• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification

    2022-08-24 12:58:36NebojsaBudimirovicPrabhuMilosAntonijevicMiodragZivkovicNebojsaBacaninIvanaStrumbergerandVenkatachalam
    Computers Materials&Continua 2022年7期

    Nebojsa Budimirovic, E.Prabhu, Milos Antonijevic, Miodrag Zivkovic, Nebojsa Bacanin,*,Ivana Strumbergerand K.Venkatachalam

    1Singidunum University, Belgrade, 11000, Serbia

    2Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa

    Vidyapeetham, Coimbatore, 641112, India

    3Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, Hradec Králové, 50003, Czech Republic

    Abstract: Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia.On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool.Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient.To overcome these issues, our proposed study implements four cascaded stages.First, for pre-processing, a mean filter is used.Second, texture feature extraction uses principal component analysis (PCA).Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm.The severity of lung infection is detected on the basis of age group.Fourth,image classification is done by using the proposedMWOAwith the salp swarm algorithm (MWOA-SSA).MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.This proposed method improves the effective classification of lung affected images from large datasets.

    Keywords: PCA; WOA; CT-image; lung infection; COVID-19

    1 Introduction

    COVID-19 is a virus infection that has changed human life in various aspects including finance,education, health care, and supply chains.People with COVID-19 infection are facing respiratory problems and can recover with appropriate treatment effectively [1].Many studies have been done in implementing classification and determining the presence of COVID-19 as well as in detecting the severity of pneumonia.CT and X-ray image modalities are non-invasive and used to detect and severity of lung infection [2,3].In this study, we used principal component analysis (PCA) for feature extraction of CT images and a modified whale optimization algorithm (MWOA) for feature selection.To classify COVID-affected images from a large dataset and detect severity using the modified whale optimization algorithm (MWA) with the salp swarmalgorithm (MWOA-SSA).Themain disadvantage of existing algorithms are inefficiency, high execution time, and maximized error rate.To overcome these issues, our proposed MWOA-SSA has high potential in detecting the severity of lung infections such as pneumonia and classifying COVID-19 in affected and unaffected images from a large dataset effectively and quickly.

    To predict coronavirus, X-ray images play a more important role than CT because the former is less sensitive.Furthermore, X-ray images are used to diagnose the early and mild stages of coronavirus patients.CT images are also is used in the diagnosis of coronavirus and improving efficiency in terms of dosage in radiation [4].To enhance the improvement in scanning images in a sliced manner effectively by usingmulti-slice computerized tomography (MSCT) [5].To achieve improvement in larger temporal resolution achieved by dual source CT image [6].

    Machine learning algorithms have been used for the last decades in medical applications for computer-based diagnosis, helping physicians diagnose at earlier stages of diseases and providing better customized therapies to patients [7,8].Approaches to find the best solution from all possible solutions of a particular radiology problem are known as meta-heuristic algorithms.The acceptable best solution of the optimization technique requires less computational effort within a stipulated time[9].For the feature selection, the proposed MWOA is implemented with a binary optimizer in terms of average select size, error rate, mean, standard deviation, average fitness, best fitness, and worst fitness.The main contributions of this study are as follows,

    1.ACOVID-19 classification based on proposed algorithms for feature classification ofWMOASSAis developed.

    2.A novel approach in detecting severity of lung infection based on severity level is implemented.

    3.The proposed WMOA-SSA can effectively classify the input CT images as COVID-19 or non-COVID-19.

    The paper has been organized as follows.Section 2 presents the literature review.Section 3 introduces the classification of COVID-19 images using MWOA-SSA.Section 4 discusses the experimented results.Section 5 concludes the paper and provides future directions.

    2 Review of Literature

    This section describes the recent literature on feature classification and prediction of coronavirus.COVID-19 has affected human beings in every aspect of their daily lives.To diagnosis the coronavirus disease by using various modalities of image such as CT and X-ray image.Through these images,physicians scan and diagnose at early stages and during disease progression.Many studies have been published on the prediction of coronavirus.Our aim is to achieve effectiveness in classifying COVID-19 case images from a large dataset and detect the severity of lung infections such as pneumonia.A previous paper [10] proposed evaluating the infection rate in CT scans of lungs using visual and coronal axes.By using visual inspection COVID-19 disease is used to identify the lung infection [11].

