• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective Frameworks Based on Infinite Mixture Model for Real-World Applications

    2022-08-24 12:56:18NorahSalehAlghamdiSamiBourouisandNizarBouguila
    Computers Materials&Continua 2022年7期

    Norah Saleh Alghamdi, Sami Bourouisand Nizar Bouguila

    1Department of Computer Sciences, College of Computer and Information Sciences,Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia

    2College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia

    3The Concordia Institute for Information Systems Engineering (CIISE), Concordia University,Montreal, QC H3G 1T7, Canada

    Abstract: Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications.In particular, recognizing human activities with accurate results have become a topic of high interest.Although the current tools have reached remarkable successes, it is still a challenging problem due to various uncontrolled environments and conditions.In this paper two statistical frameworks based on nonparametric hierarchical Bayesian models and Gamma distribution are proposed to solve some realworld applications.In particular, two nonparametric hierarchical Bayesian models based on Dirichlet process and Pitman-Yor process are developed.These models are then applied to address the problem of modelling grouped data where observations are organized into groups and these groups are statistically linked by sharing mixture components.The choice of the Gamma mixtures is motivated by its flexibility for modelling heavy-tailed distributions.In addition, deploying the Dirichlet process prior is justified by its advantage of automatically finding the right number of components and providing nice properties.Moreover, a learning step via variational Bayesian setting is presented in a flexible way.The priors over the parameters are selected appropriately and the posteriors are approximated effectively in a closed form.Experimental results based on a real-life applications that concerns texture classification and human actions recognition show the capabilities and effectiveness of the proposed framework.

    Keywords: Infinite Gamma mixture model; variational Bayes; hierarchical Dirichlet process; Pitman-Yor process; texture classification; human action recognition

    1 Introduction and Literature Review

    Data clustering has been the subject of wide research to the present days [1-4].The goal of clustering is to group the observed data into separate subgroups, such as the data in each subgroup shows some similarities to each other.Various clustering approaches have been developed in the past and some of them are based on distance metrics (such as the K-means and SOM algorithms).It is noteworthy that these algorithms are sensitive to noise, are not flexible when dealing with incomplete data, and may not definitely capture heterogeneity inherent in complex datasets.Another important alternative is the model-based clustering approach [5].It is effective for modelling the structure of clusters since data are supposed to be produced by some distributions.In particular, finite mixture models (such as Gaussian mixture model) have shown to be effective (in terms of discovering complex patterns and grouping them into similar clusters) for many computer vision and pattern recognition applications [6].Nevertheless, Gaussian model cannot fit well complex non-Gaussian shapes.To cope with the disadvantages related to conventional Gaussian assumption, many contributions have occurred to develop other flexible mixture models and were interested to non-Gaussian behavior of real datasets [7,8].For instance,Gamma (GaMM) mixtures have demonstrated to offer high flexibility and ease of use than Gaussian [9] for many image processing and pattern recognition problems.This is due their compact analytical form which is able to cover long-tailed distributions and to approximate data with outliers.This mixture has been used with success for a range of interesting problems [7,10-12]especially when dealing with proportional data.An illustration of how mixture models can be applied for data modelling, classification and recognition is given in Fig.1.

    Figure 1: Block diagram of application of mixture model for data classification and recognition

    Unfortunately, the inadequacy of finite mixture model has been apparent when selecting the appropriate number of mixture components.In other word, model selection (i.e., model’s complexity)is one of the difficult problems within finite mixture models.The crucial problem of“how many groups in the dataset?”still remains of great interest for various data mining fields since determining inappropriate number of clusters may conduct to poor generalization capability.This problem can be solved by considering an infinite number of components via nonparametric Bayesian methods[13,14], principally within“Dirichlet process (DP)”[15].Indeed, a Dirichlet Process (DP) is a parameterized stochastic process characterized by a base distribution and it can be defined as a probability distribution over discrete distributions.Numerous studies have been devoted to infinite mixture models which are emerged to cope with the challenging problem of model selection.

    Two sound hierarchical Bayesian alternatives to the conventional DP named as hierarchical Dirichlet process (HDP) and hierarchical Pitman-Yor process (HPYP) have exposed encouraging results especially when dealing with modeling grouped data [16,17].Indeed,within hierarchical models,mixture components can be shared through data groups (i.e., parameters are shared among groups).In such cases, it is possible to make a Bayesian hierarchy on the DP and the base distribution of the DP is distributed according to another DP.

