zivkovic, Nebojsa Bacanin,*,Ivana Strumbergerand K.Venkatachalam

    1Singidunum University, Belgrade, 11000, Serbia

    2Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa

    Vidyapeetham, Coimbatore, 641112, India

    3Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, Hradec Králové, 50003, Czech Republic

    Abstract: Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia.On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool.Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient.To overcome these issues, our proposed study implements four cascaded stages.First, for pre-processing, a mean filter is used.Second, texture feature extraction uses principal component analysis (PCA).Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm.The severity of lung infection is detected on the basis of age group.Fourth,image classification is done by using the proposedMWOAwith the salp swarm algorithm (MWOA-SSA).MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.This proposed method improves the effective classification of lung affected images from large datasets.

    Keywords: PCA; WOA; CT-image; lung infection; COVID-19

    1 Introduction

    COVID-19 is a virus infection that has changed human life in various aspects including finance,education, health care, and supply chains.People with COVID-19 infection are facing respiratory problems and can recover with appropriate treatment effectively [1].Many studies have been done in implementing classification and determining the presence of COVID-19 as well as in detecting the severity of pneumonia.CT and X-ray image modalities are non-invasive and used to detect and severity of lung infection [2,3].In this study, we used principal component analysis (PCA) for feature extraction of CT images and a modified whale optimization algorithm (MWOA) for feature selection.To classify COVID-affected images from a large dataset and detect severity using the modified whale optimization algorithm (MWA) with the salp swarmalgorithm (MWOA-SSA).Themain disadvantage of existing algorithms are inefficiency, high execution time, and maximized error rate.To overcome these issues, our proposed MWOA-SSA has high potential in detecting the severity of lung infections such as pneumonia and classifying COVID-19 in affected and unaffected images from a large dataset effectively and quickly.

    To predict coronavirus, X-ray images play a more important role than CT because the former is less sensitive.Furthermore, X-ray images are used to diagnose the early and mild stages of coronavirus patients.CT images are also is used in the diagnosis of coronavirus and improving efficiency in terms of dosage in radiation [4].To enhance the improvement in scanning images in a sliced manner effectively by usingmulti-slice computerized tomography (MSCT) [5].To achieve improvement in larger temporal resolution achieved by dual source CT image [6].

    Machine learning algorithms have been used for the last decades in medical applications for computer-based diagnosis, helping physicians diagnose at earlier stages of diseases and providing better customized therapies to patients [7,8].Approaches to find the best solution from all possible solutions of a particular radiology problem are known as meta-heuristic algorithms.The acceptable best solution of the optimization technique requires less computational effort within a stipulated time[9].For the feature selection, the proposed MWOA is implemented with a binary optimizer in terms of average select size, error rate, mean, standard deviation, average fitness, best fitness, and worst fitness.The main contributions of this study are as follows,

    1.ACOVID-19 classification based on proposed algorithms for feature classification ofWMOASSAis developed.

    2.A novel approach in detecting severity of lung infection based on severity level is implemented.

    3.The proposed WMOA-SSA can effectively classify the input CT images as COVID-19 or non-COVID-19.

    The paper has been organized as follows.Section 2 presents the literature review.Section 3 introduces the classification of COVID-19 images using MWOA-SSA.Section 4 discusses the experimented results.Section 5 concludes the paper and provides future directions.

    2 Review of Literature

    This section describes the recent literature on feature classification and prediction of coronavirus.COVID-19 has affected human beings in every aspect of their daily lives.To diagnosis the coronavirus disease by using various modalities of image such as CT and X-ray image.Through these images,physicians scan and diagnose at early stages and during disease progression.Many studies have been published on the prediction of coronavirus.Our aim is to achieve effectiveness in classifying COVID-19 case images from a large dataset and detect the severity of lung infections such as pneumonia.A previous paper [10] proposed evaluating the infection rate in CT scans of lungs using visual and coronal axes.By using visual inspection COVID-19 disease is used to identify the lung infection [11].