    Another paper [12] proposed implementing a visual infection-based method to detect lung infection using lung CT scan.Authors in [13] implemented deep learning algorithms to identify and screen COVID-19 patients using the modality of CT images accurately.By using an artificial intelligence (AI) technique for diagnosis, COVID-19 patients are identified based on convolutional neural network (CNN) using CT slices images, helping accurately classify COVID-19 from non-COVID-19 groups [14].The machine learning algorithm fractional multichannel exponent moments method is used to extract features from the chest X-ray image and used to classify COVID-19 or non-COVID-19 patients [15].Tab.1 shows a summary of recent research work in COVID-19.

    Table 1: Survey on existing algorithms

    3 Enhanced Whale with Salp Swarm Optimization Methodology

    This work introduces the concept of classification of affected lung disease and its severity.This proposed work has four stages.First, a median filter is used for pre-processing.Second, PCA is used for texture feature extraction.Third, A MWOA is used for selecting features.Fourth, the proposed MWOA-SSA is used for classification and identifying the severity.The architecture of our proposed method is given in Fig.1.CT scan images are collected and preprocessed using a median filter.PCA is used to remove unwanted textures in the images.Then, the images are processed using MWOA-SSA to classify the affected image.

    This proposed work consists of four phases:

    Phase 1:Pre-processing using a median filter.

    Phase 2:Feature extraction using PCA.

    Phase 3:Feature selection using MWOA.

    Phase 4:Proposed work on classification of infected lung images from a large dataset using MWOA-SSA.

    Figure 1: Architecture of proposed work

    3.1 Pre-Processing

    The aim of pre-processing is to improve the high quality of the CT scan chest image.We need to denoise the image by applying a median filter.This median filter scans the entire image using an 8×8 matrix and replaces the center pixel value by choosing the median of all pixel values inside the 8×8 matrix by using

    whereyis the neighborhood pixel value represented by the user andi,jis the center pixel value’s location.

    3.2 Texture Feature Extraction Using PCA

    The idea behind PCA is to map m-dimensional features to n dimensions that have a set of orthogonal feature values.Feature extraction using PCA meets the variance of sample pixel values after reduction of dimensionality and minimizes the error rate.The steps needed for texture feature extraction using PCA are given below, and Fig.2.Provides an overview of PCA operation.

    Algorithm 1: Texture Feature Extraction using PCA Step 1: To standardize the original pixel values, subtract all sample pixel values from the mean value of corresponding feature value by using s s Aj=1 n nimages/BZ_1651_410_2391_475_2436.pngi=1 Aij(2)Step 2: Evaluate the covariance matrix C (c = (Ajk)n×nwhere n is the number of features; Ajkis the correlation between jthand kthfeature value, where j = 1,2,...,n;k = 1,2,...,n.C =■ ■■■A11 A12···A1n A21 A22···A2n............An1 An2···Ann■■■■(3)(Continued)

    Algorithm 1: Continued Step 3:For the covariance matrix, calculate the eigen value of λi, and the eigenvector value is eii.λieii= Ceii(4)Step 4: Store the output values of eigenvector from large to small values λ1≥λ2≥...λnand calculate the rate of contribution for each principal component.The rate of contribution is given below:λk∑n k=1λk(5)Step 5: Transform the original matrix A into a new matrix B (B = (Bjk)n×n1, where j=1,2...n and k=1,2,...n.B = A×f1,f2,...,fn1(6)where f1,f2,...,fndenotes a new feature space which is composed of n1 vector feature values, and n1 is extracted features by PCA.Fig.2 shows the working principle of PCA.

    Figure 2: Overview of PCA

    3.3 Feature Selection Using MWOA

    Feature selection of brain image using MWOA, which is based on the behavior of whales, in which for trapping the prey bubbles are involved for searching in a spiral-shaped [27,28].The whale is randomly selected, and it can be updated by the best whale value that gives the optimal solution.

    To improve this result, the performance of three whales are randomly chosen, and it cannot be affected by the leader’s position.Eq.(6) is modified as follows:

    where t represents iteration number, andMaxitrepresents the maximum number of iterations.