    Thus, the main contributions of this manuscript are first to extend our previous works about the Gamma mixture by investigating two efficient nonparametric hierarchical Bayesian models based on both Dirichlet and Pitman-Yor processes mixtures of Gamma distributions.Indeed, in order to reach enhanced modeling performance, we consider Gamma distribution which is able to cover longtailed distributions and to approximate accurately visual vectors.Another critical issue when dealing with mixture models is model parameters estimation.Accordingly, we propose to develop an effective variational Bayes learning algorithm to estimate the parameters of the implemented models.It is noteworthy to indicate that the complexity of variational inference-based algorithm still remains less than Markov Chain Monte Carlo-Based Bayesian inference and leads to faster convergence.Finally,the implemented hierarchical Bayesian models and the variational inference approaches are validated via challenging real-life problems namely human activity recognition and texture categorization.

    This manuscript is organized as follows.In Section 2 we introduce the hierarchical DP and PYP mixtures of Gamma distributions which are based on stick-breaking construction.In Section 3, we describe the details of our variational Bayes learning framework.Section 4 reports the obtained results, which are based on two challenging applications, to verify the merits and effectiveness of our framework, and Section 5 is devoted to conclude the manuscript.

    2 Model Specification

    In this section, we start by briefly presenting finite Gamma mixture model and then we present our nonparametric frameworks based on hierarchical Dirichlet and Pitman-Yor processes mixtures.

    2.1 Finite Gamma Mixture Model

    If aD-dimensional random vector= (Y1,...,YD) is distributed according to a multidimensional Gamma distribution, then its probability density function (pdf) is defined as:

    2.2 Hierarchical Dirichlet Process Mixture Model

    The hierarchical Dirichlet process (HDP) is an an effective nonparametric Bayesian method to modelling grouped data, which allows the mixture models to share components.Here, observed data are arranged into groups (i.e., mixture model) that we want to make them statistically linked.HDP It is built on the Dirichlet process (DP) as well described in [17] for each group data.It is noteworthy that the DP has acquired popularity in machine learning to handle nonparametric problems [18].The DP was presented as a prior on probability distributions and this makes it extremely appropriate for specifying infinite mixture models thanks to the use of the stick-breaking process [19].In the case of hierarchical Dirichlet process (HDP), the DPs for all groups share a base distribution which is itself distributed according to a Dirichlet process.Let’s assume that we have a grouped data set Y separated intoMgroups, such that each group is associated with a DPGj, thus the HDP takes part an indexed set of DPsGjthat share a global (or base) distributionG0which is itself distributed as a DP with base distributionHand concentration parameter γ:

    Here, the hierarchical Dirichlet process is represented using the stick-breaking construction[19,20].The global measureG0is distributed according toDP(γ,H) and it can be expressed as

    where δΩkrepresents an atom concentrated at Ωk, and {Ωk} is a set of independent random variables drawn fromH.The variable {ψk} are denoted as stick-breaking that verify= 1.AsG0is defined as the base distribution of the DPGjand has the stick-breaking representation as shown in Eq.(3),thenGjincludes all the atoms Ωkwith distinct weights (by following the property of Dirichlet process[18]).On the other side, we carry out another stick-breaking process to construct each group-level DPGjaccording to [21] as

    where {πjt} is a set of stick-breaking weights which shall be positive and sum to one and δωjtare grouplevel Dirac delta atoms at ωjt.As ωjt(group-level atom) is distributed according toG0, thus it will take onto Ωk(base-level atoms) with probability ψk.

    Next, we introduce a latent indicatorWjtkas an indicator variable, such thatWjtk∈{0,1} (in order to indicate which group-level atom maps to).Wjtk= 1 if ωjt(group-level atom) maps to the Ωk(globallevel atom) that is indexed byk; otherwise,Wjtk= 0.Accordingly, we can have ωjt=.By this way, there is no need to keep a representation for ωjt.The indicator variable= (Wjt1,Wjt2,...) is distributed as:

    Given that ψ is a function of ψ′according to Eq.(4), it is possible to rewrite the indicator variablep() as:

    According to Eq.(4) the stick lengths ψ′are drawn from a specific Beta distribution and their realization is determined as

    To complete the description of the HDP mixture model, given a grouped observation (data) Y,we associate each data pointwith a factor(hereiindexes the data in each groupj) such thatand= (θj1,θj2,...) are distributed according toF(θji) andGj, respectively.In this case the likelihood function can be written as:

    whereF(θji) is the probability distribution ofYjigiven θji.The base distributionHprovides the prior distribution for θji.This setting (i.e., hierarchical Dirichlet process (HDP) mixture model) plays an important role and ensures that each group is associated with a mixture model, and the components of the mixture are shared across different groups.

