• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Dynamics of Nervous Stomach Model Using Supervised Neural Networks

    2022-08-24 12:56:52ZulqurnainSabirManojGuptaMuhammadAsifZahoorRajaSeshagiriRaoMuhammadMubasharHussainFaisalAlanaziOrawitThinnukoolandPattarapornKhuwuthyakorn
    Computers Materials&Continua 2022年7期

    Zulqurnain Sabir, Manoj Gupta, Muhammad Asif Zahoor Raja, N.Seshagiri Rao,Muhammad Mubashar Hussain, Faisal Alanazi, Orawit Thinnukooland Pattaraporn Khuwuthyakorn,*

    1Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan

    2Department of Electronics and Communication Engineering, JECRC University, Jaipur (Rajasthan), 303905, India

    3Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, 64002,Taiwan

    4Department of Applied Mathematics, School of Applied Natural Sciences, Adama Science and Technology University,Adama, Ethiopia

    5Department of Mathematics, University of Punjab, Jhelum Campus, Pakistan

    6Department of Electrical Engineering, Prince Sattam Bin Abdulaziz University, College of Engineering, Al Kharj, 16278,Saudi Arabia

    7Research Group of Embedded Systems and Mobile Application in Health Science, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand

    Abstract: The purpose of the current investigations is to solve the nonlinear dynamics based on the nervous stomach model (NSM) using the supervised neural networks (SNNs) along with the novel features of Levenberg-Marquardt backpropagation technique (LMBT), i.e., SNNs-LMBT.The SNNs-LMBT is implemented with three different types of sample data,authentication, testing and training.The ratios for these statistics to solve three different variants of the nonlinear dynamics of the NSM are designated 75% for training, 15% for validation and 10% for testing, respectively.For the numerical measures of the nonlinear dynamics of the NSM, the Runge-Kutta scheme is implemented to form the reference dataset.The attained numerical form of the nonlinear dynamics of the NSM through the SNNs-LMBT is implemented in the reduction of the mean square error (MSE).For the exactness, competence, reliability and efficiency of the proposed SNNs-LMBT, the numerical actions are capable using the proportional arrangements through the features of the MSE results, error histograms(EHs), regression and correlation.

    Keywords: Nonlinear dynamics; nervous stomach system; reference dataset;levenberg-marquardt backpropagation technique; numerical outcomes

    1 Introduction

    The nonlinear dynamics of the nervous stomach model (NSM) have three segments, Tension (T),Food (F) and Medicine (M), i.e., TFM model.The generic form of the TFM system Tab.1 along with its initial conditions (ICs) is given as [1]:

    The detail of each segment of the nonlinearTFMsystem is described together with the description of each parameter shown in the above Eq.(1) as:

    T(y): One of the major target is stress or tension in the nonlinear dynamics based on the NSM out of the various physical indications.The effects of the nervous stomach create a problem in the human’s physique due to stress.

    F(y): The spicy, oily and crispy items of food play a major role to disturb the stomach.Those individuals who regularly use such food items, they may feel the disorder in their digestive parts.The presence of the spicy food like capsaicin is a main reason to upset the stomach.

    M(y): The medicine excess is also a big factor to disturb the stomach.The use of the medicine of the highest potency can recover the minor illnesses, but it creates the stomach’s indiscretion.

    Table 1: Parameter details of the TFM

    The stomach, like other organs in the human’s body has great significance.In human body every organ is linked to other organs, e.g., eye, nose and ear.If one organ doesn’t work properly, the other organs also feel its effects.Likewise, the stomach is linked to many other organs that play a vital role in maintaining the human health.The researchers studied the stomach for many years and the earliest Greeks professed the natural bitter gastric materials.In the beginning of the 16th century,the idea that stomach comprises acid in the digestion procedures presented by Sánchez et al.[1].The solvent features of digestive juice based on the animal tissues accessible by Reaumur.William Prout [2]studied the emission gastric acid nature andWilliam Beaumont presented the analysis of gastric fistula patient before three centuries.The gastric secretion by removal of the coeliac axis and vagotomy as healing interruptions was discovered in the beginning of the 19th century.Laidlaw et al.engrossed the histamine using the composite gastric secretion, which focused to the finding of the Popielski based the impacts of histamine gastric secretion.Bayliss et al.[3] discussed the secret in, while Edkins [4]investigated the gastrin performance.These stated discoveries recognized the gastric illnesses based pretentious advances in the pharmacologic connotation of peptic ulcer having H2-receptor presented by Sir James Black two centuries ago [5].Warrenet alin 1983 presented the acidic form of the diseases till the innovative of Helicobacter pylori discovery [6] and Jaworski discussedmany observations based on the bacterial inhabitants in the gastric juice.

