• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COVID-19 Severity Prediction Using Enhanced Whale with Salp Swarm Feature Classification

    2022-08-24 12:58:36NebojsaBudimirovicPrabhuMilosAntonijevicMiodragZivkovicNebojsaBacaninIvanaStrumbergerandVenkatachalam
    Computers Materials&Continua 2022年7期

    Nebojsa Budimirovic, E.Prabhu, Milos Antonijevic, Miodrag Zivkovic, Nebojsa Bacanin,*,Ivana Strumbergerand K.Venkatachalam

    1Singidunum University, Belgrade, 11000, Serbia

    2Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa

    Vidyapeetham, Coimbatore, 641112, India

    3Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, Hradec Králové, 50003, Czech Republic

    Abstract: Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia.On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool.Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient.To overcome these issues, our proposed study implements four cascaded stages.First, for pre-processing, a mean filter is used.Second, texture feature extraction uses principal component analysis (PCA).Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm.The severity of lung infection is detected on the basis of age group.Fourth,image classification is done by using the proposedMWOAwith the salp swarm algorithm (MWOA-SSA).MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.This proposed method improves the effective classification of lung affected images from large datasets.

    Keywords: PCA; WOA; CT-image; lung infection; COVID-19

    1 Introduction

    COVID-19 is a virus infection that has changed human life in various aspects including finance,education, health care, and supply chains.People with COVID-19 infection are facing respiratory problems and can recover with appropriate treatment effectively [1].Many studies have been done in implementing classification and determining the presence of COVID-19 as well as in detecting the severity of pneumonia.CT and X-ray image modalities are non-invasive and used to detect and severity of lung infection [2,3].In this study, we used principal component analysis (PCA) for feature extraction of CT images and a modified whale optimization algorithm (MWOA) for feature selection.To classify COVID-affected images from a large dataset and detect severity using the modified whale optimization algorithm (MWA) with the salp swarmalgorithm (MWOA-SSA).Themain disadvantage of existing algorithms are inefficiency, high execution time, and maximized error rate.To overcome these issues, our proposed MWOA-SSA has high potential in detecting the severity of lung infections such as pneumonia and classifying COVID-19 in affected and unaffected images from a large dataset effectively and quickly.

    To predict coronavirus, X-ray images play a more important role than CT because the former is less sensitive.Furthermore, X-ray images are used to diagnose the early and mild stages of coronavirus patients.CT images are also is used in the diagnosis of coronavirus and improving efficiency in terms of dosage in radiation [4].To enhance the improvement in scanning images in a sliced manner effectively by usingmulti-slice computerized tomography (MSCT) [5].To achieve improvement in larger temporal resolution achieved by dual source CT image [6].

    Machine learning algorithms have been used for the last decades in medical applications for computer-based diagnosis, helping physicians diagnose at earlier stages of diseases and providing better customized therapies to patients [7,8].Approaches to find the best solution from all possible solutions of a particular radiology problem are known as meta-heuristic algorithms.The acceptable best solution of the optimization technique requires less computational effort within a stipulated time[9].For the feature selection, the proposed MWOA is implemented with a binary optimizer in terms of average select size, error rate, mean, standard deviation, average fitness, best fitness, and worst fitness.The main contributions of this study are as follows,

    1.ACOVID-19 classification based on proposed algorithms for feature classification ofWMOASSAis developed.

    2.A novel approach in detecting severity of lung infection based on severity level is implemented.

    3.The proposed WMOA-SSA can effectively classify the input CT images as COVID-19 or non-COVID-19.

    The paper has been organized as follows.Section 2 presents the literature review.Section 3 introduces the classification of COVID-19 images using MWOA-SSA.Section 4 discusses the experimented results.Section 5 concludes the paper and provides future directions.

    2 Review of Literature

    This section describes the recent literature on feature classification and prediction of coronavirus.COVID-19 has affected human beings in every aspect of their daily lives.To diagnosis the coronavirus disease by using various modalities of image such as CT and X-ray image.Through these images,physicians scan and diagnose at early stages and during disease progression.Many studies have been published on the prediction of coronavirus.Our aim is to achieve effectiveness in classifying COVID-19 case images from a large dataset and detect the severity of lung infections such as pneumonia.A previous paper [10] proposed evaluating the infection rate in CT scans of lungs using visual and coronal axes.By using visual inspection COVID-19 disease is used to identify the lung infection [11].

