• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Frequency Estimation Under Additive Mixture Noise

    2022-08-24 12:58:34YuanChenYuluTianDingfanZhangLongtingHuangandJingxinXu
    Computers Materials&Continua 2022年7期

    Yuan Chen, Yulu Tian, Dingfan Zhang, Longting Huangand Jingxin Xu

    1School of Computer and Communication Engineering, University of Science & Technology Beijing,Beijing, 100083, China

    2School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China

    3School of Information Engineering, Wuhan University of Technology, Wuhan, 430070, China

    4Department of Energy and Public Works, Queensland, 4702, Australia

    Abstract: In many applications such as multiuser radar communications and astrophysical imaging processing, the encountered noise is usually described by the finite sum of α-stable (1≤α<2) variables.In this paper, a new parameter estimator is developed, in the presence of this new heavy-tailed noise.Since the closed-form PDF of theα-stable variable does not exist except α= 1 and α= 2, we take the sum of the Cauchy (α= 1) and Gaussian(α= 2) noise as an example, namely, additive Cauchy-Gaussian (ACG)noise.The probability density function (PDF) of the mixed random variable,can be calculated by the convolution of the Cauchy’s PDF and Gaussian’s PDF.Because of the complicated integral in the PDF expression of the ACG noise, traditional estimators, e.g., maximum likelihood, are analytically not tractable.To obtain the optimal estimates, a new robust frequency estimator is devised by employing the Metropolis-Hastings (M-H) algorithm.Meanwhile, to guarantee the fast convergence of the M-H chain, a new proposal covariance criterion is also devised, where the batch of previous samples are utilized to iteratively update the proposal covariance in each sampling process.Computer simulations are carried out to indicate the superiority of the developed scheme, when compared with several conventional estimators and the Cramér-Rao lower bound.

    Keywords: Frequency estimation; additive cauchy-gaussian noise; voigt profile; metropolis-hastings algorithm; cramér-rao lower bound

    1 Introduction

    Heavy-tailed noise is commonly encountered in a variety of area such as wireless communication and image processing [1-8].Typical models of impulsive noise are α-stable, Student’stand generalized Gaussian distributions [9-12], which cannot represent all kinds of the noise types in the real-world applications.Therefore, the mixture models have been developed including the Gaussian mixture and the Cauchy Gaussian mixture models [13,14], of which the probability density functions (PDFs) is the weighted sum of the corresponding components’PDF.However, these mixture models still cannot describe all impulsive noise types, especially for the case where the interference is caused by both channel and device.In astrophysical imaging processing [15], the observation noise is modelled as the sum of a symmetric α-stable (SαS) and a Gaussian noise, caused by the radiation from galaxies and the satellite antenna, respectively.Moreover, in a multiuser radar communication network [16], the multi-access interference and the environmental noise corresponds toSαSdistributed and Gaussian distributed variables.Therefore, a new description of the mixture impulsive noise model is proposed,referring to as the sum ofSαSand Gaussian random variables in time domain.

    In this work, the frequency estimation is considered in the presence of the additive Cauchy-Gaussian (ACG) noise [17,18], which is the sum of two variables with one following Cauchy distribution (α= 1) [19] and the other being Gaussian process (α= 2).The PDF of ACG noise can be calculated by the convolution of the Gaussian and Cauchy PDFs.According to [20], the PDF of the mixture can be expressed as Voigt profile.Due to the involved form of the Voigt profile, classical frequency estimators [21-24], such as the maximum likelihood estimator (MLE) andM-estimator[25], has convergence problem and cannot provide the optimal estimation in the case of high noise power.To obtain the estimates accurately, Markov chain Monte Carlo (MCMC) [26-28] method is utilized, which samples unknown parameters from a simple proposal distribution instead of from the complicated posterior PDF directly.Among series of MCMC methods, the Metropolis-Hastings (MH) and Gibbs sampling algorithms are typical ones.The M-H algorithm provides a general sampling framework requiring the computations of an acceptance criterion to judge whether the samples come from the correct posterior or not.While in the case that the posterior PDF is easy to be sampled from, Gibbs sampling is utilized without the calculation of acceptance ratios.It is noted that once the posterior of parameters is known, M-H and Gibbs sampling methods can be utilized in any scenarios.