    The algorithm is given as follows:

    Algorithm 2: MWOA Input: Lung Image Output: Detecting COVID presence images Step 1: Initialize Population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t=1.Step 4: Convert output into binary values as 0 or 1.Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Find best individual value by-→F*.Step 7: While n≤max_iter do Step 8: For i = (1;i<n + 1) do Step 9: If (-→u3<0.5) then Step 10: If (|→B|<1) then Step 11: Update current position of agent for search by using Eqs.(2), (3).Step 12: Else Step 13: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 14: Update agent’s exponential form by using Eq.(9).Step 15: Update current position of agent for search in exponential form by using Eq.(8).Step 16: End if Step 17: Else Step 18: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 19: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h(Continued)

    Algorithm 2: Continued Step 25: Binary optimizer the updated solution/prey by using--→F(t+1)n =images/BZ_1654_419_578_448_624.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*.

    3.4 Proposed Feature Classification Using MWOA-SSA

    In this phase, classification of infected lung images froma large dataset is done usingMWOA-SSA.To improve the accuracy and optimal solution, the SSA) is used with MWOA.This SSA randomly initializes the swarm of N salps.The swarm is represented by the 2-D matrixmat.Searching food for swarm is represented assf, and leader’s movement in the form of a chain is denoted as.It is represented by using

    whereiis swarm’s dimension position, and it is updated.sfiis theithposition for a source of food.upliandlowliare the upper and lower limits of theithelement.r1is a dynamic variable for iteration.r2andr3are random numbers between [0,1] calculated as

    whereitrepresents the current iteration anditeris the maximum number of iterations.r1is a control variablethatcontrols thebalance between exploitation and exploration ofthe optimizationalgorithm.It is represented as

    The procedure for SSA is given as follows.

    Algorithm 3: Feature Classification using MWOA-SSA Input: Lung CT Scan Image Output: COVID-detected image Step 1: Initialize population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t = 1 and swarm of salps sxii = 1,2,.....,n.Step 4: Convert output into binary values as 0 or 1 Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Evaluate fitness value for each salp of the swarm(Continued)

    Algorithm 3: Continued Step 7: Find best individual value by-→F*.Step 8: Assign F as best salp’s position.Step 9: Update r1by Eq.(11).Step 10: While n≤max_iter do Step 11: For i = (1;i<n + 1) do Step 12: If (-→u3<0.5) then Step 13: If (|→B|<1) and (i == 1) then Step 14: Update current position of agent for search by using Eqs.(2) and (3).Step 15: Update position of leader by using Eq.(10).Step 16: Else Step 17: Update position of followers by using Eq.(12).Step 18: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 19: Update agent’s exponential form by using Eq.(9).Step 20: Update current position of agent for search in exponential form by using Eq.(8).Step 21: End if Step 22: Else Step 23: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 24: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h Step 25: Binary optimize the updated solution/prey by using--→F(t+1)n =images/BZ_1655_420_1969_448_2015.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*, F.

    4 Results and Analysis

    For the experimental result, data are collected from the Kaggle dataset [29], which has 1,500 CT images of COVID-19 and non-COVID 19.MWOA-SSA is compared with the existing algorithms MWOA [30] and SSA [31] by using performance metric measures of sensitivity, specificity, accuracy,precision (PPV), F-score, and negative predictive value (NPV).

    TP-True Positive,TN-True Negative,FN-False Negative,FP-False Positive,

    These metric measures are defined by using:

    Sensitivity

    It is also called true positive rate or recall.

    Specificity

    It is called true negative rate (TNR).

    Accuracy

    Precision

    It is called positive predictive value (PPV).

    Negative Predictive Value

    It evaluates true negatives for all negative values by using

    F-Score

    It is used to measure sensitivity and mean of harmonic by using

    Tab.2 shows the performance metric measures of feature extraction.

    Table 2: Performance metric measures of feature extraction

    Tab.2 shows that for the sensitivity rate, MWOA-SSA is better than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.For PPV, MWOASSA has a percentage of 88.3%.For NPV, MWOA-SSA has 93.6%.MWOA-SAA outperforms other algorithms with an F-score of 96.4%.

