• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection

    2022-08-24 12:56:30AliTakieldeenElSayedElkenawyMohammedHadwanandRokaiaZaki
    Computers Materials&Continua 2022年7期

    Ali E.Takieldeen, El-Sayed M.El-kenawy,2, Mohammed Hadwanand Rokaia M.Zaki

    1Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, 35712, Egypt

    2Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura,35111, Egypt

    3Department of Information Technology, College of Computer, Qassim University, Buraydah, 51452, Saudi Arabia

    4Department of Computer Science, College of Applied Sciences, Taiz University, Taiz, Yemen

    5Intelligent Analytics Group (IAG), College of Computer, Qassim University, Buraydah, Saudi Arabia

    6Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt

    7Department of Electrical Engineering, Shoubra Faculty of Engineering, Benha University, Egypt

    Abstract: Dipper throated optimization (DTO) algorithm is a novel with a very efficient metaheuristic inspired by the dipper throated bird.DTO has its unique hunting technique by performing rapid bowing movements.To show the efficiency of the proposed algorithm, DTO is tested and compared to the algorithms of Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), and Genetic Algorithm(GA) based on the seven unimodal benchmark functions.Then, ANOVA and Wilcoxon rank-sum tests are performed to confirm the effectiveness of the DTO compared to other optimization techniques.Additionally, to demonstrate the proposed algorithm’s suitability for solving complex realworld issues, DTO is used to solve the feature selection problem.The strategy of using DTOs as feature selection is evaluated using commonly used data sets from the University of California at Irvine (UCI) repository.The findings indicate that the DTO outperforms all other algorithms in addressing feature selection issues, demonstrating the proposed algorithm’s capabilities to solve complex real-world situations.

    Keywords: Metaheuristic optimization; swarm optimization; feature selection;function optimization

    1 Introduction

    Optimization is the process of obtaining the greatest or least objective function value for a setof inputs.It is the subject of various machine techniques that draw on artificial neural networks.Hundreds of famous optimization algorithms have become accessible, and dozens of technologies areavailable inmajor scientific code libraries.Given the problems of optimization, selecting whatmethods can thus be challenging [1].Optimization is how a function has the lowest or highest output of input parameters or arguments.In machines where the input parameters of the tasks like the floating-point values are numerical, continuous functions optimization frequently arises.The function returns an evaluation of the parameter of real-life [2].

    Continuous function optimization may be used to distinguish between such problemswith discrete variables, known as combined optimization problems [3].Different techniques may be resolved, organized, and called to optimize the problems involving continuous functions.The information about the objective function utilized and used throughout the optimization process depends on one technique of optimization classification [4].The more information about the target function is generally understood, the easier it is to optimize because knowledge can be applied effectively [5].Perhaps the significant difference between optimization techniques is identifying the destination function in one location [6].It means that the first derivative of the feature may be used to identify a possible solution (gradient or route).It distinguishes itself from other not-calculated gradient data [7].Metaheuristic optimization is the optimization process utilizing metaheuristic techniques.Almost every area of life is involved, much from engineering to business, holiday preparation to internet travel [8].The use of those readily available resources must be maximized due to the continuous scarcity of money, resources, and time.The vast majority are non-linear, multimodal, and quite restrictive in real-life problems [9].Different objectives frequently collide.Even if one goal is set, Optimum solutions are not always available [10].Usually, a faultless or failed response is not simple to find.Many metaheuristic algorithms have been published, including swarm intelligence, anthrax optimization, optimization of the particulate swarm.In previous articles [11].The feature selection issuemay be seen as amulti-objective optimization problem in which two conflicting objectivesmust be met: picking the fewest possible features while attaining maximum classification accuracy [12].The solution with the most distinctive features and the maximum classification accuracy is deemed optimal [13].

    2 Literature Review

    Meta-heuristics refers to generic methods that normally used to solve complex and challenging combinatorial search problems.Generally, the problems solved by metaheuristic algorithms are challenging for computer scientists due to the need to examining a huge number of combinations that usually exponential with conflicting objectives [14].Many metaheuristic algorithms have been proposed to tackle real-world situation such as image segmentation [15], water allocation and crop planning [16], Nurse Rostering [17], power load dispatch [18], and Parkinson diagnosis [19].Several survey papers are available for more information about metaheuristic algorithms [20-23].