    Because of the Voigt profile in the target PDF of the ACG noise, we choose the M-H algorithm as the sampling method.To improve the performance of the M-H algorithm, an updating criterion of proposal covariance is devised, with the use of the samples in a batch process.Since we assume all unknown parameters are independent, the proposal covariance is in fact a diagonal matrix.Therefore,the square of difference between the neighbor samples is employed as the diagonal elements of proposal covariance, referred to as the proposal variance.Meanwhile, a batch-mode method is utilized to make the proposal variance more accurate.As the proposal variance is updated only according to the samples in each iteration, this criterion can be extended to any other noise type such as the Gaussian and non-Gaussian processes.

    The rest of this paper is organized as follows.We review the MCMC and M-H algorithm in Section 2.The main idea of the developed algorithm is provided in Section 3, where the PDF of the additive impulsive noise and posterior PDF of unknown parameters are also included.Then the Cramér-Rao lower bounds (CRLBs) of all unknown parameters are calculated in Section 4.Computer simulations in Section 5 are given to assess the performance of the proposed scheme.Finally, in Section 6, conclusions are drawn.Moreover, a list of symbols is shown in Tab.1, which are appeared in the following..

    Table 1: List of symbols

    2 Review of MCMC and M-H Algorithm

    Before reviewing the M-H algorithm, some basic concepts, such as Markov chain should be introduced [29,30].By employing several dependent random variables {x(l)} [31], we define a Markov chain as

    where the probability ofx(l+1)relies only on {x(l)} with the conditional PDF being defined by P(x(l+1)|x(l)).The PDF ofx(l+1), denoted by πl(wèi)+1, can be expressed as

    Then the Markov chain is said to be stable if

    with π*=.To ensure (3), a sufficient but not necessary condition can be written as

    Typical MCMC algorithms draw samples from the conditional PDF P(x(l+1)|x(l)) with a Markov chain, instead of directly sampling from a target PDFf(x).Therefore, if a proper conditional PDF P(·|·) is chosen, the stationary distribution can align with the target PDFf(x).In other word,samples drawn from a stable Markov chain will eventually tend to be generated fromf(x) accordingly.Furthermore, only samples generated from the stable Markov chain are independent and identically distributed (IID).

    In the following, the details of the MCMC method are provided in Tab.2.It is worth to point out that the burn-in period is a term of an MCMC run before convergent to a stationary distribution.

    Table 2: Steps of MCMC method

    Among typical MCMC methods, M-H algorithm is commonly employed, whose main idea[32] is drawing samples from a proposal distribution with a rejection criterion, instead of sampling from P(x(l+1)|x(l)) directly.In this method, a candidate, denoted byx*is generated from a proposal distributionq(x*|x(l)).Then the acceptance probability is defined as

    which determines whether the candidate is accepted or not.It is noted that the proposal distributions are usually chosen as uniform, Gaussian or Student’stprocesses, which are easier to be sampled.The details of the M-H algorithm can be seen in Tab.3.

    Table 3: Steps of M-H algorithm

    In the M-H algorithm, to prove the stationary, we define a transition kernel [33] as

    where B(x(l)) =q(x*|x(l))(1 - A(x(l),x*))dx*.By employing (4), (6) can be rewritten as

    Then we have

    According to[33],it can be proven thatδ(x(l+1)-x(l))B(x(l))f(x(l)) =δ(x(l)-x(l+1))B(x(l+1))f(x(l+1)).Therefore, with the use of (8)-(9) as well as (4), the balance condition of the M-H algorithm can easily to be hold.

    In this algorithm, samples obtained in each iteration are closing to each other and can be highly correlated since M-H moves tend to be local moves.Asymptotically, the samples drawn from the Markov chain are all unbiased and all come from the target distribution.

    3 Proposed Method

    Without loss of generality, the observed data y = [y1,y2,···,yN]Tis modeled as:

    wherea1=Acos(φ),a2= -Asin(φ) withA,ω,φ denoting amplitude, frequency and phase, respectively.Theqn=cn+gnis the IID ACG noise, wherecnis the Cauchy noise with unknown median γ andgnis the zero-mean Gaussian distributed with unknown variance σ2.Here our task is estimatingA,ω and φ from observations.