    Another paper [12] proposed implementing a visual infection-based method to detect lung infection using lung CT scan.Authors in [13] implemented deep learning algorithms to identify and screen COVID-19 patients using the modality of CT images accurately.By using an artificial intelligence (AI) technique for diagnosis, COVID-19 patients are identified based on convolutional neural network (CNN) using CT slices images, helping accurately classify COVID-19 from non-COVID-19 groups [14].The machine learning algorithm fractional multichannel exponent moments method is used to extract features from the chest X-ray image and used to classify COVID-19 or non-COVID-19 patients [15].Tab.1 shows a summary of recent research work in COVID-19.

    Table 1: Survey on existing algorithms

    3 Enhanced Whale with Salp Swarm Optimization Methodology

    This work introduces the concept of classification of affected lung disease and its severity.This proposed work has four stages.First, a median filter is used for pre-processing.Second, PCA is used for texture feature extraction.Third, A MWOA is used for selecting features.Fourth, the proposed MWOA-SSA is used for classification and identifying the severity.The architecture of our proposed method is given in Fig.1.CT scan images are collected and preprocessed using a median filter.PCA is used to remove unwanted textures in the images.Then, the images are processed using MWOA-SSA to classify the affected image.

    This proposed work consists of four phases:

    Phase 1:Pre-processing using a median filter.

    Phase 2:Feature extraction using PCA.

    Phase 3:Feature selection using MWOA.

    Phase 4:Proposed work on classification of infected lung images from a large dataset using MWOA-SSA.

    Figure 1: Architecture of proposed work

    3.1 Pre-Processing

    The aim of pre-processing is to improve the high quality of the CT scan chest image.We need to denoise the image by applying a median filter.This median filter scans the entire image using an 8×8 matrix and replaces the center pixel value by choosing the median of all pixel values inside the 8×8 matrix by using

    whereyis the neighborhood pixel value represented by the user andi,jis the center pixel value’s location.

    3.2 Texture Feature Extraction Using PCA

    The idea behind PCA is to map m-dimensional features to n dimensions that have a set of orthogonal feature values.Feature extraction using PCA meets the variance of sample pixel values after reduction of dimensionality and minimizes the error rate.The steps needed for texture feature extraction using PCA are given below, and Fig.2.Provides an overview of PCA operation.

    Algorithm 1: Texture Feature Extraction using PCA Step 1: To standardize the original pixel values, subtract all sample pixel values from the mean value of corresponding feature value by using s s Aj=1 n nimages/BZ_1651_410_2391_475_2436.pngi=1 Aij(2)Step 2: Evaluate the covariance matrix C (c = (Ajk)n×nwhere n is the number of features; Ajkis the correlation between jthand kthfeature value, where j = 1,2,...,n;k = 1,2,...,n.C =■ ■■■A11 A12···A1n A21 A22···A2n............An1 An2···Ann■■■■(3)(Continued)

    Algorithm 1: Continued Step 3:For the covariance matrix, calculate the eigen value of λi, and the eigenvector value is eii.λieii= Ceii(4)Step 4: Store the output values of eigenvector from large to small values λ1≥λ2≥...λnand calculate the rate of contribution for each principal component.The rate of contribution is given below:λk∑n k=1λk(5)Step 5: Transform the original matrix A into a new matrix B (B = (Bjk)n×n1, where j=1,2...n and k=1,2,...n.B = A×f1,f2,...,fn1(6)where f1,f2,...,fndenotes a new feature space which is composed of n1 vector feature values, and n1 is extracted features by PCA.Fig.2 shows the working principle of PCA.

    Figure 2: Overview of PCA

    3.3 Feature Selection Using MWOA

    Feature selection of brain image using MWOA, which is based on the behavior of whales, in which for trapping the prey bubbles are involved for searching in a spiral-shaped [27,28].The whale is randomly selected, and it can be updated by the best whale value that gives the optimal solution.