    4.1 Feature Selection

    MWOA-SSA is used for feature selection, and it is compared with existing algorithms of PCA and MWOA in terms of average fitness, average error, best fitness, mean, standard deviation, and worst fitness.The parameter values for the fitness function are 0.97 and 0.03.

    Average Error

    It shows the classifier’s accuracy for the feature selection for the COVID-19 dataset, and it is calculated by using

    whereCliis classifier’s label for the pixeliandlbiis the class label for the pixeliof the image andCompcalculates the matching between two inputs.

    Mean

    Standard Deviation

    where mean is obtained from Eq.(17)

    Best Fitness

    It calculates the minimum function of fitness, and it is calculated as

    Average Fitness

    The average size of features in the COVID-19 dataset is calculated as

    Worst Fitness

    The worst solution of fitness is calculated as

    Tab.3 shows the performance of the proposed algorithm in feature selection

    The results of the proposed MWOA-SSA algorithm in Tab.3 show the lower error and select featuresfromthe COVID-19dataset.The TheMWOA-SSA algorithm achieved the minimumaverage error of 0.1114 in selecting the features of infected lung images.The minimum errors for PCA, MWOA, and MWOA-SSA are used to select the features from best fitness to worst fitness.The proposed algorithm MWOA-SSA outperforms other existing algorithms, and the best fitness value is 0.1034, the worst fitness value is 0.2115, and the average fitness value is 0.2034.

    Table 3: Performance metric measures for feature selection

    4.2 Detection and Severity Classification of COVID-19

    To detect the infection severity, lung images have been examined by using ground truths of CT0-CT4 as given below.Tab.4 presents the severity levels in the lungs.

    Table 4: Severity levels for infection in lungs [32,33]

    In this work, we collected data on 500 patients with COVID-19 infection.Infection was confirmed by a nasopharyngeal swab using a U-TOP COVID-19 Detection Kit.Age, gender, d-dimer, ferritin levels, C-reactive protein test (CRP), and O2 were collected.Patient’s age was classified into<20, 21-40, 41-49, 50-60, 61-70, and>70 years.The correlation (p<0.05) between CT severity score was used to detect lung infection.Tab.5 shows a survey of 500 patients who are affected by pneumonia.Fig.3.shows the CT severity of COVID-19 patients.

    Table 5: Demographic data of 500 patients

    Fig.3 shows that negative disease was mainly seen in the age group of 21 to 40 (30%), mild lung mainly infection was seen in the 41 to 60 age group (60%).Moderate lung infection was mainly seen in the 61 to 70 age group (68%), and severe lung infection was mainly seen in the age group of 41 to 60 (70%).This is the highest risk factor for COVID-19 affected patients [34-37].Fig.4.shows the time taken for the classification of COVID-19 affected cases and non-COVID-19 cases from the large dataset.

    Figure 3: CT-COVID severity score

    Figure 4: Execution time (proposed method executes faster than PCA and MWOA)