    3.1 Posterior of Unknown Parameters

    Here we investigate the posterior of unknown parameters.Before that, we first express the PDFs of noise termscnandgnas:

    Then the PDF of the mixture noiseqn, known as the Voigt profile [23], can be computed according to convolution of (9) and (10), which is

    where

    Let θ= [a1,a2,ω,γ,σ2]Tbeing unknown parameter vector.According to the investigation in [34],the unknown parametersa1anda2are usually assumed to be following the IID Gaussian distribution with variance δ2and zero mean.While ω is the continuous uniform distributed between 0 and π,respectively.

    Furthermore, it is also assumed in [34] that both γ and σ2follows the conjugate inverse-gamma distributions.Therefore, the priors for all unknown parametersa1,a2,ω,γ and σ2can be written as

    where α and β are set to α=10-10and β=0.01, respectively.

    According to the PDF expression of ACG noise in (13), the conditional PDF of the observation vector y has the form of

    whereen=yn-a1cos(ωn)-a2sin(ωn)denotes the residual between the observed data and the noise-free signal, and

    Assume that the priors for all unknown parameters θ and the observations y are statistically independent.With use of (15)-(18) and (19)-(20) as well as Bayes’theorem [25], the posterior expression of all unknown parameters θ can be

    3.2 Proposed M-H Algorithm

    Due to themultimodality of the likelihood function, themaximumlikelihood estimator cannot beemployed and the high computational complexity of the grid search.Furthermore, other typical robust estimators, such as the ?1-norm minimizer [35], cannot provide optimum estimation for the mixture noise.Moreover, even when the posterior PDFs of each unknown parametersf(θ|y) are known, the Gibbs sampling algorithm cannot be applied because of the complicated expression in (21).

    Therefore, to estimate parameters accurately, the M-H algorithm is utilized, whose details are provided in Tab.3.To simplify the sampling process, the multivariate Gaussian distribution is selected as the proposal distributionq(·|·).Inl-th sampling iteration,q(x*|x(l-1)) can be written as

    where x*= [x1x2x3x4x5]Tis the candidate vector withx1,x2,x3,x4andx5corresponding toa1,a2,ω,γ and σ2, respectively,denotes the proposal mean vector with θ(l-1)being the samples in (l- 1) th iteration and the Σ(l)is the 5×5 proposal covariance matrix.With the assumption that all unknown parameters are independent, the Σ(l)is regarded as a diagonal matrix.Furthermore,the main diagonal entries of the proposalcovariance are also called the proposal variances.

    It is noted that the larger proposal variance will cause a faster convergence but possible oscillation around the correct value.While the smaller values of proposal variance lead to slower convergence but small fluctuation.Therefore, the choice of the proposal variance will significantly influence the performance of the estimator.In this paper, a batch-mode proposal variance selection criterion is developed.

    To estimate Σ(l),we define two new batch-mode vector using the formerLsamplingvectors,which are

    whereLis also called the length of the batch-mode window.Then the proposal covariance Σ(l)can be defined by the empirical covariance of Φ1and Φ2, which is

    To state the criterion clearly, the details are also shown in Fig.1.

    Figure 1: The construction of the proposal covariance

    To start the algorithm, the initial estimate of θ and the burn-in periodPshould be determined.As it is discussed before,θ(1)can be chosen arbitrarily because the initialization of the M-H method only affects the convergence rate.To guarantee the enough samples in the batch-mode criterion,the firstPburn-in samples are generated with a fixed proposal covariance.From thel-th iteration(l=P+ 1,P+ 2,···),θ(l)is calculated by the M-Halgorithm using an adaptive Σ(l)..AfterKnumbers of sampling,the estimates,andare obtained fromthe mean of the first three row of the samples,which are

    where θ(l)(1),θ(l)(2) and θ(l)(3) are the first three elements ofl-th sampling vector, respectively.The details of the proposed algorithm are shown in Tab.4.

    Table 4: The proposed algorithm

    Finally, utilize the definition ofa1=Acos(φ) anda2= -Asin(φ) , we can obtain the estimates of amplitudes and phase, denoted byand?,

    4 Derivation of CRLB

    Let ψ= [Aωφγσ2]T.According to [21], the CRLB of ψ is usually obtained by the diagonal elements of F-1.Then we have

    wherem,k= 1,···,5 and

    Due to the complicated integral ofvnin (20), the closed-form expression of (29) is difficult to be obtained.As a result, withMMonte Carlo trials, (28) is calculated as

    wheredenotes then-th observed data inm-th trial.Apparently, (30) is only an approximation of the expectation.Therefore, a sufficiently large value ofMwill make (30) approaching (28).