    To improve this result, the performance of three whales are randomly chosen, and it cannot be affected by the leader’s position.Eq.(6) is modified as follows:

    where t represents iteration number, andMaxitrepresents the maximum number of iterations.

    The algorithm is given as follows:

    Algorithm 2: MWOA Input: Lung Image Output: Detecting COVID presence images Step 1: Initialize Population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t=1.Step 4: Convert output into binary values as 0 or 1.Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Find best individual value by-→F*.Step 7: While n≤max_iter do Step 8: For i = (1;i<n + 1) do Step 9: If (-→u3<0.5) then Step 10: If (|→B|<1) then Step 11: Update current position of agent for search by using Eqs.(2), (3).Step 12: Else Step 13: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 14: Update agent’s exponential form by using Eq.(9).Step 15: Update current position of agent for search in exponential form by using Eq.(8).Step 16: End if Step 17: Else Step 18: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 19: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h(Continued)

    Algorithm 2: Continued Step 25: Binary optimizer the updated solution/prey by using--→F(t+1)n =images/BZ_1654_419_578_448_624.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*.

    3.4 Proposed Feature Classification Using MWOA-SSA

    In this phase, classification of infected lung images froma large dataset is done usingMWOA-SSA.To improve the accuracy and optimal solution, the SSA) is used with MWOA.This SSA randomly initializes the swarm of N salps.The swarm is represented by the 2-D matrixmat.Searching food for swarm is represented assf, and leader’s movement in the form of a chain is denoted as.It is represented by using

    whereiis swarm’s dimension position, and it is updated.sfiis theithposition for a source of food.upliandlowliare the upper and lower limits of theithelement.r1is a dynamic variable for iteration.r2andr3are random numbers between [0,1] calculated as

    whereitrepresents the current iteration anditeris the maximum number of iterations.r1is a control variablethatcontrols thebalance between exploitation and exploration ofthe optimizationalgorithm.It is represented as

    The procedure for SSA is given as follows.

    Algorithm 3: Feature Classification using MWOA-SSA Input: Lung CT Scan Image Output: COVID-detected image Step 1: Initialize population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t = 1 and swarm of salps sxii = 1,2,.....,n.Step 4: Convert output into binary values as 0 or 1 Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Evaluate fitness value for each salp of the swarm(Continued)

    Algorithm 3: Continued Step 7: Find best individual value by-→F*.Step 8: Assign F as best salp’s position.Step 9: Update r1by Eq.(11).Step 10: While n≤max_iter do Step 11: For i = (1;i<n + 1) do Step 12: If (-→u3<0.5) then Step 13: If (|→B|<1) and (i == 1) then Step 14: Update current position of agent for search by using Eqs.(2) and (3).Step 15: Update position of leader by using Eq.(10).Step 16: Else Step 17: Update position of followers by using Eq.(12).Step 18: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 19: Update agent’s exponential form by using Eq.(9).Step 20: Update current position of agent for search in exponential form by using Eq.(8).Step 21: End if Step 22: Else Step 23: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 24: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h Step 25: Binary optimize the updated solution/prey by using--→F(t+1)n =images/BZ_1655_420_1969_448_2015.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*, F.

    4 Results and Analysis

    For the experimental result, data are collected from the Kaggle dataset [29], which has 1,500 CT images of COVID-19 and non-COVID 19.MWOA-SSA is compared with the existing algorithms MWOA [30] and SSA [31] by using performance metric measures of sensitivity, specificity, accuracy,precision (PPV), F-score, and negative predictive value (NPV).

    TP-True Positive,TN-True Negative,FN-False Negative,FP-False Positive,

    These metric measures are defined by using:

    Sensitivity

    It is also called true positive rate or recall.

    Specificity

    It is called true negative rate (TNR).

    Accuracy

    Precision

    It is called positive predictive value (PPV).

    Negative Predictive Value

    It evaluates true negatives for all negative values by using

    F-Score

    It is used to measure sensitivity and mean of harmonic by using

    Tab.2 shows the performance metric measures of feature extraction.