    The nonlinear dynamics of the NSM based TFM system is solved using the supervised neural networks (SNNs) along with the novel features of Levenberg-Marquardt backpropagation technique(LMBT), i.e., SNNs-LMBT.The obtained results have been compared with the designed database results based on the Runge-Kutta method.The data percentages to solve three different cases of the nonlinear dynamics of the NSM based TFM are designated 75% for training, 15% for validation and 10% for testing, respectively.The stochastic methods have been applied in diverse recent applications[7-10], but the nonlinear dynamics of the NSM based TFM system has never been explored by using the SNNs-LMBT[11,12].Few recent stochastic submissions are SITR dynamics [[13,14],singularthird kind of nonlinear system [15,16], Thomas-Fermi form of the model [17], heat conduction model [18],periodic differential singular system [19,20], functional models [21-23], dengue fever biological model[24], a multi-singular form of equations [25,26], prediction, delayed and pantograph models [27-29]and differential systems based on the fractional order [30-32].These well-known stochastic based applications inspire the authors to present a robust, consistent, accurate and reliable platform to solve the nonlinear dynamics of the NSM based TFM system using the SNNs-LMBT [33-35].Few novel features of the present study are provided as:

    ?A computational intelligent novel SNNs-LMBT is implemented to solve the nonlinear dynamics of the NSM based TFM system.

    ?The exact matching of the numerical outcomes with good measures based on the absolute error(AE) enhances the value of the proposed novel SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.

    ?The presentations using the related soundings onMSE, regression metrics, correlation measures and error histograms (EHs) validate the performances of the proposed novel SNNs-LMBT.

    The remaining paper parts are organized as: The numerical performances of the proposed novel SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM systems are described in Section 2.The numerical results through SNNs-LMBT are presented in Section 3.The concluding outcomes with latent related soundings together with the future research reports are labeled in the Section 4.

    2 Methodology

    The proposed SNNs-LMBT is provided in two phases to solve the nonlinear dynamics of the NSM based TFM system.

    ?Essential explanations of the proposed SNNs-LMBT are provided.

    ?Implementation measures support the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.

    The appropriate optimization based on the proposed SNNs-LMBT are provided in Fig.1 using the multi-layer procedures and proposed system form for a single neuron is plotted in Fig.2.The suggested SNNs-LMBT is implemented with the‘nftool’that is build-in procedure in‘Matlab’using the data as designated 75% for training, 15% for validation and 10% for testing, respectively.

    Figure 1: Workflow diagram of the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system

    Figure 2: Proposed structure based on the single neuron

    3 Numerical Simulations

    This section indicates the numerical performances of the obtained results of three different cases based on the nonlinear dynamics of the NSM using the proposed SNNs-LMBT.The mathematical form of each case is given as:

    Case-1: Consider the nonlinear dynamics of the NSM based TFM system witha= 0.2,b=0.1,c= 0.3,d= 0.4,δ= 0.5,u1= 0.9,u2= 0.7 andu3= 0.5.The mathematical form of the system (1) is given as:

    Case-2: Consider the nonlinear dynamics of the NSM based TFM system witha= 0.5,b=0.1,c= 0.3,d= 0.4,δ= 0.5,u1= 0.8,u2= 0.6 andu3= 0.4.The mathematical form of the system (1) is given as:

    Case-3: Consider the nonlinear dynamics of the NSM based TFM system witha= 0.8,b=0.1,c= 0.3,d= 0.4,δ= 0.5,u1= 0.7,u2= 0.5 andu3= 0.3.The mathematical form of the system (1) is given as:

    The numerical performances are obtained using the SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system with inputs (0, 1) and 0.01 step size.The‘nftool’command in Matlab is usedto solve the nonlinear dynamics of the NSM based TFM system using 15 numbers of neurons using the data as designated 75% for training, 15% for validation and 10% for testing, respectively.The achieved performance of the results using the SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system is drawn in Fig.3.