    Nature-inspired metaheuristic algorithms to solve complex real-world situation have attractedthe attention of the researchers in the scientific community.Many new nature-inspired metaheuristic algorithms have been developed, including SymbioticOrganisms Search [24], Bat Algorithm (BA) [25], Bacterial Foraging Opt [26], Gravitational Search Algorithm [27], Firefly Algorithm (FA) [28], Krill Herd [29], Grey Wolf Optimization (GWO) algorithm [30,31], Cuckoo Search [32], Harmony search algorithm [33], Whale optimization [34], Social spider optimization [35], and Biogeography-basedOpt [36].

    Several research paper can be found in the literature tackling feature selection as in [37-40].When it comes to feature selection, metaheuristic algorithms are instrumental because they deal with the dimensions of the data set to make predictions [38].However, when the dimensionality of the data sets is increased, the performance of classification methods suffers because of this.Furthermore, highdimensional data sets have several drawbacks, including a long model creation time, redundant data,and reduced performance, making data analysis very challenging [40].The feature selection step is a major preprocessing step that is used to resolve this problem.Its goal is to select a subset of features from an extensive data set while also increasing the accuracy of the classification or clustering model,resulting in the removal of noisy, extraneous, and ambiguous data.The following section present the proposed DTO optimizer.

    3 Proposed Dipper Throated Optimization Algorithm

    Dipper Throated bird is a member of the genus Cinclus in the bird family Cinclidae, so-called because of their bobbing or dipping movements see Fig.1.They are unique among passerines for their ability to dive, swim, and hunts underwater.Besides, it can fly rapidly and straight without pauses or glides because it has short and flexible wings.Dipper Throated bird has its unique hunting technique, it performs rapid bowingmovements, enhanced by the purewhite of the breast.Once the prey is detected, it dives headfirst into the water, even into the turbulent and fast-flowing water.When it became on the bottom, it turns up stones and pebbles, to disturb aquatic invertebrates, aquatic insects, and small fish.the Dipper walks on the bottom by grasping stones.It often walks against the current, with the head downwards to locate prey, it can be stable for a long time with its strong feet, also, it can walk into the water and deliberately submerge, by using its wings effectively and walk along with the bottom keeping its head well down and its body oblique to secures its food.,it dives headfirst into the water, even into the turbulent and fast-flowing water.When it became on the bottom, it turns up stones and pebbles, to disturb aquatic invertebrates, aquatic insects, and small fish.the Dipper walks on the bottom by grasping stones.It often walks against the current, with the head downwards to locate prey, it can be stable for a long time with its strong feet, also, it can walk into the water and deliberately submerge, by using its wings effectively and walk along with the bottom keeping its head well down and its body oblique to secures its food.

    3.1 Mathematical Formulation

    Mathematically, the Dipper Throated Optimization (DTO) algorithm assumes the birds are swimming and flying to search for food resourcesNfsavailable fornbirds.The birds’locations,BP,and velocities,BV, can be represented by the following matrices:

    whereBPi,jindicatesithbirdinthejthdimensionfori∈1,2,3,...,nandj∈1,2,3,...,d.BVi,jindicatesithbird velocity in thejthdimension fori∈1,2,3,...,nandj∈1,2,3,...,d.The initial locations ofBPi,jare uniform distribution within lower and upper bounds.The fitness valuesf=f1,f2,f3,...,fnare calculated for each bird as in the following array

    where the fitness value indicates the quality of food source searched by each bird.The optimal value means mother bird.These values are then sorted in ascending order.The first best solution in declared to beBPbest.The remaining solutions are supposed to be normal birdsBPndfor follower birds.The global best solution in declared to beBPGbest.

    First DTO mechanism by this optimizer to update the swimming bird position is based on the following equation:

    whereBPnd(t) is a normal bird position at iterationtandBPbest(t) is the best bird position.The“.”is pairwise multiplication.BPnd(t+ 1) is the updated bird position for the solution.