    Table 2: Performance metric measures of feature extraction

    Tab.2 shows that for the sensitivity rate, MWOA-SSA is better than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.For PPV, MWOASSA has a percentage of 88.3%.For NPV, MWOA-SSA has 93.6%.MWOA-SAA outperforms other algorithms with an F-score of 96.4%.

    4.1 Feature Selection

    MWOA-SSA is used for feature selection, and it is compared with existing algorithms of PCA and MWOA in terms of average fitness, average error, best fitness, mean, standard deviation, and worst fitness.The parameter values for the fitness function are 0.97 and 0.03.

    Average Error

    It shows the classifier’s accuracy for the feature selection for the COVID-19 dataset, and it is calculated by using

    whereCliis classifier’s label for the pixeliandlbiis the class label for the pixeliof the image andCompcalculates the matching between two inputs.

    Mean

    Standard Deviation

    where mean is obtained from Eq.(17)

    Best Fitness

    It calculates the minimum function of fitness, and it is calculated as

    Average Fitness

    The average size of features in the COVID-19 dataset is calculated as

    Worst Fitness

    The worst solution of fitness is calculated as

    Tab.3 shows the performance of the proposed algorithm in feature selection

    The results of the proposed MWOA-SSA algorithm in Tab.3 show the lower error and select featuresfromthe COVID-19dataset.The TheMWOA-SSA algorithm achieved the minimumaverage error of 0.1114 in selecting the features of infected lung images.The minimum errors for PCA, MWOA, and MWOA-SSA are used to select the features from best fitness to worst fitness.The proposed algorithm MWOA-SSA outperforms other existing algorithms, and the best fitness value is 0.1034, the worst fitness value is 0.2115, and the average fitness value is 0.2034.

    Table 3: Performance metric measures for feature selection

    4.2 Detection and Severity Classification of COVID-19

    To detect the infection severity, lung images have been examined by using ground truths of CT0-CT4 as given below.Tab.4 presents the severity levels in the lungs.

    Table 4: Severity levels for infection in lungs [32,33]

    In this work, we collected data on 500 patients with COVID-19 infection.Infection was confirmed by a nasopharyngeal swab using a U-TOP COVID-19 Detection Kit.Age, gender, d-dimer, ferritin levels, C-reactive protein test (CRP), and O2 were collected.Patient’s age was classified into<20, 21-40, 41-49, 50-60, 61-70, and>70 years.The correlation (p<0.05) between CT severity score was used to detect lung infection.Tab.5 shows a survey of 500 patients who are affected by pneumonia.Fig.3.shows the CT severity of COVID-19 patients.

    Table 5: Demographic data of 500 patients

    Fig.3 shows that negative disease was mainly seen in the age group of 21 to 40 (30%), mild lung mainly infection was seen in the 41 to 60 age group (60%).Moderate lung infection was mainly seen in the 61 to 70 age group (68%), and severe lung infection was mainly seen in the age group of 41 to 60 (70%).This is the highest risk factor for COVID-19 affected patients [34-37].Fig.4.shows the time taken for the classification of COVID-19 affected cases and non-COVID-19 cases from the large dataset.

    Figure 3: CT-COVID severity score

    Figure 4: Execution time (proposed method executes faster than PCA and MWOA)