    Another paper [12] proposed implementing a visual infection-based method to detect lung infection using lung CT scan.Authors in [13] implemented deep learning algorithms to identify and screen COVID-19 patients using the modality of CT images accurately.By using an artificial intelligence (AI) technique for diagnosis, COVID-19 patients are identified based on convolutional neural network (CNN) using CT slices images, helping accurately classify COVID-19 from non-COVID-19 groups [14].The machine learning algorithm fractional multichannel exponent moments method is used to extract features from the chest X-ray image and used to classify COVID-19 or non-COVID-19 patients [15].Tab.1 shows a summary of recent research work in COVID-19.

    Table 1: Survey on existing algorithms

    3 Enhanced Whale with Salp Swarm Optimization Methodology

    This work introduces the concept of classification of affected lung disease and its severity.This proposed work has four stages.First, a median filter is used for pre-processing.Second, PCA is used for texture feature extraction.Third, A MWOA is used for selecting features.Fourth, the proposed MWOA-SSA is used for classification and identifying the severity.The architecture of our proposed method is given in Fig.1.CT scan images are collected and preprocessed using a median filter.PCA is used to remove unwanted textures in the images.Then, the images are processed using MWOA-SSA to classify the affected image.

    This proposed work consists of four phases:

    Phase 1:Pre-processing using a median filter.

    Phase 2:Feature extraction using PCA.

    Phase 3:Feature selection using MWOA.

    Phase 4:Proposed work on classification of infected lung images from a large dataset using MWOA-SSA.

    Figure 1: Architecture of proposed work

    3.1 Pre-Processing

    The aim of pre-processing is to improve the high quality of the CT scan chest image.We need to denoise the image by applying a median filter.This median filter scans the entire image using an 8×8 matrix and replaces the center pixel value by choosing the median of all pixel values inside the 8×8 matrix by using

    whereyis the neighborhood pixel value represented by the user andi,jis the center pixel value’s location.

    3.2 Texture Feature Extraction Using PCA

    The idea behind PCA is to map m-dimensional features to n dimensions that have a set of orthogonal feature values.Feature extraction using PCA meets the variance of sample pixel values after reduction of dimensionality and minimizes the error rate.The steps needed for texture feature extraction using PCA are given below, and Fig.2.Provides an overview of PCA operation.

    Algorithm 1: Texture Feature Extraction using PCA Step 1: To standardize the original pixel values, subtract all sample pixel values from the mean value of corresponding feature value by using s s Aj=1 n nimages/BZ_1651_410_2391_475_2436.pngi=1 Aij(2)Step 2: Evaluate the covariance matrix C (c = (Ajk)n×nwhere n is the number of features; Ajkis the correlation between jthand kthfeature value, where j = 1,2,...,n;k = 1,2,...,n.C =■ ■■■A11 A12···A1n A21 A22···A2n............An1 An2···Ann■■■■(3)(Continued)

    Algorithm 1: Continued Step 3:For the covariance matrix, calculate the eigen value of λi, and the eigenvector value is eii.λieii= Ceii(4)Step 4: Store the output values of eigenvector from large to small values λ1≥λ2≥...λnand calculate the rate of contribution for each principal component.The rate of contribution is given below:λk∑n k=1λk(5)Step 5: Transform the original matrix A into a new matrix B (B = (Bjk)n×n1, where j=1,2...n and k=1,2,...n.B = A×f1,f2,...,fn1(6)where f1,f2,...,fndenotes a new feature space which is composed of n1 vector feature values, and n1 is extracted features by PCA.Fig.2 shows the working principle of PCA.

    Figure 2: Overview of PCA

    3.3 Feature Selection Using MWOA

    Feature selection of brain image using MWOA, which is based on the behavior of whales, in which for trapping the prey bubbles are involved for searching in a spiral-shaped [27,28].The whale is randomly selected, and it can be updated by the best whale value that gives the optimal solution.

    To improve this result, the performance of three whales are randomly chosen, and it cannot be affected by the leader’s position.Eq.(6) is modified as follows:

    where t represents iteration number, andMaxitrepresents the maximum number of iterations.