    5 Simulation Results

    To assess the proposed algorithm, several simulations have been conducted.The mean square frequencyerror(MSFE),referredtoasE{(-ω)2},is employed as the performanceme asure.Then the noise-free signalsnis generated with the use of (10) whereA= 9.33,ω= 0.76 and φ= 0.5.In the M-H algorithm, the initial estimate is set to as [11111]T, while the number of iterations isK= 8000.Here comparison with conventional estimators, such as the ?1-norm estimator, MLE andM-estimator [24]are provided due to its robust and suboptimal for the Cauchy noise, while the CRLB are also included asabenchmark.It is noted that the?1-normminizer is solved by the least absolute deviation[36],while the initial values of MLE andM-estimator are defined using fast Fourier transform.Furthermore,the stopping criterion of these three methods are relative error smaller than 10-8.Simulations are obtained by using Matlab on Intel(R) Core(TM) i7-4790 CPU@3.60 GHz in Windows 7 operation system.While all results are based on 500 Monte Carlo runs and a data length ofN= 100.

    First of all, the choice of the batch-mode window lengthLfor the proposal covariance matrix is studied.Here the density parameters of ACG noise are set to γ= 0.05 and σ2= 0.5.Figs.2 and 3 shows the MSFEvs.Land the corresponding computational time.Here the computation time is measured with stopwatch timer in the simulator.It is shown that whenL≤1000, the MSFE can be aligned with CRLB, while the computational cost of the proposed algorithm becomes higher whenLincreases.Therefore, in the following test, we chooseLas 1000.

    Figure 2: MSFE vs.L

    Figure 3: The computational cost vs.L

    Second, the convergence rate of the unknown parameters is investigated.Meanwhile, the burnin periodPcan be determined, accordingly.In this test, the density parameters are identical to the previous test.Figs.4 and 5 indicates the estimates of all unknown parameters in different iteration numberl, which are ω,A,φ,γ and σ2.It can be seen in these figures that after the first 2000 samples,the sampled data approaches the true values of unknown parameters.Therefore, the burn-in periodPcan be chosen as 2000 in this parameter setting.

    Figure 4: Estimates of unknown parameters vs. iteration number k

    Figure 5: Estimates of density parameters vs. iteration number l

    Finally, the MSFE of the proposed estimator is considered.In this test, all parameters are chosen as the same with the previous test.As there is no finite variance for ACG noise [18], the signal-to-noise is difficult to be defined.Therefore, here γ is scaled to produce different noise conditions.According to the study in the previous test, we throw away first 2000 samples to guarantee the stationary of the Markov chain.It is observed in Fig.6 that the MSFE of the proposed method can attain the CRLB when γ∈[-20,10] dB.Furthermore, the proposed algorithm is superior to the other three estimators,since it still can work well in higher γ.

    Figure 6: Mean square frequency error of ω vs.γ

    6 Conclusion

    In this paper, with the use of the M-H algorithm, a robust parameter estimator of a single sinusoid has been developed, in the presence of additive Cauchy-Gaussian noise.Meanwhile, a new proposal covariance updating criterion is also devised by employing the squared error of the batch-mode M-H samples.It is shown in simulation results that the developed estimator can attain the CRLB with a stationary M-H chain, indicating the accurate of our scheme.In the future work, the method can be extended to the signals with more complicated models.