    Figure 3: Proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system

    The graphs of the designed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system are provided in Figs.4-12.The accomplished numerical procedures of all three cases of the nonlinear dynamics of the NSM based TFM systems are provided in Figs.4 and 5 using the performance and transition states.The calculated outcomes based on MSE for the training,best curve, authentication and testing states are provided in Fig.4 to solve the nonlinear dynamics of the NSM based TFM system.The best performances for the nonlinear dynamics of the NSM based TFM system are obtained at epoch 125, 71 and 74, which lie around lie around 1.7601×10-10,1.3029×10-11and 2.3984×10-14, respectively.Fig.5 indicates the gradient values of the designed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system, which are calculated as 9.9838×10-08, 9.9615×10-08and 9.8429×10-08.These graphical plots indicate the precision,accuracy and convergence of the designed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.The fitting curve plots for each case of the nonlinear dynamics of the NSM based TFM system are drawn in Figs.6-8, which authenticate the comparison of the obtained outcomes through the designed SNNs-LMBT and the reference database results.The maximum values of the error plots are plotted using the training, authentication and testing through the designed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.The EHs are plotted in Fig.9a-9c, whereas the plots of regression are provided in Figs.10-12 to solve the nonlinear dynamics of the NSM based TFM system.The correlation plots are provided to validate the regression analysis.It is indicated that the correlation values are noticed around 1 to solve the nonlinear dynamics of the NSM based TFM system that shows the perfect model.The plots of testing, authentication and training designate the exactness of the designed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.Moreover, the convergence for the MSE are capable for training,authentication, epochs, backpropagation values, testing and complexity investigations are given in Tab.2 to solve the TFM system.

    Figure 4: Performance through MSE results using the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system (a) Case I: MSE values for the NSM based TFM system (b)Case II: MSE values for the NSM based TFM system (c) Case III: MSE values for the NSM based TFM system

    Figure 5: State transition using the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system (a) Case I: State transition for the NSM based TFM system (b) Case II:State transition for the NSM based TFM system (c) Case III: State transition for the NSM based TFM system

    Figure 6: Case 1: Result comparison through the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system

    Figure 7: Case 2: Result comparison through the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system

    Figure 8: Case 3: Result comparison through the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system

    Figure 9: (Continued)

    Figure 9: EHs values for the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system (a) Case I: EHs for the NSM based TFM system (b) Case II: EHs for the NSM based TFM system (c) Case III: EHs for the NSM based TFM system

    Figure 10: Case I: Regression plots for the NSM based TFM system

    Figure 11: Case II: Regression plots for the NSM based TFM system

    Figure 12: Case III: Regression plots for the NSM based TFM system

    Table 2: Proposed SNNs-LMBT to solve the TFM system

    The result comparisons are plotted in Figs.13 and 14 to solve the nonlinear dynamics of the NSM based TFM system.The outcomes of the parametersT(y),F(y) andM(y) using the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM systems are drawn in the subfigures 13(a-c).The overlapping of the outcomes is noticed, which designate the exactness and precision of the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.The AE plots are drawn for each case of the nonlinear dynamics of the NSM based TFM system in Fig.14.The parameter values based onT(y),F(y) andM(y) is drawn in Figs.14a-14c for each case of the TFM system.It is noticed in Fig.14a, that the AE for T(y) lie around 10-05to 10-06for case I and II,while the AE for case III lie around 10-06to 10-08.Fig.14b shows the AE for F(y) lie around 10-04to 10-06for case I and II, while the AE for case III lie around 10-06to 10-10.Similarly, the AE for M(y) is noticed in Fig.14c that lie around 10-05to 10-06for case I and II, while the AE for case III lie around 10-07to 10-08.These closely matched values of AE indicate the correctness of the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system.