    TheC1andC2are updated within the iterations by the following

    wherecchanges from 2 to 0 exponentially,r1is a random value in [0,1] andTmaxin the total number of iterations.

    Second DTO mechanism is based on updating the flying bird position and velocity by the following equations.The flying birds’positions are updated as

    whereBPnd(t+ 1) is the new bird position for normal birds, and the updated velocity of each birdBV(t+ 1) is calculated as

    whereC3is a weight value,C4andC5are constants.BPGbestis a random number inr2isarandom number in [0;1].

    The DTO algorithm can be described by this equation

    whereM=C2.BPbest(t) -BPnd(t) andRis a random value in [0,1].

    Figure 1: White throated dipper

    Algorithm 1: The DTO Algorithm Initialization positions BPi(i = 1,2,...,n) with size n,velocities BVi(i = 1,2,...,n), total number of iterations Tmax,fitness function fn, c, C1, C2, C3, C4, C5, r1, r2, R, t = 1 Calculate objective function fnfor each bird BPi Find best bird BPbest While t≤Tmax do for (i = 1 : i<n + 1) do if (R<0.5) then Update position of current swimming bird as BPnd(t + 1) = BPbest(t) - C1.|C2.BPbest(t) - BPnd(t)|else Update velocity of current flying bird as BV(t + 1) = C3BV(t) + C4r2(BPbest(t) - BPnd(t)) + C5r2(BPGbest- BPnd(t))Update position of current flying bird as BPnd(t + 1) = BPnd(t) + BV(t + 1)end if end for Calculate objective function fnfor each bird BPi Update c, C1, C2, R Find best bird BPbest Set BPGbest= BPbest Set t = t + 1 Return best bird BPGbest

    3.2 Complexity Analysis

    The computational complexity of the DTO algorithm can be expressed as follow.For populationnand iterationstmax, the time complexity will be defined as follows:

    ■InitializationBPi(i= 1,2,...,n),BVi(i= 1,2,...,n),Tmax,c,C1,C2,C3,C4,C5,r1,r2,R,t= 1:O(1).

    ■Calculate objective functionfnfor each birdBPi:O(n).

    ■Finding best birdBPbest:O(n).

    ■Updating position of current swimming bird:O(tmax×n).

    ■Updating velocity of current flying bird:O(tmax×n).

    ■Updating position of current flying bird:O(tmax×n).

    ■Calculating objective functionfnfor each birdBPi:O(tmax).

    ■Updatingc,C1,C2,R:O(tmax).

    ■Finding best birdBPbest:O(tmax).

    ■SettingBPGbest=BPbest:O(tmax).

    ■Settingt=t+ 1:O(tmax).

    ■Producing the best birdBPGbest:O(1)

    From this analysis, the complexity of computations isO(tmax×n) andO(tmax×n×d) withddimension.

    4 Experimental Results

    The experiments in this section are explained in two sets.The first set of experiments is designed to evaluate the proposed DTO algorithm performance.The proposed DTO algorithm is tested compared to the algorithms of Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), GreyWolf Optimizer (GWO), and Genetic Algorithm (GA) based on the seven unimodal benchmark functions [19].Then,ANOVAandWilcoxon rank-sum tests are performed to confirmthe effectiveness of the proposed algorithm compared to other optimization techniques.The second is experimental in feature selection [20].

    4.1 Evaluation of DTO Algorithm Unconstrained Function

    Tab.1 shows a list of the unimodal benchmark function tested in the first experiment.Tab.1 shows the compared algorithms configuration.To be fair in the comparison, all the algorithms start with 20 agents, same objective function, 100 iterations, same dimensions, and boundaries.