    5 Conclusion

    MWOA-SSA is used for the classification of COVID-19 cases in four phases.In the first phase,to classify accurate COVID-19 and non-COVID-19 images from a large dataset, pre-processing work has been done using a median filter.Features are extracted for the training CT images by PCA.For the feature selection of CT lung images, MWOA is implemented.For the selected features of the CT image, MWOA-SSA is implemented to classify the COVID-19 and non-COVID-19 images from the large dataset.This paper also proposes detecting and identifying the severity of lung infection by using different severity levels of COVID-19 cases.The main advantage of MWOA-SSA is that it efficiently and quickly classifies COVID-19 and non-COVID-19 cases and detects severity of lung infection using severity levels.MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.In future work, we suggest the use of various deep learning algorithms and various modalities of images and clinical reports.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    男的添女的下面高潮视频| 999精品在线视频| 啦啦啦在线观看免费高清www| videosex国产| 国产一区有黄有色的免费视频| 国产av国产精品国产| 国产精品 国内视频| 久热这里只有精品99| www日本在线高清视频| 嫁个100分男人电影在线观看 | 99国产精品一区二区蜜桃av | 久久ye,这里只有精品| 高清黄色对白视频在线免费看| 考比视频在线观看| 欧美日韩亚洲高清精品| 一区二区三区乱码不卡18| 男女国产视频网站| 日本一区二区免费在线视频| 国产精品av久久久久免费| 国产在线观看jvid| 水蜜桃什么品种好| av天堂久久9| 国产精品一国产av| 久久久国产精品麻豆| 日韩视频在线欧美| 一级a爱视频在线免费观看| 我的亚洲天堂| 国产亚洲av片在线观看秒播厂| 亚洲国产精品成人久久小说| 欧美黄色淫秽网站| 色网站视频免费| 国产又爽黄色视频| 久热爱精品视频在线9| 欧美日韩福利视频一区二区| 亚洲国产精品999| 妹子高潮喷水视频| 人人澡人人妻人| 中文欧美无线码| 亚洲久久久国产精品| 久久精品国产亚洲av涩爱| videosex国产| 成在线人永久免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文乱码字字幕精品一区二区三区| 日韩av免费高清视频| 麻豆国产av国片精品| 久久久国产精品麻豆| 午夜免费成人在线视频| 亚洲欧美清纯卡通| √禁漫天堂资源中文www| 满18在线观看网站| 国产主播在线观看一区二区 | 久久久久久久国产电影| 欧美乱码精品一区二区三区| 成人三级做爰电影| 男人操女人黄网站| 成在线人永久免费视频| 少妇被粗大的猛进出69影院| 亚洲精品中文字幕在线视频| 精品少妇一区二区三区视频日本电影| av在线播放精品| 久久久久国产一级毛片高清牌| 日本午夜av视频| 免费女性裸体啪啪无遮挡网站| 国产91精品成人一区二区三区 | 视频区欧美日本亚洲| videos熟女内射| 国产日韩欧美视频二区| 看免费av毛片| 亚洲综合色网址| 久9热在线精品视频| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 99热国产这里只有精品6| 国产成人精品久久久久久| 91精品三级在线观看| 狠狠精品人妻久久久久久综合| 日本av免费视频播放| 尾随美女入室| 国产精品久久久av美女十八| 婷婷成人精品国产| 韩国高清视频一区二区三区| 不卡av一区二区三区| 看免费av毛片| 日韩av免费高清视频| 日本vs欧美在线观看视频| 伊人亚洲综合成人网| 大香蕉久久网| 少妇被粗大的猛进出69影院| 天天影视国产精品| 久久精品国产a三级三级三级| 一边摸一边做爽爽视频免费| 欧美 亚洲 国产 日韩一| 9色porny在线观看| 国产成人欧美在线观看 | 国产一区二区三区综合在线观看| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 亚洲欧洲国产日韩| 激情五月婷婷亚洲| 亚洲国产欧美网| 亚洲,一卡二卡三卡| 