    The algorithm is given as follows:

    Algorithm 2: MWOA Input: Lung Image Output: Detecting COVID presence images Step 1: Initialize Population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t=1.Step 4: Convert output into binary values as 0 or 1.Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Find best individual value by-→F*.Step 7: While n≤max_iter do Step 8: For i = (1;i<n + 1) do Step 9: If (-→u3<0.5) then Step 10: If (|→B|<1) then Step 11: Update current position of agent for search by using Eqs.(2), (3).Step 12: Else Step 13: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 14: Update agent’s exponential form by using Eq.(9).Step 15: Update current position of agent for search in exponential form by using Eq.(8).Step 16: End if Step 17: Else Step 18: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 19: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h(Continued)

    Algorithm 2: Continued Step 25: Binary optimizer the updated solution/prey by using--→F(t+1)n =images/BZ_1654_419_578_448_624.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*.

    3.4 Proposed Feature Classification Using MWOA-SSA

    In this phase, classification of infected lung images froma large dataset is done usingMWOA-SSA.To improve the accuracy and optimal solution, the SSA) is used with MWOA.This SSA randomly initializes the swarm of N salps.The swarm is represented by the 2-D matrixmat.Searching food for swarm is represented assf, and leader’s movement in the form of a chain is denoted as.It is represented by using

    whereiis swarm’s dimension position, and it is updated.sfiis theithposition for a source of food.upliandlowliare the upper and lower limits of theithelement.r1is a dynamic variable for iteration.r2andr3are random numbers between [0,1] calculated as

    whereitrepresents the current iteration anditeris the maximum number of iterations.r1is a control variablethatcontrols thebalance between exploitation and exploration ofthe optimizationalgorithm.It is represented as

    The procedure for SSA is given as follows.

    Algorithm 3: Feature Classification using MWOA-SSA Input: Lung CT Scan Image Output: COVID-detected image Step 1: Initialize population-→Fi(i = 1,2,...n), maximum iteration max_it, function of fitness Fin.Step 2: Initialize parameters of WOA→B ,→b,-→c,-→u1,-→u2,-→r3,h and modified parameters-→w1,-→w2,-→w3.Step 3: Initialize t = 1 and swarm of salps sxii = 1,2,.....,n.Step 4: Convert output into binary values as 0 or 1 Step 5: Evaluate fitness value Finfor each-→Fi.Step 6: Evaluate fitness value for each salp of the swarm(Continued)

    Algorithm 3: Continued Step 7: Find best individual value by-→F*.Step 8: Assign F as best salp’s position.Step 9: Update r1by Eq.(11).Step 10: While n≤max_iter do Step 11: For i = (1;i<n + 1) do Step 12: If (-→u3<0.5) then Step 13: If (|→B|<1) and (i == 1) then Step 14: Update current position of agent for search by using Eqs.(2) and (3).Step 15: Update position of leader by using Eq.(10).Step 16: Else Step 17: Update position of followers by using Eq.(12).Step 18: Choose three search agents randomly→Frnd1,→Frnd2,→Frnd3.Step 19: Update agent’s exponential form by using Eq.(9).Step 20: Update current position of agent for search in exponential form by using Eq.(8).Step 21: End if Step 22: Else Step 23: Update current position of agent for search by using-→F (t + 1) =-→D′.ebh.cos(2πh) +-→F*(t)Step 24: End if Step 20: End For Step 21: for (i = 1;i<n + 1) do Step 22: Evaluate-→F*i= Gaussian(μ-→F*,σ) + (η×-→F*-η′×-→Pi)Step 23: End For Step 24: Update→B,→b,→c,-→w3,h Step 25: Binary optimize the updated solution/prey by using--→F(t+1)n =images/BZ_1655_420_1969_448_2015.png1 if sigmoid(Fbest)≥0.5 0 Otherwise sigmoid(Fbest) = 1 1 + exp-10(Fbest-0.5)Step 26: Evaluate fitness value Finfor each-→Fi.Step 26: Find best individual value by-→F*.Step 27: t = t + 1 Step 28: End While.Step 29: Return-→F*, F.