    5 Conclusion

    MWOA-SSA is used for the classification of COVID-19 cases in four phases.In the first phase,to classify accurate COVID-19 and non-COVID-19 images from a large dataset, pre-processing work has been done using a median filter.Features are extracted for the training CT images by PCA.For the feature selection of CT lung images, MWOA is implemented.For the selected features of the CT image, MWOA-SSA is implemented to classify the COVID-19 and non-COVID-19 images from the large dataset.This paper also proposes detecting and identifying the severity of lung infection by using different severity levels of COVID-19 cases.The main advantage of MWOA-SSA is that it efficiently and quickly classifies COVID-19 and non-COVID-19 cases and detects severity of lung infection using severity levels.MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.In future work, we suggest the use of various deep learning algorithms and various modalities of images and clinical reports.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 亚州av有码| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 一级爰片在线观看| 午夜福利在线观看免费完整高清在| 一区二区三区精品91| 亚洲伊人久久精品综合| 国产av国产精品国产| 人妻系列 视频| 中文字幕久久专区| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 国精品久久久久久国模美| 少妇熟女欧美另类| 观看免费一级毛片| 99视频精品全部免费 在线| 美女主播在线视频| 91久久精品国产一区二区成人| 久久人人爽人人片av| 成人综合一区亚洲| 成人毛片60女人毛片免费| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 老熟女久久久| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 观看美女的网站| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 我要看黄色一级片免费的| 精品99又大又爽又粗少妇毛片| 国产在线男女| 国产伦理片在线播放av一区| 在线播放无遮挡| 亚洲人成网站在线观看播放| 在线观看免费视频网站a站| 夜夜爽夜夜爽视频| 青春草国产在线视频| 水蜜桃什么品种好| 我要看黄色一级片免费的| 美女福利国产在线| 高清av免费在线| 国产欧美日韩综合在线一区二区 | 久久久久久久久久久久大奶| 国产精品久久久久久久电影| 黄色日韩在线| 人妻制服诱惑在线中文字幕| 一个人看视频在线观看www免费| 两个人的视频大全免费| 欧美国产精品一级二级三级 | 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 插阴视频在线观看视频| 久久狼人影院| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产av玫瑰| 五月伊人婷婷丁香| 婷婷色av中文字幕| 美女视频免费永久观看网站| 三上悠亚av全集在线观看 | 在线播放无遮挡| 成年女人在线观看亚洲视频| av在线app专区| 亚洲成人一二三区av| 简卡轻食公司| 欧美xxxx性猛交bbbb| 三级国产精品片| 免费在线观看成人毛片| 亚洲国产色片| 国产精品久久久久久精品电影小说| 成年人午夜在线观看视频| 亚洲图色成人| 熟女av电影| 大陆偷拍与自拍| 久久久久精品久久久久真实原创| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲美女黄色视频免费看| 九九久久精品国产亚洲av麻豆| 亚洲av福利一区| 亚洲精品色激情综合| 亚洲一级一片aⅴ在线观看| 久久久国产一区二区| 久久ye,这里只有精品| 久久人人爽人人爽人人片va| 黑人高潮一二区| 777米奇影视久久| 看非洲黑人一级黄片| 亚洲天堂av无毛| 亚洲激情五月婷婷啪啪| 国产精品国产三级专区第一集| 日韩伦理黄色片| 欧美bdsm另类| xxx大片免费视频| 国产精品三级大全| 丰满饥渴人妻一区二区三| 中文资源天堂在线| 