男女边吃奶边做爰视频| 中文字幕人妻熟女乱码| 男女边摸边吃奶| 男女之事视频高清在线观看 | 久久久亚洲精品成人影院| 久久人妻福利社区极品人妻图片 | 一级片'在线观看视频| bbb黄色大片| 国产黄色免费在线视频| 99国产精品一区二区蜜桃av | 国产一区有黄有色的免费视频| 97精品久久久久久久久久精品| 中文字幕精品免费在线观看视频| 人人澡人人妻人| 国产高清国产精品国产三级| 自拍欧美九色日韩亚洲蝌蚪91| 最黄视频免费看| 亚洲精品日韩在线中文字幕| 交换朋友夫妻互换小说| 久久免费观看电影| 亚洲欧美一区二区三区黑人| 亚洲精品美女久久久久99蜜臀 | 两性夫妻黄色片| 色精品久久人妻99蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品美女久久av网站| 少妇被粗大的猛进出69影院| 免费少妇av软件| 国产精品久久久av美女十八| 亚洲av在线观看美女高潮| 欧美 日韩 精品 国产| 热re99久久精品国产66热6| 亚洲精品第二区| 亚洲一区中文字幕在线| 欧美性长视频在线观看| 亚洲国产最新在线播放| 亚洲,一卡二卡三卡| xxxhd国产人妻xxx| 久久久久久久久免费视频了| 制服人妻中文乱码| 国产男人的电影天堂91| 一本色道久久久久久精品综合| 国产97色在线日韩免费| 国产97色在线日韩免费| 十分钟在线观看高清视频www| 两人在一起打扑克的视频| 在线av久久热| 爱豆传媒免费全集在线观看| 国产精品亚洲av一区麻豆| 极品人妻少妇av视频| e午夜精品久久久久久久| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| bbb黄色大片| 国产成人av教育| 日韩伦理黄色片| 亚洲国产av新网站| 欧美人与性动交α欧美精品济南到| 国产色视频综合| 美女主播在线视频| 一级片免费观看大全| 久久精品aⅴ一区二区三区四区| 欧美在线一区亚洲| 午夜免费男女啪啪视频观看| www.av在线官网国产| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩av久久| 日本欧美国产在线视频| 夜夜骑夜夜射夜夜干| 国产在视频线精品| 欧美性长视频在线观看| 亚洲精品日本国产第一区| 欧美日韩国产mv在线观看视频| 一级毛片我不卡| av国产久精品久网站免费入址| 欧美日韩国产mv在线观看视频| 王馨瑶露胸无遮挡在线观看| av国产久精品久网站免费入址| 一本大道久久a久久精品| 人妻人人澡人人爽人人| 婷婷色综合www| www日本在线高清视频| 99国产精品一区二区三区| 男人爽女人下面视频在线观看| 一边摸一边抽搐一进一出视频| 老司机深夜福利视频在线观看 | 精品少妇久久久久久888优播| 男女边吃奶边做爰视频| 中文字幕最新亚洲高清| 亚洲国产中文字幕在线视频| 国产精品免费大片| 久久午夜综合久久蜜桃| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产色婷婷电影| 国产1区2区3区精品| 亚洲欧美日韩高清在线视频 | 两个人免费观看高清视频| 日本五十路高清| 涩涩av久久男人的天堂| 精品视频人人做人人爽| 久久毛片免费看一区二区三区| 美女午夜性视频免费| 欧美黑人精品巨大| 两个人免费观看高清视频| 成人午夜精彩视频在线观看| 一区福利在线观看| 人妻 亚洲 视频| 尾随美女入室| 欧美日本中文国产一区发布| 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| av天堂久久9| 中文字幕色久视频| 天堂中文最新版在线下载| 80岁老熟妇乱子伦牲交| 欧美 亚洲 国产 日韩一| 日日摸夜夜添夜夜爱| 成人18禁高潮啪啪吃奶动态图| 亚洲欧洲日产国产| 午夜激情久久久久久久| 成年女人毛片免费观看观看9 | 国产高清视频在线播放一区 | 成人影院久久| 桃花免费在线播放| 久久精品亚洲av国产电影网| 十八禁人妻一区二区| 1024视频免费在线观看| 亚洲av日韩在线播放| 麻豆av在线久日| 日韩大码丰满熟妇| 黄色片一级片一级黄色片| 亚洲av男天堂| 亚洲成国产人片在线观看| av片东京热男人的天堂| 免费不卡黄色视频| 国产成人啪精品午夜网站| 亚洲精品国产一区二区精华液| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 午夜激情久久久久久久| 激情五月婷婷亚洲| 亚洲 欧美一区二区三区| 一区二区三区四区激情视频| 久久国产精品影院| 亚洲国产成人一精品久久久| 日本欧美视频一区| 日韩,欧美,国产一区二区三区| 亚洲欧美精品自产自拍| 欧美人与性动交α欧美精品济南到| 成年女人毛片免费观看观看9 | 国产熟女欧美一区二区| 男女免费视频国产| 人人澡人人妻人| 精品少妇内射三级| 久久人人爽人人片av| 精品人妻1区二区| 欧美老熟妇乱子伦牲交| 亚洲九九香蕉| 亚洲色图 男人天堂 中文字幕| 大码成人一级视频| 中文字幕av电影在线播放| 国产精品99久久99久久久不卡| 自线自在国产av| 宅男免费午夜| 天天添夜夜摸| 美女大奶头黄色视频| 久久精品久久久久久噜噜老黄| 国产成人啪精品午夜网站| 亚洲中文日韩欧美视频| 欧美精品亚洲一区二区| av线在线观看网站| 18禁国产床啪视频网站| 国产免费现黄频在线看| 99热国产这里只有精品6| 中文字幕色久视频| 精品少妇久久久久久888优播| 