    4 Results and Analysis

    For the experimental result, data are collected from the Kaggle dataset [29], which has 1,500 CT images of COVID-19 and non-COVID 19.MWOA-SSA is compared with the existing algorithms MWOA [30] and SSA [31] by using performance metric measures of sensitivity, specificity, accuracy,precision (PPV), F-score, and negative predictive value (NPV).

    TP-True Positive,TN-True Negative,FN-False Negative,FP-False Positive,

    These metric measures are defined by using:

    Sensitivity

    It is also called true positive rate or recall.

    Specificity

    It is called true negative rate (TNR).

    Accuracy

    Precision

    It is called positive predictive value (PPV).

    Negative Predictive Value

    It evaluates true negatives for all negative values by using

    F-Score

    It is used to measure sensitivity and mean of harmonic by using

    Tab.2 shows the performance metric measures of feature extraction.

    Table 2: Performance metric measures of feature extraction

    Tab.2 shows that for the sensitivity rate, MWOA-SSA is better than PCA (84.4%) and MWOA(95.2%).MWOA-SSA outperforms other algorithms with a specificity of 97.8%.For PPV, MWOASSA has a percentage of 88.3%.For NPV, MWOA-SSA has 93.6%.MWOA-SAA outperforms other algorithms with an F-score of 96.4%.

    4.1 Feature Selection

    MWOA-SSA is used for feature selection, and it is compared with existing algorithms of PCA and MWOA in terms of average fitness, average error, best fitness, mean, standard deviation, and worst fitness.The parameter values for the fitness function are 0.97 and 0.03.

    Average Error

    It shows the classifier’s accuracy for the feature selection for the COVID-19 dataset, and it is calculated by using

    whereCliis classifier’s label for the pixeliandlbiis the class label for the pixeliof the image andCompcalculates the matching between two inputs.

    Mean

    Standard Deviation

    where mean is obtained from Eq.(17)

    Best Fitness

    It calculates the minimum function of fitness, and it is calculated as

    Average Fitness

    The average size of features in the COVID-19 dataset is calculated as

    Worst Fitness

    The worst solution of fitness is calculated as

    Tab.3 shows the performance of the proposed algorithm in feature selection

    The results of the proposed MWOA-SSA algorithm in Tab.3 show the lower error and select featuresfromthe COVID-19dataset.The TheMWOA-SSA algorithm achieved the minimumaverage error of 0.1114 in selecting the features of infected lung images.The minimum errors for PCA, MWOA, and MWOA-SSA are used to select the features from best fitness to worst fitness.The proposed algorithm MWOA-SSA outperforms other existing algorithms, and the best fitness value is 0.1034, the worst fitness value is 0.2115, and the average fitness value is 0.2034.

    Table 3: Performance metric measures for feature selection

    4.2 Detection and Severity Classification of COVID-19

    To detect the infection severity, lung images have been examined by using ground truths of CT0-CT4 as given below.Tab.4 presents the severity levels in the lungs.

    Table 4: Severity levels for infection in lungs [32,33]

    In this work, we collected data on 500 patients with COVID-19 infection.Infection was confirmed by a nasopharyngeal swab using a U-TOP COVID-19 Detection Kit.Age, gender, d-dimer, ferritin levels, C-reactive protein test (CRP), and O2 were collected.Patient’s age was classified into<20, 21-40, 41-49, 50-60, 61-70, and>70 years.The correlation (p<0.05) between CT severity score was used to detect lung infection.Tab.5 shows a survey of 500 patients who are affected by pneumonia.Fig.3.shows the CT severity of COVID-19 patients.

    Table 5: Demographic data of 500 patients

    Fig.3 shows that negative disease was mainly seen in the age group of 21 to 40 (30%), mild lung mainly infection was seen in the 41 to 60 age group (60%).Moderate lung infection was mainly seen in the 61 to 70 age group (68%), and severe lung infection was mainly seen in the age group of 41 to 60 (70%).This is the highest risk factor for COVID-19 affected patients [34-37].Fig.4.shows the time taken for the classification of COVID-19 affected cases and non-COVID-19 cases from the large dataset.