    Table 1: Descriptions of unimodal benchmark functions used in our experiments

    Table 1: Continued

    Fig.2 shows the convergence curves of the proposed DTO algorithm compared to the PSO,WOA, and GWO algorithms for the benchmark mathematical functions.Note that, the best convergence is achieved by the DTO algorithm.Tab.2 shows the mean and the standard deviation results based on the benchmark function, F1-F7, for different algorithms

    Figure 2: (Continued)

    Figure 2: The sample functions’graphical representations and convergence curves

    Table 2: Mean and standard deviation results based on the benchmark function F1: F7

    To test the statistical difference between the proposed DTO algorithm and the compared algorithms, a one-way analysis of variance (ANOVA) test is applied.In this test, two hypotheses are considered; the first is null hypothesis (H0:μDTO=μPSO=μWOA=μGWO=μGA) and the alternate hypothesis(H1:Means are not all equal).TheANOVAtest results are shown in Tab.3.Fig.3showsthe ANOVA test for proposed and the compared algorithmsvs.the objective function.From the results,the alternate hypothesisH1is accepted.The ANOVA test confirms the effectiveness of the proposed algorithm compared to other optimization techniques.

    Table 3: ANOVA test results based on the benchmark function F1: F7

    Table 3: Continued

    Figure 3: (Continued)

    Figure 3: ANOVA test for the proposed DTO and compared algorithms based on the benchmark functions

    Wilcoxon’s rank-sum test is employed between every two algorithms to get the p-values betweenthe proposed DTO algorithm and other algorithms to show that DTO has a significant difference.The two hypotheses are the null hypothesis (H0:μDTO=μPSO,μDTO=μGWO,μDTO=μWOA, and μDTO=μGA)and the alternate hypothesis (H1: Means are not all equal).Tab.4 shows that the p-values are less than 0.05 between the proposed algorithm and other algorithms.This confirms the superiority of the DTO algorithm and that it is statistically significant.Thus, the alternate hypothesisH1is accepted.

    Table 4: Wilcoxon’s rank-sum test results based on the benchmark function F1: F7

    4.2 Evaluation of DTO Algorithm on Feature Selection Problem

    IIn the case of the feature selection issue, the output solution should bemodified from a continuous solution to a binary solution utilizing the numbers 0 or 1.This function is often used to convert the continuous solution of an optimizer to a binary solution in an optimization problem.

    4.2.1 Fitness Function

    The quality of an optimizer’s solutions is determined by the fitness function that has been given to it.The error rate of classification and regression, as well as the features that have been picked from the input dataset, are the primary determinants of the function.It is advisable to choose a solution based on the collection of characteristics that can provide the bare minimum of features with the lowest classification error rate.The following equation is used in this study to evaluate the quality of the solutions provided.

    As part of the experiments and comparative findings, the DTO evaluated our proposed algorithm against six datasets from the UCI machine learning library to determine its effectiveness.The datasets were chosen because they had a diverse range of features and occurrences that were reflective of the many types of problems that the proposed approach would be evaluated against.For more details about the UCI datasets, refer to Tab.5.

    Algorithm 2: The bDTO Algorithm Initialization DTO Algorithm configuration, including population and parameters Change solutions to binary (0 or 1)Evaluate fitness function While t≤itersmaxdo Calculate objective function fnfor each bird BPi Find best bird BPbest While t≤Tmax do Apply DTO Algorithm Convert solutions to binary (0 or 1) using Eq.(9)Update parameters and best solution end while Return best solution

    Table 5: Datasets description

    4.2.2 Evaluation Metrics

    The evaluation metrics used in this research are presented in Tab.6 as follows:

    Table 6: Evaluation metrics

    The average error of several algorithms is shown in Tab.7.Due to the decreased error, the optimizer has identified the optimal collection of features that can train the classifier while also producing a smaller error on the concealed test data.Tab.8 bellow shows the average features selected.Tab.9 for average fitness, Tab.10 for standard deviation fitness, Tab.11 for best fitness, and Tab.12 for worst fitness.The DTO has been able to find the superiority fitness for all datasets.