中文字幕精品免费在线观看视频| 亚洲精品在线美女| 国产免费又黄又爽又色| 亚洲视频免费观看视频| 最近中文字幕2019免费版| 久久性视频一级片| 亚洲成国产人片在线观看| 国产成人av激情在线播放| 亚洲国产欧美网| 久久久精品区二区三区| 在线观看人妻少妇| 五月开心婷婷网| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 我的亚洲天堂| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美成人综合另类久久久| 高清av免费在线| 日韩免费高清中文字幕av| 国产高清视频在线播放一区 | 新久久久久国产一级毛片| 亚洲第一青青草原| 精品福利永久在线观看| 日韩大片免费观看网站| 亚洲精品国产av成人精品| 国产精品一二三区在线看| tube8黄色片| 亚洲视频免费观看视频| 欧美日韩综合久久久久久| 一级片免费观看大全| 日本一区二区免费在线视频| 男女高潮啪啪啪动态图| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 日本五十路高清| 亚洲国产日韩一区二区| 久久久亚洲精品成人影院| 欧美黄色淫秽网站| 亚洲精品久久午夜乱码| 欧美 亚洲 国产 日韩一| 晚上一个人看的免费电影| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 欧美在线一区亚洲| 亚洲av成人精品一二三区| 久久久精品94久久精品| 午夜日韩欧美国产| 妹子高潮喷水视频| 国产真人三级小视频在线观看| www.av在线官网国产| 久久天躁狠狠躁夜夜2o2o | 精品国产超薄肉色丝袜足j| 久久国产精品男人的天堂亚洲| 亚洲国产精品999| av网站免费在线观看视频| 最新在线观看一区二区三区 | 欧美精品啪啪一区二区三区 | 久久综合国产亚洲精品| 超碰成人久久| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 午夜久久久在线观看| 咕卡用的链子| 悠悠久久av| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 欧美中文综合在线视频| 天天躁日日躁夜夜躁夜夜| videos熟女内射| 黑丝袜美女国产一区| 免费在线观看黄色视频的| 青青草视频在线视频观看| 一级黄色大片毛片| 久热这里只有精品99| 天天操日日干夜夜撸| 国产亚洲欧美精品永久| netflix在线观看网站| 三上悠亚av全集在线观看| 一本一本久久a久久精品综合妖精| 国产黄色免费在线视频| svipshipincom国产片| 97人妻天天添夜夜摸| 精品一品国产午夜福利视频| 久久九九热精品免费| 伦理电影免费视频| 性高湖久久久久久久久免费观看| 一级片免费观看大全| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 无遮挡黄片免费观看| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站 | 亚洲,欧美精品.| 又大又爽又粗| 精品第一国产精品| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 99精国产麻豆久久婷婷| 两人在一起打扑克的视频| 精品国产国语对白av| 嫩草影视91久久| 色94色欧美一区二区| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 亚洲中文字幕日韩| 亚洲第一青青草原| 只有这里有精品99| 国产精品 欧美亚洲| 下体分泌物呈黄色| 考比视频在线观看| 国产精品久久久久久人妻精品电影 | 人人妻人人澡人人看| 日日摸夜夜添夜夜爱| 狠狠精品人妻久久久久久综合| 黄色一级大片看看| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 中文字幕制服av| 99国产精品免费福利视频| 大陆偷拍与自拍| 免费观看人在逋| 国产成人精品在线电影| 天天躁狠狠躁夜夜躁狠狠躁| 在线 av 中文字幕| 亚洲欧洲精品一区二区精品久久久| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 亚洲国产日韩一区二区| 亚洲人成电影免费在线| 美女福利国产在线| av在线老鸭窝| 精品国产乱码久久久久久男人| 大码成人一级视频| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 国产高清videossex| 99热全是精品| 日韩,欧美,国产一区二区三区| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 波多野结衣av一区二区av| 亚洲黑人精品在线| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 18禁国产床啪视频网站| 一级毛片 在线播放| 日韩中文字幕欧美一区二区 | 一本色道久久久久久精品综合| netflix在线观看网站| 欧美97在线视频| 久久精品成人免费网站| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 在线看a的网站| 国产视频首页在线观看| 飞空精品影院首页| 天堂中文最新版在线下载| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 