    Funding Statement:The workwas supported by National Natural Science Foundation of China (Grant No.52075397, 61905184, 61701021) and Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产毛片在线视频| 韩国高清视频一区二区三区| 最近最新中文字幕免费大全7| 老女人水多毛片| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影| 亚洲精品一二三| 久久人人爽人人片av| 成人国产av品久久久| 成人无遮挡网站| 日日撸夜夜添| 99视频精品全部免费 在线| 国产 一区 欧美 日韩| 青春草国产在线视频| 青春草亚洲视频在线观看| 搡女人真爽免费视频火全软件| 国产男女超爽视频在线观看| 国产免费又黄又爽又色| 国产精品嫩草影院av在线观看| 国产精品久久久久久精品电影| 我的老师免费观看完整版| 亚洲久久久久久中文字幕| 毛片女人毛片| 色播亚洲综合网| 精品久久国产蜜桃| 亚洲av国产av综合av卡| 在线a可以看的网站| 免费看不卡的av| 18禁动态无遮挡网站| 午夜爱爱视频在线播放| 激情 狠狠 欧美| 精品久久久久久电影网| 男女边摸边吃奶| 国产免费一级a男人的天堂| 99re6热这里在线精品视频| 22中文网久久字幕| 精品久久久噜噜| 毛片女人毛片| 深爱激情五月婷婷| 黑人高潮一二区| av在线观看视频网站免费| 免费看不卡的av| 成人亚洲精品av一区二区| 欧美xxxx性猛交bbbb| 校园人妻丝袜中文字幕| 我的女老师完整版在线观看| 麻豆久久精品国产亚洲av| 日韩成人伦理影院| 亚洲精品一区蜜桃| 国产淫片久久久久久久久| 成人特级av手机在线观看| 最新中文字幕久久久久| 亚洲精品自拍成人| av福利片在线观看| 日韩一区二区视频免费看| 久热久热在线精品观看| 99九九线精品视频在线观看视频| 黄片wwwwww| 搞女人的毛片| av线在线观看网站| 国内精品宾馆在线| 国产亚洲最大av| 久久久久久九九精品二区国产| 成年女人在线观看亚洲视频 | 精品视频人人做人人爽| 乱系列少妇在线播放| 九色成人免费人妻av| 国产女主播在线喷水免费视频网站| 另类亚洲欧美激情| 久久久久国产精品人妻一区二区| 一二三四中文在线观看免费高清| 色哟哟·www| 亚洲天堂av无毛| 肉色欧美久久久久久久蜜桃 | 日韩av不卡免费在线播放| 18+在线观看网站| 直男gayav资源| 亚洲欧美日韩卡通动漫| av国产免费在线观看| 国产男女超爽视频在线观看| 乱码一卡2卡4卡精品| 99热这里只有是精品在线观看| 嫩草影院新地址| 亚洲国产精品专区欧美| 亚洲精品日韩av片在线观看| 国产乱人视频| 全区人妻精品视频| 五月开心婷婷网| 国产伦精品一区二区三区四那| 涩涩av久久男人的天堂| 女的被弄到高潮叫床怎么办| 天堂俺去俺来也www色官网| 大香蕉97超碰在线| 天天躁日日操中文字幕| 激情 狠狠 欧美| 久久人人爽人人爽人人片va| 五月伊人婷婷丁香| 亚洲av国产av综合av卡| 国产熟女欧美一区二区| 免费看光身美女| 日日摸夜夜添夜夜添av毛片| 亚洲三级黄色毛片| 国产乱人偷精品视频| 久久99热这里只频精品6学生| 精品久久久噜噜| 亚洲国产精品专区欧美| 国产高清国产精品国产三级 | 婷婷色综合大香蕉| 99re6热这里在线精品视频| 人体艺术视频欧美日本| 丝袜喷水一区| 蜜桃亚洲精品一区二区三区| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 久久久久久久久久久免费av| 老师上课跳d突然被开到最大视频| 男插女下体视频免费在线播放| 99久久中文字幕三级久久日本| 精品国产一区二区三区久久久樱花 | 国产 精品1| 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| .国产精品久久| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 白带黄色成豆腐渣| 精品酒店卫生间| 美女被艹到高潮喷水动态| 欧美老熟妇乱子伦牲交| 黄色配什么色好看| 亚洲欧美精品专区久久| 我要看日韩黄色一级片| 亚洲av一区综合| 日韩 亚洲 欧美在线| 91精品国产九色| 大香蕉久久网| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 少妇人妻 视频| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩另类电影网站 | 伊人久久国产一区二区| 伦精品一区二区三区| 日韩精品有码人妻一区| 亚洲国产精品成人综合色| 日韩,欧美,国产一区二区三区| 国产白丝娇喘喷水9色精品| 日本熟妇午夜| 