日本av免费视频播放| 色视频在线一区二区三区| 国产精品久久久久久久久免| 插逼视频在线观看| 久久久精品94久久精品| 免费看av在线观看网站| 欧美日韩综合久久久久久| 桃花免费在线播放| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| av免费观看日本| 在线观看免费高清a一片| 亚洲精品一区蜜桃| 国产免费一级a男人的天堂| 日本猛色少妇xxxxx猛交久久| 丝袜脚勾引网站| 久久久精品免费免费高清| 亚洲av中文av极速乱| 多毛熟女@视频| 女性被躁到高潮视频| 国产免费一区二区三区四区乱码| 免费人妻精品一区二区三区视频| 亚洲欧美精品自产自拍| 制服丝袜香蕉在线| 最新的欧美精品一区二区| 欧美日韩视频精品一区| 成人国产麻豆网| a级一级毛片免费在线观看| 国产伦在线观看视频一区| 亚洲欧美一区二区三区黑人 | 国产黄片美女视频| 国产av精品麻豆| 国产av码专区亚洲av| 国产白丝娇喘喷水9色精品| 女性生殖器流出的白浆| 夜夜看夜夜爽夜夜摸| 欧美日韩一区二区视频在线观看视频在线| 老司机影院毛片| 一级毛片黄色毛片免费观看视频| 欧美三级亚洲精品| 国产 一区精品| 精品久久国产蜜桃| 亚洲va在线va天堂va国产| 少妇熟女欧美另类| 免费黄频网站在线观看国产| 中文资源天堂在线| 色网站视频免费| a级毛片在线看网站| 日韩伦理黄色片| 日日啪夜夜撸| 在线观看免费日韩欧美大片 | 日日啪夜夜撸| 九九久久精品国产亚洲av麻豆| www.色视频.com| 日韩精品有码人妻一区| 日韩av免费高清视频| 中国国产av一级| 精品一区二区三区视频在线| 自线自在国产av| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品在线观看| 内射极品少妇av片p| 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 久久女婷五月综合色啪小说| 国产亚洲最大av| 香蕉精品网在线| 精品国产一区二区三区久久久樱花| 少妇的逼好多水| 国语对白做爰xxxⅹ性视频网站| 午夜日本视频在线| 国产精品国产av在线观看| 涩涩av久久男人的天堂| 亚洲欧美成人精品一区二区| 久久人妻熟女aⅴ| 精品久久久久久久久亚洲| 国产一区二区在线观看日韩| 国产伦精品一区二区三区视频9| av免费在线看不卡| 伦理电影免费视频| 人人妻人人添人人爽欧美一区卜| 成人漫画全彩无遮挡| 人人澡人人妻人| 女性被躁到高潮视频| 男人狂女人下面高潮的视频| av黄色大香蕉| 亚洲国产精品999| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 一区二区三区免费毛片| 国产69精品久久久久777片| 又黄又爽又刺激的免费视频.| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 亚洲色图综合在线观看| 精品久久久噜噜| 国产黄色免费在线视频| 丰满少妇做爰视频| 精品亚洲成a人片在线观看| 纵有疾风起免费观看全集完整版| 美女福利国产在线| a级片在线免费高清观看视频| 日韩精品有码人妻一区| 亚洲综合精品二区| 蜜桃在线观看..| 极品人妻少妇av视频| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 国产精品一区二区三区四区免费观看| 黑人猛操日本美女一级片| 中文字幕亚洲精品专区| 男女边摸边吃奶| 免费观看性生交大片5| 亚洲第一av免费看| 亚洲精品,欧美精品| 欧美日韩国产mv在线观看视频| 99久久精品一区二区三区| 欧美bdsm另类| 国产 精品1| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 插阴视频在线观看视频| 国产成人freesex在线| 色吧在线观看| 建设人人有责人人尽责人人享有的| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂| 欧美一级a爱片免费观看看| 成人黄色视频免费在线看| 大香蕉97超碰在线| 久久久国产精品麻豆| 大片电影免费在线观看免费| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 日日摸夜夜添夜夜添av毛片| 亚洲综合精品二区| 亚洲人成网站在线播| 蜜桃在线观看..| 欧美最新免费一区二区三区| 久久免费观看电影| 亚洲综合色惰| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| 免费av不卡在线播放| 少妇人妻一区二区三区视频| 国产精品国产三级国产av玫瑰| 亚洲婷婷狠狠爱综合网| 免费看日本二区| 一级毛片aaaaaa免费看小| av福利片在线观看| 蜜臀久久99精品久久宅男| 免费观看性生交大片5| 午夜影院在线不卡| 成人毛片60女人毛片免费| av一本久久久久| 久久精品国产亚洲网站| kizo精华| 汤姆久久久久久久影院中文字幕| 国产精品免费大片| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 国产毛片在线视频| 大话2 男鬼变身卡| 亚洲精品久久久久久婷婷小说| 一级毛片 在线播放| 久久 成人 亚洲| 老司机亚洲免费影院| 91成人精品电影| 国产毛片在线视频| 天天躁夜夜躁狠狠久久av| 各种免费的搞黄视频| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 国产一区有黄有色的免费视频| 国产成人精品久久久久久| 七月丁香在线播放| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| 97超碰精品成人国产| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 久久ye,这里只有精品| 伊人久久国产一区二区| 免费av不卡在线播放| 十分钟在线观看高清视频www | 99久久综合免费| 又黄又爽又刺激的免费视频.