    Figure 13: Comparison performance based on the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system (a) Case 1: Results of the parameters T(y) (b) Case II:Results of the parameters F(y) (c) Case II: Results of the parameters M(y)

    Figure 14: (Continued)

    Figure 14: AE values based on the proposed SNNs-LMBT to solve the nonlinear dynamics of the NSM based TFM system (a) Case I: AE values for the parameters T(y) (b) Case II: AE values for the parameters F(y) (c) Case III: AE values for the parameters M(y)

    4 Conclusions

    The current investigations are related to solve the nonlinear dynamics of the nervous stomach model based on the three factors; Tension, Food and Medicine are using the proposed supervised neural networks along with the Levenberg-Marquardt backpropagation technique, i.e., SNNs-LMBT.The stomach is linked tomany other organs that play a vital role in maintaining the human health.The SNNs-LMBT is applied to the sample data testing, training, and authentication.The percentages used for these statistics for solving three different variants of the nervous stomachmodel are designated 75% for training, 15% for validation and 10% for testing, respectively.To check the brilliance, excellence, exactness and precision of the SNNs-LMBT, the matching of the outcomes is obtained to solve the nonlinear dynamics of the nervous stomach model.The presentations based on the MSE convergence are applied to the testing, best curve, training and authentication for each factor in the nonlinear dynamics of the nervous stomach model.The correlation performances are proficient to authenticate the regression procedures.The gradient values using the step size are attained for each factor of the nonlinear dynamics of the nervous stomach model.Moreover, the exactness, precision, correctness is observed using the graph aswell as the numerical conformations through the EHs, theMSE catalogues, regression dynamics, and convergence plots, respectively.

    In future, the proposed SNNs-LMBT can be explored to solve the fractional models, lonngrenwave models, fluid systems and higher order singular models [36-44].

    Acknowledgement:The authors would like to thanks the editors of CMC and anonymous reviewers for their time and reviewing this manuscript.