    Table 7: Average error

    Table 8: Average select size

    Table 9: Average fitness

    Table 10: Standard deviation fitness

    Table 11: Best fitness

    Table 12: Worst fitness

    5 Conclusion

    In this paper, a novel Dipper Throated Optimization (DTO) is introduced which is inspired bythe throated dipper bird.Six UCI machine learning database datasets and unconstrained function are used to prove the consistency of the suggested optimizer and guarantee that the proposed solution is dependable and stable to evaluate its quality and effectiveness.ANOVA and Wilcoxon rank-sum tests are used to compare the proposed algorithm to different optimization methods.The results showed clearly that, DTO outperformed all other compared methods.For future work, DTO needs more investigation by applying it to solve other well-known real-world combinatorial optimization problems.Based on the great success of DTO, the researchers can investigate the hybridizations betweenDTOand othermetaheuristic optimization algorithms as it is proved that hypermetaheuristic algorithms perform well compared to single metaheuristic algorithms.

    Acknowledgement:The researcher would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美成人午夜精品| 亚洲专区中文字幕在线| 亚洲av美国av| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 国产精品一区二区免费欧美 | 国产欧美日韩一区二区三 | 精品高清国产在线一区| 日韩欧美国产一区二区入口| 99国产精品免费福利视频| 老司机亚洲免费影院| 三上悠亚av全集在线观看| 国产精品二区激情视频| 电影成人av| 色综合欧美亚洲国产小说| 午夜福利视频精品| 国产高清视频在线播放一区 | 啦啦啦视频在线资源免费观看| 又紧又爽又黄一区二区| 宅男免费午夜| 亚洲美女黄色视频免费看| √禁漫天堂资源中文www| 国产精品熟女久久久久浪| 99国产极品粉嫩在线观看| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 成人影院久久| 动漫黄色视频在线观看| 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 日韩欧美一区视频在线观看| 青春草视频在线免费观看| 中文字幕高清在线视频| 丁香六月欧美| 丁香六月欧美| 精品高清国产在线一区| 日日夜夜操网爽| 午夜91福利影院| 热99国产精品久久久久久7| 国产精品一二三区在线看| 久久精品国产a三级三级三级| 国产淫语在线视频| 亚洲男人天堂网一区| 最近中文字幕2019免费版| 国产成人精品无人区| 亚洲五月婷婷丁香| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品一区三区| 一本大道久久a久久精品| 亚洲欧美激情在线| 国产在线免费精品| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 亚洲av男天堂| 精品福利观看| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 新久久久久国产一级毛片| 日韩视频一区二区在线观看| 久久久久视频综合| 久久久久久久国产电影| 久久国产精品大桥未久av| 国产麻豆69| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 99精国产麻豆久久婷婷| 国产97色在线日韩免费| 国产精品久久久久成人av| 亚洲第一av免费看| 香蕉丝袜av| 欧美日韩视频精品一区| 一区二区av电影网| 亚洲,欧美精品.