| 肉色欧美久久久久久久蜜桃| 久久人人爽人人爽人人片va| 欧美老熟妇乱子伦牲交| 久久久久网色| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 99久久中文字幕三级久久日本| 免费观看的影片在线观看| 中文字幕久久专区| 永久免费av网站大全| 国产极品粉嫩免费观看在线 | 中文欧美无线码| av国产精品久久久久影院| 特大巨黑吊av在线直播| 欧美精品一区二区免费开放| 人妻系列 视频| 亚洲av日韩在线播放| 成人无遮挡网站| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 亚洲人成网站在线播| 久久久久久久久久成人| 精品久久久久久久久亚洲| 日本av手机在线免费观看| 午夜精品国产一区二区电影| 九草在线视频观看| 亚洲真实伦在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 99久国产av精品国产电影| 性高湖久久久久久久久免费观看| av国产精品久久久久影院| 午夜福利,免费看| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 色视频www国产| 国产黄色免费在线视频| 韩国av在线不卡| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 一个人看视频在线观看www免费| 一级毛片电影观看| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 日韩三级伦理在线观看| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 欧美成人午夜免费资源| 精品久久久久久电影网| 免费黄网站久久成人精品| 欧美日韩视频精品一区| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 99热这里只有是精品在线观看| 亚洲一区二区三区欧美精品| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 在线天堂最新版资源| 能在线免费看毛片的网站| 国产黄片美女视频| 欧美日韩国产mv在线观看视频| 亚洲经典国产精华液单| 嫩草影院新地址| 亚洲久久久国产精品| 日韩强制内射视频| 中文资源天堂在线| 亚洲情色 制服丝袜| 尾随美女入室| 青春草亚洲视频在线观看| 另类亚洲欧美激情| 国产高清国产精品国产三级| 欧美老熟妇乱子伦牲交| 国产精品女同一区二区软件| 国产在线视频一区二区| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频 | 日韩电影二区| 777米奇影视久久| 黑人巨大精品欧美一区二区蜜桃 | 日韩成人伦理影院| 久久99一区二区三区| 国产极品粉嫩免费观看在线 | 18禁裸乳无遮挡动漫免费视频| 日韩亚洲欧美综合| 伦精品一区二区三区| 亚洲精品国产成人久久av| 两个人免费观看高清视频 | 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 国产亚洲最大av| 国产精品久久久久久精品古装| 大陆偷拍与自拍| 五月玫瑰六月丁香| 亚洲av综合色区一区| 国产精品一区二区在线观看99| 我的女老师完整版在线观看| 精品少妇内射三级| 九九爱精品视频在线观看| 水蜜桃什么品种好| 大香蕉久久网| 七月丁香在线播放| 欧美3d第一页| 国产熟女欧美一区二区| 综合色丁香网| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 国产精品欧美亚洲77777| 久久久久久久久久久丰满| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 日韩视频在线欧美| 亚洲怡红院男人天堂| 青春草国产在线视频| 亚洲av欧美aⅴ国产| 精品少妇久久久久久888优播| 尾随美女入室| 精品久久国产蜜桃| 国产亚洲av片在线观看秒播厂| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 国产探花极品一区二区| 美女国产视频在线观看| 国产精品嫩草影院av在线观看| 久久国产精品大桥未久av | 大片电影免费在线观看免费| 亚洲国产精品成人久久小说| 欧美激情极品国产一区二区三区 | 亚洲精华国产精华液的使用体验| 久久久久久久久大av| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 亚洲精品自拍成人| 欧美精品国产亚洲| 日韩在线高清观看一区二区三区| 一级毛片 在线播放| 妹子高潮喷水视频| 永久网站在线| 国产成人a∨麻豆精品| 亚洲精品一二三| av福利片在线| 久久99热6这里只有精品| 