    Figure 3: CT-COVID severity score

    Figure 4: Execution time (proposed method executes faster than PCA and MWOA)

    5 Conclusion

    MWOA-SSA is used for the classification of COVID-19 cases in four phases.In the first phase,to classify accurate COVID-19 and non-COVID-19 images from a large dataset, pre-processing work has been done using a median filter.Features are extracted for the training CT images by PCA.For the feature selection of CT lung images, MWOA is implemented.For the selected features of the CT image, MWOA-SSA is implemented to classify the COVID-19 and non-COVID-19 images from the large dataset.This paper also proposes detecting and identifying the severity of lung infection by using different severity levels of COVID-19 cases.The main advantage of MWOA-SSA is that it efficiently and quickly classifies COVID-19 and non-COVID-19 cases and detects severity of lung infection using severity levels.MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%.In future work, we suggest the use of various deep learning algorithms and various modalities of images and clinical reports.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲中文日韩欧美视频| 亚洲情色 制服丝袜| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 精品高清国产在线一区| 成人三级做爰电影| 亚洲成人国产一区在线观看| 久久国产精品影院| 国产片内射在线| 亚洲黑人精品在线| 女人久久www免费人成看片| 久热爱精品视频在线9| 亚洲精品久久久久久婷婷小说| tube8黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区 | 色精品久久人妻99蜜桃| 午夜两性在线视频| av网站在线播放免费| 最近中文字幕2019免费版| 午夜精品国产一区二区电影| 日日爽夜夜爽网站| 欧美精品人与动牲交sv欧美| 国产伦理片在线播放av一区| 妹子高潮喷水视频| 精品少妇久久久久久888优播| 欧美日韩一级在线毛片| 考比视频在线观看| 一个人免费看片子| 欧美国产精品va在线观看不卡| 黄片播放在线免费| 99热网站在线观看| 99精品久久久久人妻精品| 亚洲欧美一区二区三区黑人| videos熟女内射| 麻豆乱淫一区二区| 在线观看舔阴道视频| 亚洲国产中文字幕在线视频| 亚洲精品久久久久久婷婷小说| 精品久久久久久久毛片微露脸 | 嫩草影视91久久| 午夜福利影视在线免费观看| 成人18禁高潮啪啪吃奶动态图| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 欧美黄色淫秽网站| 精品福利永久在线观看| 日本精品一区二区三区蜜桃| 日韩欧美国产一区二区入口| 国产精品免费视频内射| 看免费av毛片| 色综合欧美亚洲国产小说| 欧美成狂野欧美在线观看| 男女之事视频高清在线观看| www.999成人在线观看| 亚洲全国av大片| 少妇猛男粗大的猛烈进出视频| av网站在线播放免费| 国产成人一区二区三区免费视频网站| 大香蕉久久成人网| 久久人妻熟女aⅴ| 国产伦理片在线播放av一区| 精品亚洲成a人片在线观看| av不卡在线播放| 丁香六月欧美| 国产精品一区二区免费欧美 | 曰老女人黄片| 亚洲av成人一区二区三| 久久国产精品人妻蜜桃| 国产男人的电影天堂91| 久9热在线精品视频| cao死你这个sao货| 国产男女超爽视频在线观看| kizo精华| videos熟女内射| 97精品久久久久久久久久精品| 超碰成人久久| 精品第一国产精品| 亚洲av男天堂| 后天国语完整版免费观看| 免费在线观看黄色视频的| 久久亚洲国产成人精品v| 日本五十路高清| 啦啦啦啦在线视频资源| 色老头精品视频在线观看| av在线播放精品| 9色porny在线观看| 777米奇影视久久| 久久精品久久久久久噜噜老黄| 这个男人来自地球电影免费观看| 精品免费久久久久久久清纯 | 亚洲国产欧美在线一区| 