| 午夜福利一区二区在线看| 亚洲国产精品999| 日韩视频一区二区在线观看| 性色av乱码一区二区三区2| 久久九九热精品免费| 国产精品亚洲av一区麻豆| 精品久久蜜臀av无| 亚洲精品av麻豆狂野| 18禁观看日本| 亚洲国产精品一区二区三区在线| 亚洲精品乱久久久久久| 色老头精品视频在线观看| 午夜福利乱码中文字幕| 后天国语完整版免费观看| 脱女人内裤的视频| 国产成人系列免费观看| 午夜福利在线观看吧| 亚洲国产精品一区三区| 97在线人人人人妻| 天天操日日干夜夜撸| svipshipincom国产片| 99热全是精品| 亚洲精品粉嫩美女一区| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 国产欧美日韩精品亚洲av| 99久久国产精品久久久| 九色亚洲精品在线播放| 国产在线视频一区二区| 老司机午夜十八禁免费视频| 狂野欧美激情性bbbbbb| 久久av网站| 99精品久久久久人妻精品| 9191精品国产免费久久| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 91大片在线观看| 飞空精品影院首页| 欧美xxⅹ黑人| 精品国产乱子伦一区二区三区 | 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 欧美av亚洲av综合av国产av| 久久久久国内视频| 色播在线永久视频| 精品视频人人做人人爽| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 十分钟在线观看高清视频www| 国产精品久久久久久精品电影小说| 亚洲成人国产一区在线观看| 午夜老司机福利片| 97精品久久久久久久久久精品| 美女高潮喷水抽搐中文字幕| 在线av久久热| 精品国产超薄肉色丝袜足j| 欧美日韩中文字幕国产精品一区二区三区 | 日韩熟女老妇一区二区性免费视频| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 丝袜美腿诱惑在线| 青青草视频在线视频观看| 亚洲 国产 在线| 国产伦人伦偷精品视频| 国产高清videossex| 国产成人欧美| 国产成人精品久久二区二区91| 成人影院久久| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 亚洲国产欧美一区二区综合| 精品少妇内射三级| 18禁国产床啪视频网站| 亚洲国产av新网站| 欧美成人午夜精品| 欧美xxⅹ黑人| 国产1区2区3区精品| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 中文字幕av电影在线播放| 在线观看人妻少妇| 男人操女人黄网站| a级毛片黄视频| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 黄色视频在线播放观看不卡| 捣出白浆h1v1| 午夜成年电影在线免费观看| av天堂在线播放| 欧美精品一区二区大全| 大片免费播放器 马上看| 美女午夜性视频免费| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件| 国产一区二区激情短视频 | 日本精品一区二区三区蜜桃| 亚洲综合色网址| 久久久精品区二区三区| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 亚洲第一青青草原| 午夜老司机福利片| 日日爽夜夜爽网站| 老司机亚洲免费影院| 男女高潮啪啪啪动态图| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 高清黄色对白视频在线免费看| 最新在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲九九香蕉| 99热国产这里只有精品6| 国产亚洲午夜精品一区二区久久| 窝窝影院91人妻| 欧美成人午夜精品| 欧美变态另类bdsm刘玥| 纵有疾风起免费观看全集完整版| 亚洲精品乱久久久久久| 国产成+人综合+亚洲专区| 欧美精品高潮呻吟av久久| 国产三级黄色录像| 美女主播在线视频| 精品国内亚洲2022精品成人 | 国产黄色免费在线视频| av天堂久久9| 999久久久精品免费观看国产| 久久亚洲国产成人精品v| 国产成人影院久久av| 亚洲avbb在线观看| 777久久人妻少妇嫩草av网站| 国产一卡二卡三卡精品| tocl精华| 亚洲av成人一区二区三| 亚洲全国av大片| 亚洲国产日韩一区二区| 一区在线观看完整版| 法律面前人人平等表现在哪些方面 | 纯流量卡能插随身wifi吗| 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 日韩一区二区三区影片| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 欧美成狂野欧美在线观看| 丁香六月欧美| 午夜福利,免费看| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 1024视频免费在线观看| www日本在线高清视频| 亚洲国产日韩一区二区| 9色porny在线观看| 考比视频在线观看| 熟女少妇亚洲综合色aaa.| 好男人电影高清在线观看| 麻豆av在线久日| 91九色精品人成在线观看| 亚洲国产精品999| 91麻豆av在线| 日本91视频免费播放| 亚洲天堂av无毛| 手机成人av网站| 国产免费现黄频在线看| av国产精品久久久久影院| 日韩电影二区| 亚洲第一欧美日韩一区二区三区 | 巨乳人妻的诱惑在线观看| 中文字幕人妻熟女乱码| 久久久精品区二区三区| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久 | 丝袜人妻中文字幕| 夫妻午夜视频| 满18在线观看网站| 午夜免费鲁丝| 午夜影院在线不卡| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 老司机深夜福利视频在线观看 | 香蕉国产在线看| 黄色a级毛片大全视频| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av | 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区av网在线观看 | www.