亚洲精品视频女| 亚洲第一区二区三区不卡| 三级经典国产精品| 91aial.com中文字幕在线观看| 午夜精品一区二区三区免费看| 国产一区有黄有色的免费视频| 国产91av在线免费观看| 特大巨黑吊av在线直播| 又爽又黄a免费视频| 超碰97精品在线观看| 人妻少妇偷人精品九色| 国产亚洲精品久久久com| 日韩免费高清中文字幕av| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美人成| 久久久国产一区二区| av免费在线看不卡| 婷婷色综合大香蕉| 国产 一区精品| 2021天堂中文幕一二区在线观| 午夜福利在线观看免费完整高清在| 女人久久www免费人成看片| 免费av观看视频| 在线观看人妻少妇| 日韩一区二区三区影片| 国语对白做爰xxxⅹ性视频网站| av国产精品久久久久影院| 男女国产视频网站| 男女边吃奶边做爰视频| 爱豆传媒免费全集在线观看| www.色视频.com| 在线观看一区二区三区| 一区二区三区精品91| 中文欧美无线码| 街头女战士在线观看网站| 亚洲av日韩在线播放| 1000部很黄的大片| 全区人妻精品视频| 熟女电影av网| 免费观看av网站的网址| 人妻夜夜爽99麻豆av| 国产精品一区二区性色av| 五月开心婷婷网| 国产欧美日韩精品一区二区| 成人美女网站在线观看视频| 久久精品国产亚洲av天美| 天堂俺去俺来也www色官网| 美女高潮的动态| 亚洲国产成人一精品久久久| 中文字幕免费在线视频6| 欧美极品一区二区三区四区| 色视频www国产| 狂野欧美激情性bbbbbb| 热re99久久精品国产66热6| 日韩免费高清中文字幕av| 天天躁日日操中文字幕| 国产综合精华液| av一本久久久久| 国产精品爽爽va在线观看网站| 麻豆国产97在线/欧美| 国产高清国产精品国产三级 | 久久久久久九九精品二区国产| 亚洲av国产av综合av卡| 精华霜和精华液先用哪个| 亚洲av成人精品一二三区| 国产国拍精品亚洲av在线观看| 亚洲精品国产成人久久av| 国产精品精品国产色婷婷| 久久久精品欧美日韩精品| 久久6这里有精品| 国产精品嫩草影院av在线观看| 中文乱码字字幕精品一区二区三区| 人妻少妇偷人精品九色| 狂野欧美白嫩少妇大欣赏| 少妇熟女欧美另类| 成人免费观看视频高清| av专区在线播放| tube8黄色片| 国产色爽女视频免费观看| 国产淫语在线视频| 精品少妇黑人巨大在线播放| 黄色日韩在线| 国产高潮美女av| 国产 一区精品| 亚洲自偷自拍三级| 久久久久久久精品精品| 插阴视频在线观看视频| 国产成人aa在线观看| 国产精品久久久久久精品古装| 国产大屁股一区二区在线视频| 美女脱内裤让男人舔精品视频| 天堂中文最新版在线下载 | 在线观看一区二区三区| 亚洲国产欧美在线一区| 在线观看美女被高潮喷水网站| 一区二区三区免费毛片| 精品一区二区三区视频在线| 男人狂女人下面高潮的视频| 亚洲精品456在线播放app| 中文字幕亚洲精品专区| 久久久a久久爽久久v久久| 精品久久久久久久人妻蜜臀av| 美女被艹到高潮喷水动态| 亚洲精华国产精华液的使用体验| 成人亚洲精品一区在线观看 | 久久99热6这里只有精品| 国产精品久久久久久精品古装| 国产成人a区在线观看| 日日摸夜夜添夜夜添av毛片| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 日本wwww免费看| 高清av免费在线| 免费观看无遮挡的男女| 中文乱码字字幕精品一区二区三区| 超碰97精品在线观看| 久久久久久久久久久丰满| 久热这里只有精品99| h日本视频在线播放| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 国产男女内射视频| 日日摸夜夜添夜夜爱| 狂野欧美激情性bbbbbb| 亚洲不卡免费看| 国产精品人妻久久久久久| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 黄片无遮挡物在线观看| 亚洲精品国产成人久久av| 性色avwww在线观看| 色视频www国产| 大又大粗又爽又黄少妇毛片口| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 99热网站在线观看| av在线天堂中文字幕| 五月天丁香电影| 欧美极品一区二区三区四区| 欧美高清成人免费视频www| 亚洲国产高清在线一区二区三| 国产精品偷伦视频观看了| 久久人人爽人人爽人人片va| 丝袜美腿在线中文| 国产 精品1| 老师上课跳d突然被开到最大视频| 日韩成人伦理影院| 永久免费av网站大全| 中国三级夫妇交换| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 尾随美女入室| 国产精品一区二区性色av| 五月伊人婷婷丁香| 日韩强制内射视频| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 