一边亲一边摸免费视频| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 久久久久国产一级毛片高清牌| 九色亚洲精品在线播放| 亚洲精品一二三| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 另类亚洲欧美激情| 亚洲欧洲国产日韩| 老司机在亚洲福利影院| 亚洲,欧美,日韩| 国产成人av教育| 中文乱码字字幕精品一区二区三区| 久久毛片免费看一区二区三区| 国产精品亚洲av一区麻豆| 国产片内射在线| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 黄色a级毛片大全视频| 考比视频在线观看| 欧美精品一区二区免费开放| 一区二区三区四区激情视频| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 国产成人欧美在线观看 | 脱女人内裤的视频| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 天天躁日日躁夜夜躁夜夜| 日韩视频在线欧美| 午夜av观看不卡| 久久精品亚洲熟妇少妇任你| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 久久热在线av| 午夜福利视频在线观看免费| 电影成人av| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 国产成人一区二区三区免费视频网站 | 亚洲国产欧美在线一区| 丰满饥渴人妻一区二区三| 午夜福利免费观看在线| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 一级,二级,三级黄色视频| 丝袜美足系列| 少妇被粗大的猛进出69影院| av片东京热男人的天堂| 丰满饥渴人妻一区二区三| 久久中文字幕一级| 精品一区二区三区av网在线观看 | 国产又爽黄色视频| 亚洲激情五月婷婷啪啪| 99久久综合免费| 久久天堂一区二区三区四区| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 午夜影院在线不卡| 99香蕉大伊视频| 中文乱码字字幕精品一区二区三区| 亚洲精品美女久久av网站| 各种免费的搞黄视频| 免费看av在线观看网站| 色网站视频免费| 久久久久久久久免费视频了| 欧美97在线视频| 国产一区二区在线观看av| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 久久久精品94久久精品| 亚洲少妇的诱惑av| 香蕉国产在线看| 午夜激情av网站| 久久中文字幕一级| av在线播放精品| 国产精品国产av在线观看| 最新在线观看一区二区三区 | 美女午夜性视频免费| 欧美日韩视频精品一区| 97人妻天天添夜夜摸| 国产成人精品在线电影| 久久综合国产亚洲精品| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 亚洲国产欧美日韩在线播放| 日韩大码丰满熟妇| 婷婷色综合www| 免费看不卡的av| 性少妇av在线| 欧美日韩亚洲高清精品| 亚洲黑人精品在线| netflix在线观看网站| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 欧美日韩成人在线一区二区| 老司机影院成人| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 91麻豆av在线| 新久久久久国产一级毛片| 国产一区二区三区av在线| 老汉色∧v一级毛片| 日韩av在线免费看完整版不卡| 国产精品久久久久成人av| 十八禁网站网址无遮挡| 精品一区在线观看国产| 国产精品香港三级国产av潘金莲 | 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 亚洲午夜精品一区,二区,三区| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 男女午夜视频在线观看| 午夜老司机福利片| 18禁观看日本| 亚洲天堂av无毛| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| av天堂久久9| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 性少妇av在线| 十八禁高潮呻吟视频| 日本wwww免费看| 丝袜在线中文字幕| 日本av免费视频播放| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 18在线观看网站| 亚洲三区欧美一区| 日本av免费视频播放| 丝袜在线中文字幕| 久9热在线精品视频| 国产精品久久久久久精品古装| 中文欧美无线码| 婷婷成人精品国产| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 香蕉国产在线看| 美女视频免费永久观看网站| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 另类精品久久| 一区在线观看完整版| 欧美 日韩 精品 国产| 日本av免费视频播放| 欧美 日韩 精品 国产| 欧美日韩福利视频一区二区|