    Funding Statement:This work was supported by the Chiang Mai University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日韩免费高清中文字幕av| 欧美日韩视频精品一区| 精品一区在线观看国产| 精品人妻熟女av久视频| 大又大粗又爽又黄少妇毛片口| 免费高清在线观看日韩| 亚洲国产av影院在线观看| 丰满乱子伦码专区| 亚洲精品成人av观看孕妇| 日本欧美视频一区| 亚洲av日韩在线播放| 精品一区二区免费观看| av国产久精品久网站免费入址| 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 国产精品国产三级专区第一集| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 中文字幕制服av| 色5月婷婷丁香| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 最近手机中文字幕大全| 亚洲三级黄色毛片| 伊人亚洲综合成人网| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三区视频在线| 人妻 亚洲 视频| 欧美三级亚洲精品| 精品久久久久久久久av| a 毛片基地| 国产免费又黄又爽又色| 成人毛片a级毛片在线播放| 一区二区av电影网| 国产伦精品一区二区三区视频9| av专区在线播放| 黄色欧美视频在线观看| 女的被弄到高潮叫床怎么办| 久久国内精品自在自线图片| 国产精品久久久久久精品古装| 精品亚洲成a人片在线观看| 97在线人人人人妻| 久热这里只有精品99| 国产一区有黄有色的免费视频| 黑人巨大精品欧美一区二区蜜桃 | 丝袜美足系列| 国产精品久久久久久av不卡| 男男h啪啪无遮挡| 久久国产亚洲av麻豆专区| 亚洲综合精品二区| 在现免费观看毛片| 亚洲五月色婷婷综合| 国产日韩欧美视频二区| av在线app专区| 80岁老熟妇乱子伦牲交| 大香蕉久久成人网| 亚洲色图综合在线观看| av线在线观看网站| 国产av精品麻豆| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 国产高清三级在线| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频 | 男女高潮啪啪啪动态图| 亚洲精品456在线播放app| 国产毛片在线视频| 亚洲精品乱码久久久久久按摩| 天堂中文最新版在线下载| 久久午夜福利片| 久久ye,这里只有精品| 亚洲欧洲精品一区二区精品久久久 | 青青草视频在线视频观看| 精品久久久久久久久av| 99九九线精品视频在线观看视频| 亚洲色图综合在线观看| 亚洲精品国产av成人精品| 丝袜脚勾引网站| 美女视频免费永久观看网站| 乱人伦中国视频| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 在线观看国产h片| 99热6这里只有精品| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡动漫免费视频| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 免费高清在线观看日韩| 多毛熟女@视频| 少妇熟女欧美另类| 欧美人与善性xxx| 美女主播在线视频| 亚洲高清免费不卡视频| 国产精品一区二区三区四区免费观看| 久久青草综合色| 人妻系列 视频| 亚洲人成网站在线观看播放| 制服诱惑二区| 最后的刺客免费高清国语| 精品亚洲成国产av| 婷婷色麻豆天堂久久| 久久综合国产亚洲精品| av黄色大香蕉| 日韩av在线免费看完整版不卡| 中国国产av一级| 在线观看www视频免费| 国产精品99久久久久久久久| 精品国产乱码久久久久久小说| 热re99久久国产66热| 日日啪夜夜爽| 欧美精品人与动牲交sv欧美| 男女国产视频网站| 高清毛片免费看| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 国产69精品久久久久777片| 在线精品无人区一区二区三| 国产国语露脸激情在线看| av电影中文网址| 精品久久久噜噜| 男的添女的下面高潮视频| 国产日韩一区二区三区精品不卡 | 99视频精品全部免费 在线| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 尾随美女入室| 色吧在线观看| 韩国av在线不卡| 国产精品人妻久久久久久| 女人久久www免费人成看片| 久久99一区二区三区| 熟女电影av网| 中文字幕人妻丝袜制服| 插逼视频在线观看| 国产免费福利视频在线观看| 街头女战士在线观看网站| 成人国产av品久久久| 永久免费av网站大全| 亚洲激情五月婷婷啪啪| 免费播放大片免费观看视频在线观看| 啦啦啦在线观看免费高清www| 视频中文字幕在线观看| 高清在线视频一区二区三区| 亚洲精品自拍成人| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 国产熟女午夜一区二区三区 | 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 熟妇人妻不卡中文字幕| 母亲3免费完整高清在线观看 | 一区二区三区精品91| 亚洲精品av麻豆狂野| 老女人水多毛片| 亚洲精品aⅴ在线观看| 丰满迷人的少妇在线观看| 18禁动态无遮挡网站| 国产高清不卡午夜福利| 中国三级夫妇交换| 国产精品一二三区在线看| 人妻制服诱惑在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 97超碰精品成人国产| 看非洲黑人一级黄片| 一级毛片我不卡| 99久久精品一区二区三区| 国产熟女午夜一区二区三区 | 国产黄色免费在线视频| 热re99久久国产66热| 精品亚洲成a人片在线观看| 久久免费观看电影| 黄色毛片三级朝国网站| 久久久欧美国产精品| 日本午夜av视频| 精品久久久精品久久久| 熟女av电影| 日韩伦理黄色片| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 18禁观看日本| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 热99久久久久精品小说推荐| 各种免费的搞黄视频| 日韩一区二区三区影片| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 欧美激情 高清一区二区三区| 日韩制服骚丝袜av| 青春草国产在线视频| 国产精品.