精华液| 丝袜脚勾引网站| 亚洲av美国av| 99精品久久久久人妻精品| 午夜福利影视在线免费观看| 久热这里只有精品99| 亚洲熟女精品中文字幕| 不卡av一区二区三区| 精品乱码久久久久久99久播| 久久久久久亚洲精品国产蜜桃av| 国产精品99久久99久久久不卡| 他把我摸到了高潮在线观看 | 最近最新中文字幕大全免费视频| 法律面前人人平等表现在哪些方面 | 一区福利在线观看| 母亲3免费完整高清在线观看| 9色porny在线观看| 另类精品久久| 在线天堂中文资源库| 国产一区二区在线观看av| 老司机深夜福利视频在线观看 | 女人精品久久久久毛片| 97人妻天天添夜夜摸| 老司机影院毛片| 精品久久蜜臀av无| 999久久久精品免费观看国产| a级毛片在线看网站| 欧美性长视频在线观看| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 国产精品国产av在线观看| 婷婷丁香在线五月| 国产一区有黄有色的免费视频| 日本一区二区免费在线视频| 悠悠久久av| 日韩大码丰满熟妇| 日韩中文字幕欧美一区二区| 国产精品偷伦视频观看了| 老熟妇乱子伦视频在线观看 | 丝袜美足系列| 色94色欧美一区二区| 精品国内亚洲2022精品成人 | 亚洲国产成人一精品久久久| 久9热在线精品视频| 国产精品一二三区在线看| 亚洲精华国产精华精| www日本在线高清视频| 久久人妻福利社区极品人妻图片| 国产成+人综合+亚洲专区| 人人妻人人澡人人爽人人夜夜| 高潮久久久久久久久久久不卡| 亚洲第一青青草原| 青青草视频在线视频观看| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| h视频一区二区三区| 各种免费的搞黄视频| 12—13女人毛片做爰片一| 中文欧美无线码| 精品少妇一区二区三区视频日本电影| 亚洲精品久久久久久婷婷小说| 国产精品免费视频内射| 一级,二级,三级黄色视频| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 国产亚洲精品一区二区www | 肉色欧美久久久久久久蜜桃| 日韩免费高清中文字幕av| 色94色欧美一区二区| 久久 成人 亚洲| 十八禁网站网址无遮挡| 中文字幕av电影在线播放| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| h视频一区二区三区| 2018国产大陆天天弄谢| 一区福利在线观看| 正在播放国产对白刺激| 欧美黄色片欧美黄色片| 精品国产乱子伦一区二区三区 | 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 色老头精品视频在线观看| 男女免费视频国产| 美女国产高潮福利片在线看| 电影成人av| 九色亚洲精品在线播放| 男女下面插进去视频免费观看| 我要看黄色一级片免费的| 久久人妻福利社区极品人妻图片| 热99国产精品久久久久久7| 亚洲欧美精品自产自拍| 免费日韩欧美在线观看| 啪啪无遮挡十八禁网站| 久久人人爽人人片av| 亚洲人成电影观看| 国产成人欧美| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 在线观看免费午夜福利视频| 老熟女久久久| 成人国产av品久久久| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 国产在线免费精品| 黑人操中国人逼视频| 最近中文字幕2019免费版| 国产亚洲精品一区二区www | 91成年电影在线观看| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| 99久久99久久久精品蜜桃| 精品国产一区二区三区久久久樱花| 人妻人人澡人人爽人人| 永久免费av网站大全| 男人爽女人下面视频在线观看| 伊人亚洲综合成人网| 一二三四在线观看免费中文在| 亚洲一区二区三区欧美精品| 性色av一级| 国产熟女午夜一区二区三区| 99久久人妻综合| 国产成人免费观看mmmm| 日韩视频在线欧美| 正在播放国产对白刺激| 久久久久精品人妻al黑| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸 | 成人免费观看视频高清| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 一边摸一边抽搐一进一出视频| 亚洲国产欧美一区二区综合| 动漫黄色视频在线观看| 69精品国产乱码久久久| 日本五十路高清| 亚洲免费av在线视频| 国产在线观看jvid| 精品一区在线观看国产| 欧美日本中文国产一区发布| 黑人操中国人逼视频| 免费观看av网站的网址| 亚洲专区国产一区二区| 国产黄频视频在线观看| 自线自在国产av| 亚洲av男天堂| 午夜影院在线不卡| 免费不卡黄色视频| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 大香蕉久久网| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 如日韩欧美国产精品一区二区三区| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 啦啦啦中文免费视频观看日本| 亚洲国产精品999| √禁漫天堂资源中文www| 日韩电影二区| 大片电影免费在线观看免费| 在线观看一区二区三区激情| 成人国产av品久久久| 亚洲国产精品成人久久小说| 国内毛片毛片毛片毛片毛片| 久久 成人 亚洲| 久久久久精品人妻al黑| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 亚洲国产欧美一区二区综合| 