精品国产一区二区久久| 中文欧美无线码| 久久免费观看电影| 国产福利在线免费观看视频| 欧美激情极品国产一区二区三区| 欧美在线黄色| 成人国产一区最新在线观看| 在线观看舔阴道视频| 精品一区在线观看国产| 纵有疾风起免费观看全集完整版| 一二三四社区在线视频社区8| av在线app专区| 国产精品免费视频内射| 人妻人人澡人人爽人人| 黄片播放在线免费| 久久久久精品国产欧美久久久 | 99精品久久久久人妻精品| 男女边摸边吃奶| 99国产综合亚洲精品| 90打野战视频偷拍视频| 成人亚洲精品一区在线观看| 久久久国产精品麻豆| 欧美午夜高清在线| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 亚洲国产欧美网| 色播在线永久视频| 国产99久久九九免费精品| 欧美另类一区| 精品久久蜜臀av无| 日本撒尿小便嘘嘘汇集6| 一区在线观看完整版| 亚洲一码二码三码区别大吗| 人妻一区二区av| 精品一品国产午夜福利视频| 精品亚洲成国产av| 18禁观看日本| 麻豆乱淫一区二区| 男男h啪啪无遮挡| 精品第一国产精品| 国产男人的电影天堂91| 叶爱在线成人免费视频播放| 一二三四社区在线视频社区8| 秋霞在线观看毛片| 丰满少妇做爰视频| 日本wwww免费看| 桃红色精品国产亚洲av| 美女高潮到喷水免费观看| 免费在线观看影片大全网站| 亚洲熟女毛片儿| 国产精品久久久久成人av| 日韩视频在线欧美| 久久久精品国产亚洲av高清涩受| 亚洲欧美激情在线| 人人妻人人澡人人爽人人夜夜| 久久人人爽人人片av| 亚洲精品乱久久久久久| 性色av乱码一区二区三区2| 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 91九色精品人成在线观看| 成人手机av| av欧美777| 国产精品熟女久久久久浪| 操美女的视频在线观看| 久久久久视频综合| 大香蕉久久网| 精品少妇内射三级| 日韩中文字幕视频在线看片| 久久人妻熟女aⅴ| 91麻豆精品激情在线观看国产 | 18禁黄网站禁片午夜丰满| 狠狠婷婷综合久久久久久88av| 亚洲成av片中文字幕在线观看| av在线老鸭窝| 久久国产精品影院| 久久精品亚洲熟妇少妇任你| 99久久99久久久精品蜜桃| 99热国产这里只有精品6| 十八禁网站网址无遮挡| 老熟妇乱子伦视频在线观看 | 精品国内亚洲2022精品成人 | 成人18禁高潮啪啪吃奶动态图| 午夜久久久在线观看| 国产成人精品久久二区二区91| 午夜福利免费观看在线| 中文字幕人妻丝袜一区二区| 久久99一区二区三区| 国产免费福利视频在线观看| 俄罗斯特黄特色一大片| 国产免费现黄频在线看| 国产精品一区二区在线观看99| 日本91视频免费播放| 精品国产超薄肉色丝袜足j| 亚洲自偷自拍图片 自拍| 精品国内亚洲2022精品成人 | 青春草亚洲视频在线观看| 法律面前人人平等表现在哪些方面 | 狠狠精品人妻久久久久久综合| 亚洲中文日韩欧美视频| av片东京热男人的天堂| 日本av免费视频播放| 美女脱内裤让男人舔精品视频| 久久毛片免费看一区二区三区| 在线观看一区二区三区激情| 超碰成人久久| 久久影院123| 免费久久久久久久精品成人欧美视频| 夜夜夜夜夜久久久久| av又黄又爽大尺度在线免费看| 两性夫妻黄色片| 色精品久久人妻99蜜桃| 男女边摸边吃奶| 成在线人永久免费视频| a级片在线免费高清观看视频| 国产免费一区二区三区四区乱码| 最新的欧美精品一区二区| kizo精华| 久久国产亚洲av麻豆专区| 亚洲中文av在线| 久久久久久久久免费视频了| 十八禁网站网址无遮挡| 一本久久精品| 伊人亚洲综合成人网| 国产成人免费无遮挡视频| 在线观看一区二区三区激情| tocl精华| 亚洲欧美激情在线| 男女边摸边吃奶| 两个人看的免费小视频| 国产免费福利视频在线观看| 亚洲国产欧美一区二区综合| 国产成人影院久久av| av福利片在线| 亚洲欧美成人综合另类久久久| 日韩一卡2卡3卡4卡2021年| 久久久精品国产亚洲av高清涩受| 久久久久视频综合| 久久国产精品人妻蜜桃| 久久午夜综合久久蜜桃| 热re99久久国产66热| 精品福利观看| av天堂在线播放| 国产一区二区三区综合在线观看| 国产成人精品无人区| 精品熟女少妇八av免费久了| 国产精品 欧美亚洲| 一本久久精品| 飞空精品影院首页| 亚洲精品一二三| 99精国产麻豆久久婷婷| 高清黄色对白视频在线免费看| 国产成人精品无人区| 两性夫妻黄色片| 两人在一起打扑克的视频| 制服人妻中文乱码| 免费日韩欧美在线观看| 国产欧美日韩一区二区三区在线| 精品亚洲成a人片在线观看| 久久毛片免费看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产成人免费| 欧美大码av| 亚洲欧美一区二区三区久久| 国产成人欧美| 宅男免费午夜| 欧美精品人与动牲交sv欧美| 国产精品秋霞免费鲁丝片| 欧美久久黑人一区二区| 岛国在线观看网站| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人| av片东京热男人的天堂| 精品第一国产精品| 一级毛片电影观看| 精品少妇久久久久久888优播| 黄色 视频免费看| videosex国产| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看 | 十八禁高潮呻吟视频| 