久久久| 久久久久视频综合| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 亚洲精品av麻豆狂野| 日韩视频在线欧美| 99热国产这里只有精品6| 日韩免费高清中文字幕av| kizo精华| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 欧美日韩视频精品一区| 亚洲人与动物交配视频| 欧美日韩一区二区视频在线观看视频在线| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 五月伊人婷婷丁香| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 日韩一区二区视频免费看| 日本午夜av视频| 五月天丁香电影| 人人妻人人爽人人添夜夜欢视频| 日本猛色少妇xxxxx猛交久久| 香蕉精品网在线| 人妻夜夜爽99麻豆av| 国产av国产精品国产| 国产日韩欧美在线精品| 精品一区二区免费观看| 香蕉精品网在线| 国产女主播在线喷水免费视频网站| 久久综合国产亚洲精品| 99久久精品一区二区三区| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 制服丝袜香蕉在线| 国模一区二区三区四区视频| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| av黄色大香蕉| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| 大香蕉久久网| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 国产极品粉嫩免费观看在线 | 大陆偷拍与自拍| 成人18禁高潮啪啪吃奶动态图 | 国产极品粉嫩免费观看在线 | 亚洲欧美精品自产自拍| 久久韩国三级中文字幕| 国产成人freesex在线| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女黄色视频免费看| 久久国内精品自在自线图片| 成人免费观看视频高清| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 母亲3免费完整高清在线观看 | 久久久久久久久大av| 国产视频内射| 22中文网久久字幕| 女性被躁到高潮视频| 国产精品.久久久| 国产亚洲最大av| 国产日韩欧美亚洲二区| 最黄视频免费看| 下体分泌物呈黄色| 日本免费在线观看一区| 精品国产国语对白av| 日日摸夜夜添夜夜添av毛片| 国产精品三级大全| 亚洲三级黄色毛片| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 日本wwww免费看| 99热6这里只有精品| 日韩成人伦理影院| 美女脱内裤让男人舔精品视频| 亚洲美女视频黄频| 丰满迷人的少妇在线观看| 美女视频免费永久观看网站| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 成人无遮挡网站| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| 国产精品.久久久| 在线观看三级黄色| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 一级毛片电影观看| 亚洲精品456在线播放app| 免费观看在线日韩| 久久影院123| 久热久热在线精品观看| 精品国产一区二区三区久久久樱花| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品成人av观看孕妇| 波野结衣二区三区在线| 高清av免费在线| 如何舔出高潮| 满18在线观看网站| 国产黄片视频在线免费观看| 夜夜爽夜夜爽视频| 国产黄色免费在线视频| 国产亚洲最大av| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 少妇被粗大猛烈的视频| 国产亚洲最大av| 女的被弄到高潮叫床怎么办| 国产av精品麻豆| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 性色avwww在线观看| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 精品国产国语对白av| 久热这里只有精品99| 亚洲天堂av无毛| 午夜91福利影院| h视频一区二区三区| 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 蜜桃在线观看..| 日本wwww免费看| 97精品久久久久久久久久精品| 精品人妻熟女毛片av久久网站| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆| 色吧在线观看| 一级爰片在线观看| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 色哟哟·www| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产a三级三级三级| 日韩伦理黄色片| 欧美 日韩 精品 国产| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 欧美精品亚洲一区二区| 日韩人妻高清精品专区| 韩国av在线不卡| 亚洲精品视频女| 亚洲国产色片| 日韩av不卡免费在线播放| 女性被躁到高潮视频| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 国产有黄有色有爽视频| 亚洲av免费高清在线观看| 九九在线视频观看精品| 亚洲精品国产av成人精品| 插逼视频在线观看| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 精品熟女少妇av免费看| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 热99国产精品久久久久久7| 国产熟女欧美一区二区| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| 国产免费一级a男人的天堂| 五月天丁香电影| 人妻夜夜爽99麻豆av| av女优亚洲男人天堂| 男的添女的下面高潮视频| 精品人妻熟女av久视频| 超色免费av| 日本黄色片子视频| av福利片在线| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 99久久精品国产国产毛片| kizo精华| 日韩伦理黄色片| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 美女主播在线视频| 国语对白做爰xxxⅹ性视频网站| 在线精品无人区一区二区三| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 