亚洲精华国产精华液的使用体验| 国产午夜福利久久久久久| 一区二区av电影网| 国产高清国产精品国产三级 | 嫩草影院新地址| 午夜激情福利司机影院| 男女无遮挡免费网站观看| 成年版毛片免费区| 26uuu在线亚洲综合色| 久久影院123| 麻豆成人午夜福利视频| 干丝袜人妻中文字幕| 真实男女啪啪啪动态图| 亚洲最大成人中文| 22中文网久久字幕| 视频区图区小说| 久久6这里有精品| 亚洲高清免费不卡视频| 简卡轻食公司| 在线亚洲精品国产二区图片欧美 | 内地一区二区视频在线| 日韩电影二区| 麻豆久久精品国产亚洲av| 少妇丰满av| 欧美性猛交╳xxx乱大交人| 欧美区成人在线视频| 久久久午夜欧美精品| 日日撸夜夜添| 在线观看美女被高潮喷水网站| 午夜老司机福利剧场| 啦啦啦啦在线视频资源| 在线观看人妻少妇| 国产白丝娇喘喷水9色精品| 亚洲av欧美aⅴ国产| 色吧在线观看| 王馨瑶露胸无遮挡在线观看| 午夜爱爱视频在线播放| 99热这里只有精品一区| 18+在线观看网站| 国产一区二区三区综合在线观看 | av网站免费在线观看视频| av卡一久久| 免费黄色在线免费观看| 日本wwww免费看| 天美传媒精品一区二区| 久久精品夜色国产| 亚洲精品一二三| 久久99精品国语久久久| 国产精品爽爽va在线观看网站| 亚洲精品成人av观看孕妇| 男女无遮挡免费网站观看| 欧美三级亚洲精品| 七月丁香在线播放| 午夜老司机福利剧场| 亚洲精品国产av蜜桃| 欧美最新免费一区二区三区| 国产精品成人在线| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频 | 久久久久九九精品影院| 水蜜桃什么品种好| 欧美潮喷喷水| 久久精品人妻少妇| 丰满乱子伦码专区| 99热全是精品| 国产午夜精品一二区理论片| av网站免费在线观看视频| 国产男人的电影天堂91| 人妻少妇偷人精品九色| 久久久精品免费免费高清| 午夜福利高清视频| av在线播放精品| 九九爱精品视频在线观看| 精品国产一区二区三区久久久樱花 | 嫩草影院精品99| 亚洲欧美中文字幕日韩二区| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 成人国产麻豆网| 男男h啪啪无遮挡| av线在线观看网站| 精品国产露脸久久av麻豆| 大片电影免费在线观看免费| 人妻少妇偷人精品九色| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| 亚洲国产精品专区欧美| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 久久99蜜桃精品久久| 国产综合精华液| 日本黄色片子视频| a级一级毛片免费在线观看| 日日啪夜夜撸| 亚洲精品久久午夜乱码| 成年免费大片在线观看| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 高清毛片免费看| 人妻制服诱惑在线中文字幕| 免费观看a级毛片全部| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| 一个人看的www免费观看视频| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡 | 男插女下体视频免费在线播放| 久热这里只有精品99| 亚洲一区二区三区欧美精品 | 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 久久久久久伊人网av| 99久国产av精品国产电影| 久久久欧美国产精品| av播播在线观看一区| 亚洲高清免费不卡视频| 男女那种视频在线观看| 边亲边吃奶的免费视频| 中国国产av一级| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 日韩av免费高清视频| 免费看av在线观看网站| 久久久久国产网址| 精华霜和精华液先用哪个| 一本久久精品| 欧美高清成人免费视频www| av免费观看日本| 少妇裸体淫交视频免费看高清| 久热久热在线精品观看| 成人免费观看视频高清| 黑人高潮一二区| 国产精品一二三区在线看| 久久久久国产网址| 免费电影在线观看免费观看| 少妇 在线观看| 99久久九九国产精品国产免费| 18禁裸乳无遮挡动漫免费视频 | 夜夜看夜夜爽夜夜摸| 亚洲精品国产色婷婷电影| 亚洲久久久久久中文字幕| 两个人的视频大全免费| 免费观看性生交大片5| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 91精品伊人久久大香线蕉| 国产探花在线观看一区二区| 免费播放大片免费观看视频在线观看| 少妇 在线观看| 免费av观看视频| 韩国高清视频一区二区三区| 久久这里有精品视频免费| 一区二区av电影网| 97精品久久久久久久久久精品| 