五月开心婷婷网| 亚洲av男天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 我的亚洲天堂| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人| 高清av免费在线| 男人爽女人下面视频在线观看| kizo精华| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 男女免费视频国产| 亚洲欧洲精品一区二区精品久久久| 妹子高潮喷水视频| 久久精品人人爽人人爽视色| 亚洲精品乱久久久久久| 亚洲欧美精品综合一区二区三区| 久久久精品免费免费高清| 在线看a的网站| av又黄又爽大尺度在线免费看| 免费日韩欧美在线观看| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 老司机午夜福利在线观看视频 | 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 少妇被粗大的猛进出69影院| 肉色欧美久久久久久久蜜桃| 18禁黄网站禁片午夜丰满| 一区二区三区乱码不卡18| 日韩视频在线欧美| 最新的欧美精品一区二区| 一级毛片女人18水好多| 国产亚洲av片在线观看秒播厂| 欧美精品人与动牲交sv欧美| 高潮久久久久久久久久久不卡| 狠狠精品人妻久久久久久综合| videosex国产| bbb黄色大片| 在线观看免费高清a一片| 岛国在线观看网站| 动漫黄色视频在线观看| 国产免费现黄频在线看| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看 | 99国产精品一区二区蜜桃av | 亚洲,欧美精品.| 欧美精品一区二区大全| 99久久精品国产亚洲精品| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 丰满人妻熟妇乱又伦精品不卡| 丝袜在线中文字幕| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| videos熟女内射| 99精国产麻豆久久婷婷| 多毛熟女@视频| 激情视频va一区二区三区| 国产免费现黄频在线看| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| kizo精华| 国产成人av教育| 午夜激情av网站| a级片在线免费高清观看视频| 日韩有码中文字幕| 国产精品久久久久久精品电影小说| 美女中出高潮动态图| 丝瓜视频免费看黄片| 国产福利在线免费观看视频| 淫妇啪啪啪对白视频 | 十八禁高潮呻吟视频| 亚洲精品日韩在线中文字幕| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 国产成人精品无人区| 丁香六月欧美| 国产欧美日韩一区二区三 | 色播在线永久视频| 国产精品国产av在线观看| 大香蕉久久成人网| 国产成+人综合+亚洲专区| 考比视频在线观看| 操出白浆在线播放| 老司机在亚洲福利影院| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站| 又紧又爽又黄一区二区| 国产精品一区二区在线观看99| 亚洲avbb在线观看| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 国产精品一区二区免费欧美 | 人人妻人人澡人人看| 9热在线视频观看99| 亚洲精品一二三| 18禁黄网站禁片午夜丰满| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 国产又色又爽无遮挡免| av福利片在线| 一本久久精品| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 淫妇啪啪啪对白视频 | 国产xxxxx性猛交| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| www.自偷自拍.com| 欧美精品一区二区大全| av在线播放精品| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 成年美女黄网站色视频大全免费| 日韩中文字幕视频在线看片| 97人妻天天添夜夜摸| 捣出白浆h1v1| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 国产在线观看jvid| 精品福利永久在线观看| 中国国产av一级| 黄色 视频免费看| 成人亚洲精品一区在线观看| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 美女高潮喷水抽搐中文字幕| 精品欧美一区二区三区在线| 国产高清视频在线播放一区 | 国产亚洲欧美精品永久| 另类精品久久| 俄罗斯特黄特色一大片| av天堂久久9| 极品少妇高潮喷水抽搐| 伊人亚洲综合成人网| 看免费av毛片| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片| 黑人操中国人逼视频| 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 五月天丁香电影| 久久久欧美国产精品| 99热国产这里只有精品6| www日本在线高清视频| 男女床上黄色一级片免费看| av福利片在线| 