五月天丁香电影| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图 | 一二三四中文在线观看免费高清| 国产欧美日韩精品一区二区| 免费人妻精品一区二区三区视频| 国模一区二区三区四区视频| 欧美人与善性xxx| 有码 亚洲区| av黄色大香蕉| 少妇丰满av| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 精品卡一卡二卡四卡免费| 国产在线免费精品| 一本久久精品| 我的老师免费观看完整版| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 99久久人妻综合| 亚洲av成人精品一二三区| 青青草视频在线视频观看| 狂野欧美白嫩少妇大欣赏| 国产有黄有色有爽视频| 国产av国产精品国产| 国产成人午夜福利电影在线观看| 九色成人免费人妻av| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 国产有黄有色有爽视频| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 久久韩国三级中文字幕| 国产在线视频一区二区| 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 国国产精品蜜臀av免费| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 麻豆成人午夜福利视频| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 欧美少妇被猛烈插入视频| 极品少妇高潮喷水抽搐| 国产成人91sexporn| 成年av动漫网址| 亚洲美女视频黄频| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 窝窝影院91人妻| 日韩电影二区| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| tube8黄色片| 日韩大片免费观看网站| 亚洲少妇的诱惑av| 久久香蕉激情| 成人国产一区最新在线观看| 久9热在线精品视频| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| 国产欧美亚洲国产| 9色porny在线观看| 18禁国产床啪视频网站| 黄片播放在线免费| 精品人妻熟女毛片av久久网站| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 亚洲欧美日韩高清在线视频 | 飞空精品影院首页| 午夜福利在线观看吧| 中文字幕最新亚洲高清| avwww免费| av片东京热男人的天堂| 男人舔女人的私密视频| 国产成人av教育| 纯流量卡能插随身wifi吗| 视频区图区小说| 国产精品影院久久| 成人国产av品久久久| 99九九在线精品视频| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| 久久久国产精品麻豆| 精品国产乱子伦一区二区三区 | 亚洲综合色网址| 欧美在线黄色| 一区二区av电影网| 乱人伦中国视频| 国产精品秋霞免费鲁丝片| 午夜视频精品福利| 国产一区二区在线观看av| 国产深夜福利视频在线观看| 日本av免费视频播放| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 美女视频免费永久观看网站| 最黄视频免费看| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 中文字幕制服av| 一进一出抽搐动态| 国产深夜福利视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久久久精品人妻al黑| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 欧美少妇被猛烈插入视频| 亚洲国产看品久久| 亚洲国产欧美在线一区| 十八禁高潮呻吟视频| 亚洲伊人久久精品综合| 国产在线一区二区三区精| 精品久久久久久电影网| 国产又爽黄色视频| 久久青草综合色| 在线看a的网站| 国产亚洲av高清不卡| 99热网站在线观看| 欧美变态另类bdsm刘玥| 王馨瑶露胸无遮挡在线观看| 日韩人妻精品一区2区三区| 999久久久精品免费观看国产| 可以免费在线观看a视频的电影网站| 亚洲av美国av| 国产成+人综合+亚洲专区| 久久性视频一级片| 少妇精品久久久久久久| 中国国产av一级| 午夜福利在线免费观看网站| 一本大道久久a久久精品| 亚洲精品国产精品久久久不卡| 成人黄色视频免费在线看| 午夜福利视频精品| 在线天堂中文资源库| 91精品伊人久久大香线蕉| 国产精品一区二区在线观看99| 国产成+人综合+亚洲专区| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲 | 久久久久久久国产电影| 三级毛片av免费| av在线app专区| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 国产精品久久久久久精品古装| 一级片'在线观看视频| 亚洲av美国av| 国产成人精品久久二区二区免费| 永久免费av网站大全| 成人国产一区最新在线观看| 9色porny在线观看| 久久99一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲免费av在线视频|