亚洲成色77777| 国产精品爽爽va在线观看网站| 亚洲图色成人| 婷婷色麻豆天堂久久| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区| 丰满人妻一区二区三区视频av| 欧美3d第一页| 身体一侧抽搐| 欧美日韩视频高清一区二区三区二| 男女那种视频在线观看| 欧美日韩精品成人综合77777| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 狂野欧美激情性xxxx在线观看| av线在线观看网站| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 国产欧美日韩精品一区二区| 亚洲av成人精品一二三区| 免费在线观看成人毛片| 成人亚洲精品一区在线观看 | 免费黄频网站在线观看国产| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 伦精品一区二区三区| 高清av免费在线| 亚洲国产精品国产精品| 亚洲欧美精品专区久久| 下体分泌物呈黄色| 国产老妇女一区| 亚洲精品久久午夜乱码| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 国产精品久久久久久精品古装| av在线蜜桃| 精品久久久久久久末码| 内射极品少妇av片p| 亚洲一级一片aⅴ在线观看| 极品教师在线视频| 2022亚洲国产成人精品| 午夜福利视频1000在线观看| www.av在线官网国产| 一级毛片电影观看| 成人美女网站在线观看视频| 国产一区二区在线观看日韩| 韩国av在线不卡| 人体艺术视频欧美日本| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 午夜精品国产一区二区电影 | 啦啦啦在线观看免费高清www| 免费看日本二区| 日日啪夜夜撸| 好男人在线观看高清免费视频| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 色哟哟·www| 中文字幕久久专区| 精品人妻视频免费看| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 青春草亚洲视频在线观看| av专区在线播放| 黑人高潮一二区| 久久精品国产a三级三级三级| 亚洲精品日韩av片在线观看| 国产精品99久久99久久久不卡 | 精品人妻熟女av久视频| 99精国产麻豆久久婷婷| 69人妻影院| 内射极品少妇av片p| 国产精品精品国产色婷婷| 成人欧美大片| 亚洲自偷自拍三级| 国产 一区 欧美 日韩| 亚洲av成人精品一二三区| 如何舔出高潮| 深夜a级毛片| 人妻系列 视频| 日韩av不卡免费在线播放| 成人无遮挡网站| 99久久九九国产精品国产免费| av在线天堂中文字幕| 国产在线男女| 777米奇影视久久| 国产成人a区在线观看| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 久久久久精品久久久久真实原创| 成人鲁丝片一二三区免费| 免费看a级黄色片| 麻豆成人午夜福利视频| 天堂中文最新版在线下载 | 成人二区视频| 深夜a级毛片| 免费看日本二区| av国产免费在线观看| 国产精品久久久久久精品古装| 欧美日韩在线观看h| 成人漫画全彩无遮挡| kizo精华| 成人高潮视频无遮挡免费网站| 亚洲精品国产成人久久av| 日韩欧美一区视频在线观看 | 天堂网av新在线| xxx大片免费视频| 老师上课跳d突然被开到最大视频| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| av在线观看视频网站免费| 免费在线观看成人毛片| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 女人十人毛片免费观看3o分钟| 国产成人精品福利久久| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 国产免费一区二区三区四区乱码| av福利片在线观看| 免费观看的影片在线观看| 在线精品无人区一区二区三 | 听说在线观看完整版免费高清| 熟女av电影| 深爱激情五月婷婷| 91狼人影院| 69人妻影院| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频| 五月开心婷婷网| 在线观看国产h片| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 高清在线视频一区二区三区| 日韩欧美精品v在线| 国内精品宾馆在线| 欧美精品一区二区大全| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| 少妇人妻 视频| 国产色爽女视频免费观看| 午夜激情久久久久久久| 少妇的逼水好多|