十八禁网站网址无遮挡| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 男女免费视频国产| 高清不卡的av网站| 99久久精品一区二区三区| 精品久久久久久久久亚洲| 亚洲国产色片| 色94色欧美一区二区| 中国国产av一级| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 亚洲人与动物交配视频| videosex国产| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 欧美人与性动交α欧美精品济南到 | 久久精品久久精品一区二区三区| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 国产精品 国内视频| 欧美另类一区| 久久久久久久久久久丰满| 亚洲色图 男人天堂 中文字幕 | 丰满迷人的少妇在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 能在线免费看毛片的网站| 国产一区二区三区综合在线观看 | 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃 | 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 最近中文字幕2019免费版| 国产黄片视频在线免费观看| 少妇精品久久久久久久| 这个男人来自地球电影免费观看 | 免费日韩欧美在线观看| 免费看不卡的av| 色吧在线观看| 国产精品国产三级国产专区5o| 欧美三级亚洲精品| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 99热这里只有精品一区| a级毛片在线看网站| 在线 av 中文字幕| 亚洲成色77777| 午夜免费鲁丝| 日日摸夜夜添夜夜添av毛片| 狂野欧美激情性xxxx在线观看| 欧美激情国产日韩精品一区| 国模一区二区三区四区视频| 永久免费av网站大全| 久久人人爽人人片av| 69精品国产乱码久久久| 久久久国产欧美日韩av| 91久久精品国产一区二区三区| 国产成人一区二区在线| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 99久久精品一区二区三区| 国产视频首页在线观看| 女人久久www免费人成看片| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 久久久久久久久大av| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 欧美日韩综合久久久久久| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| av在线老鸭窝| 久久久久人妻精品一区果冻| 国产成人精品福利久久| 女性被躁到高潮视频| 大香蕉久久成人网| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 国产成人a∨麻豆精品| 狠狠婷婷综合久久久久久88av| 精品人妻熟女av久视频| 看非洲黑人一级黄片| 亚洲少妇的诱惑av| 91久久精品国产一区二区三区| 九草在线视频观看| 五月天丁香电影| 免费人妻精品一区二区三区视频| 久久精品国产鲁丝片午夜精品| 日韩av免费高清视频| 99国产精品免费福利视频| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 99热这里只有精品一区| 免费久久久久久久精品成人欧美视频 | av黄色大香蕉| 国产片内射在线| 性高湖久久久久久久久免费观看| av女优亚洲男人天堂| 国产 一区精品| 十八禁高潮呻吟视频| 国产精品免费大片| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠久久av| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 一个人看视频在线观看www免费| av电影中文网址| 亚洲精品久久久久久婷婷小说| 丝瓜视频免费看黄片| 日本猛色少妇xxxxx猛交久久| 日韩,欧美,国产一区二区三区| 大香蕉97超碰在线| 国产精品偷伦视频观看了| 国产乱人偷精品视频| 伦理电影免费视频| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久久电影| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 如日韩欧美国产精品一区二区三区 | 成年av动漫网址| av免费在线看不卡| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 在线播放无遮挡| 日韩强制内射视频| 另类亚洲欧美激情| 男女国产视频网站| 乱码一卡2卡4卡精品| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 久久精品国产亚洲av天美| 十分钟在线观看高清视频www| 久久久久久人妻| 极品人妻少妇av视频| 国产乱人偷精品视频| 日本wwww免费看| 久久久久久久国产电影| 亚洲av成人精品一二三区| av黄色大香蕉| 日日撸夜夜添| 亚洲精品456在线播放app| 久久精品久久久久久噜噜老黄| 亚洲精品乱码久久久v下载方式| 日本vs欧美在线观看视频| av在线app专区| 亚州av有码| 久久国产精品男人的天堂亚洲 | a级毛片免费高清观看在线播放| 国产成人一区二区在线| 国精品久久久久久国模美| 亚洲成人av在线免费| 亚洲四区av| 久久免费观看电影| 欧美3d第一页| 亚洲av成人精品一二三区| 午夜福利视频在线观看免费| 少妇的逼好多水| 另类亚洲欧美激情| 综合色丁香网| 色94色欧美一区二区| 美女cb高潮喷水在线观看| 美女大奶头黄色视频| 韩国av在线不卡| 最黄视频免费看| 丁香六月天网| 多毛熟女@视频| 精品人妻熟女毛片av久久网站| 毛片一级片免费看久久久久| 久久久久久久久久久久大奶| 亚洲国产精品国产精品| av天堂久久9| 国产熟女欧美一区二区| 美女视频免费永久观看网站| 亚洲欧洲日产国产| 99国产综合亚洲精品| 超碰97精品在线观看| 国产男女内射视频| 黑丝袜美女国产一区| 亚洲av综合色区一区| 国产男女内射视频| 色网站视频免费| 婷婷成人精品国产| 国产亚洲午夜精品一区二区久久| 国产av精品麻豆| 国产精品久久久久久久久免| 黑人猛操日本美女一级片| 你懂的网址亚洲精品在线观看| 欧美成人精品欧美一级黄| 一级毛片电影观看| 欧美三级亚洲精品| 久久久久久人妻| 黑人欧美特级aaaaaa片| 边亲边吃奶的免费视频| av在线app专区| 啦啦啦中文免费视频观看日本| 日韩av不卡免费在线播放| 免费黄频网站在线观看国产| 亚洲精品av麻豆狂野| 国产精品国产三级专区第一集| 夜夜爽夜夜爽视频|