狂野欧美激情性bbbbbb| 国产精品九九99| 91麻豆av在线| 国产一级毛片在线| 黑丝袜美女国产一区| 国产精品亚洲av一区麻豆| 久久亚洲国产成人精品v| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 电影成人av| 久久国产精品人妻蜜桃| 韩国高清视频一区二区三区| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 一本久久精品| 成年动漫av网址| 18在线观看网站| 免费一级毛片在线播放高清视频 | 国产成人av教育| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女 | 中文字幕最新亚洲高清| 波多野结衣av一区二区av| 国产黄色免费在线视频| 我的亚洲天堂| 国产在线观看jvid| 国产色视频综合| 国产精品熟女久久久久浪| 狠狠婷婷综合久久久久久88av| 91精品国产国语对白视频| a级片在线免费高清观看视频| 夫妻午夜视频| av天堂在线播放| 久久久久久久久久久久大奶| 两个人看的免费小视频| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 一级毛片精品| 成年动漫av网址| 99精品久久久久人妻精品| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 在线观看一区二区三区激情| 又大又爽又粗| 午夜91福利影院| 少妇被粗大的猛进出69影院| 制服诱惑二区| 色婷婷久久久亚洲欧美| 99精品欧美一区二区三区四区| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久av网站| 亚洲免费av在线视频| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 性色av一级| 亚洲国产精品一区二区三区在线| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 汤姆久久久久久久影院中文字幕| 国产淫语在线视频| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 99国产精品免费福利视频| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| cao死你这个sao货| 午夜日韩欧美国产| 99re6热这里在线精品视频| 免费av中文字幕在线| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 久久青草综合色| 国产免费av片在线观看野外av| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 亚洲黑人精品在线| 日韩免费高清中文字幕av| 19禁男女啪啪无遮挡网站| 欧美大码av| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩综合在线一区二区| 下体分泌物呈黄色| 黑丝袜美女国产一区| 久久综合国产亚洲精品| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 性色av一级| a级毛片在线看网站| netflix在线观看网站| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 亚洲三区欧美一区| 18在线观看网站| 99热全是精品| 欧美精品人与动牲交sv欧美| 色老头精品视频在线观看| 精品免费久久久久久久清纯 | 久久精品熟女亚洲av麻豆精品| 精品国产一区二区久久| 国产精品一区二区精品视频观看| 亚洲欧美一区二区三区黑人| 精品少妇内射三级| 在线精品无人区一区二区三| 国产高清videossex| 日韩视频在线欧美| 久久精品久久久久久噜噜老黄| 亚洲熟女毛片儿| a级毛片在线看网站| 热99国产精品久久久久久7| 国产一区二区三区在线臀色熟女 | √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| 少妇 在线观看| 交换朋友夫妻互换小说| 国产精品久久久久久精品电影小说| 少妇裸体淫交视频免费看高清 | 乱人伦中国视频| 免费观看a级毛片全部| 国产亚洲一区二区精品| 亚洲国产精品一区二区三区在线| 大片免费播放器 马上看| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 国产又色又爽无遮挡免| 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 精品高清国产在线一区| 亚洲国产精品999| 一本久久精品| 99精品欧美一区二区三区四区| av一本久久久久| 久热这里只有精品99| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 亚洲国产av影院在线观看| 少妇粗大呻吟视频| 日本av免费视频播放| 超碰97精品在线观看| 黄片大片在线免费观看| 97精品久久久久久久久久精品| 电影成人av| 手机成人av网站| 国产免费福利视频在线观看| 又黄又粗又硬又大视频| 久久中文字幕一级| 午夜91福利影院| 99国产综合亚洲精品| 欧美日韩国产mv在线观看视频| 大香蕉久久网|