国产在视频线精品| 91成年电影在线观看| 亚洲精品国产区一区二| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 又紧又爽又黄一区二区| 国产成人精品在线电影| xxxhd国产人妻xxx| 亚洲视频免费观看视频| 一进一出抽搐动态| 黄网站色视频无遮挡免费观看| 久久精品成人免费网站| 国产精品亚洲av一区麻豆| 自线自在国产av| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 欧美精品av麻豆av| 欧美黑人精品巨大| 午夜激情久久久久久久| tube8黄色片| 亚洲欧美成人综合另类久久久| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 黄色 视频免费看| 在线看a的网站| 国产成+人综合+亚洲专区| 大香蕉久久网| 精品少妇久久久久久888优播| 欧美午夜高清在线| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| av又黄又爽大尺度在线免费看| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 精品少妇内射三级| 一个人免费在线观看的高清视频 | 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 性色av乱码一区二区三区2| 在线十欧美十亚洲十日本专区| 成人免费观看视频高清| 免费在线观看日本一区| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| av在线app专区| 视频区图区小说| av线在线观看网站| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 亚洲av国产av综合av卡| 亚洲五月色婷婷综合| 国产色视频综合| 国产免费福利视频在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品久久久人人做人人爽| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| av一本久久久久| kizo精华| 正在播放国产对白刺激| kizo精华| 中国国产av一级| 久久久水蜜桃国产精品网| 亚洲精品久久午夜乱码| 亚洲,欧美精品.| www.熟女人妻精品国产| 欧美97在线视频| 国产亚洲午夜精品一区二区久久| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | 宅男免费午夜| 人人澡人人妻人| 另类亚洲欧美激情| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 老司机福利观看| 国产精品香港三级国产av潘金莲| 国产高清国产精品国产三级| 99精品欧美一区二区三区四区| 黄色毛片三级朝国网站| 日韩视频一区二区在线观看| 在线观看舔阴道视频| 精品国产乱码久久久久久男人| 国产精品熟女久久久久浪| 日本a在线网址| av不卡在线播放| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 久久性视频一级片| 嫩草影视91久久| 亚洲第一欧美日韩一区二区三区 | 97精品久久久久久久久久精品| 美女大奶头黄色视频| a级毛片黄视频| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 热re99久久精品国产66热6| 视频区图区小说| 国产亚洲av片在线观看秒播厂| 熟女少妇亚洲综合色aaa.| 欧美97在线视频| 国产男人的电影天堂91| 日韩欧美一区视频在线观看| 夫妻午夜视频| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 欧美精品高潮呻吟av久久| 亚洲精品国产色婷婷电影| 亚洲第一青青草原| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| 精品乱码久久久久久99久播| 黄片播放在线免费| 美女高潮到喷水免费观看| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 男人舔女人的私密视频| 91麻豆av在线| 国产精品二区激情视频| av电影中文网址| 麻豆av在线久日| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻熟女aⅴ| 亚洲中文字幕日韩| 午夜精品久久久久久毛片777| 成年av动漫网址| 日韩一卡2卡3卡4卡2021年| 日本91视频免费播放| 桃花免费在线播放| 国产精品久久久av美女十八| 国产片内射在线| av有码第一页| 美女国产高潮福利片在线看| 亚洲国产欧美一区二区综合| 美女视频免费永久观看网站| 老司机午夜十八禁免费视频| 一区二区日韩欧美中文字幕| 午夜免费鲁丝| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区 | 黑人欧美特级aaaaaa片| 亚洲精品粉嫩美女一区| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 午夜91福利影院| 老鸭窝网址在线观看| 国产亚洲一区二区精品| 老司机午夜十八禁免费视频| 午夜福利一区二区在线看| 高潮久久久久久久久久久不卡| 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 国产精品熟女久久久久浪| 日韩大码丰满熟妇| 欧美+亚洲+日韩+国产| 午夜久久久在线观看| 日本黄色日本黄色录像| 一区二区三区乱码不卡18| 日本a在线网址|