    As each θjiis distributed according toGj(see Eq.(9)), it takes the value ωjtwith probability πjt.We then introduce another indicator variableZjit∈{0,1} for θjias

    That is, the indicatorZjitis used to indicate which component θjibelongs to.In particular,Zjitis equal to 1 if θjiis associated with componentt(also maps to the group-level atom ωjt); else,Zjit= 0.Thus, we can write.As ωjtmaps to Ωk, we then can write.

    Based on the stick-breaking construction of the DP (see Eq.(5)), we notice thatis a function of, therefore the previous equation becomes

    Finally, according to Eq.(5), the prior distribution of π′is a Beta and it is given as follows:

    2.3 Hierarchical Pitman-Yor Process Mixture Model

    The Pitman-Yor process (PYP) [22] is a two-parameter extension to the DP (i.e., is a generalization of DP) that permits modelling heavier-tailed distributions.It can be applied to build hierarchical models.It offers a sophisticated way to cluster data such that the number of clusters is unknown.It is characterized by an additional discount parameter γain addition to the concentration parameter γb, that satisfying the 0<γa<1,γb>-γa.Similar to DP, the sample drawn from PYP also associated a probability measureH[23].Here, a hierarchical Pitman-Yor process (HPYP) is introduced where the base measure for a PYP is itself a draw from a PYP.Specifically, HPYP defines the global-level measureG0and group-level distributionGj(that is the indexedGjshares a same baseG0which itself follows a PYP).This behavior makes the HPYP especially suitable for complex visual data modeling and classification.We can use the HPYP to cluster data by applying the stick-breaking construction that defines the base measure as follows:

    where {Λk} is a set of independent random variables drawn fromHand δΛkis an atom (probability mass) at Λk.The random variables ηkrepresent the stick-breaking weights that satisfying= 1.The stick-breaking representation for the group-level PYPGjis expressed as:

    where {pjt} are the stick-breaking weights.ψjtis the atom of second-level PYP that is distributed according toG0.Then, a global-level indicator variablesIand a group-level indicator variablesCare introduced.Here,Cis used to map θjito group-level atom ψjtand the indicatorIis used to map the atom θjito base-level atom Λk.

    2.4 Hierarchical Infinite Gamma Mixture Model

    In this subsection, we introduce two hierarchical infinite mixture models with Gamma distributions.In this case, each vector= (Yji1,...,YjiD),fromthe grouped data, is drawn froma hierarchical infinite Gamma mixture model.Then, the two likelihood functions of these hierarchical models given the unknown parameters of Gamma and latent variables can be expressed as follows:

    Next, we have to place conjugate distributions over the unknown parameters α and β.As α and β are positive, then it is convenient that they follow Gamma distributions G(.).Thus, we have

    3 Model Learning via Variational Bayes

    Variational inference [3,24] is a well-defined method deterministic approximation method that is used in order to approximate posterior probability via an optimization process.In this section,we propose to develop a variational learning framework of our hierarchical infinite Gamma mixture models.Here,Θ=represents both unknown and the latent variables.Our objective is to estimate a suitable approximationq(Θ) for the true posterior distributionp(Θ|Y) via a process of maximizing the lower bound of lnp(Y) given as

    In particular, we adopt one of the most successfully variational inference techniques namely the factorial approximation (or mean fields approximation) [3], which is able to offer effective updates.Thus, we apply this method to fully factorizeq(Θ) of on HDPGaM and HPYPGaM mixtures into disjoint factors.Then, we apply a truncation method as previously applied in [20] to truncate the variational approximations into global truncation levelKand group truncation levelTas follow:

    where the truncation levelsKandTwill be optimized over the learning procedure.The approximated posterior distribution is then factorized as

    For a specific variational factorqs(Θs), the general equation of the optimal solution is expressed as [3]:

    where〈.〉i/=sdenotes an expectation with respect to all the distributions ofqi(Θi) except fori=s.The parametric forms for the variational posteriors (for each factor) are determined on the basis of Eq.(26) as

    where the corresponding hyperparameters in the above equations can be calculated as a similar way in[25,26].The complete variational Bayes inference algorithms of both HDPGaM and HPYPGaM are summarized in Algorithm 1 and Algorithm 2, respectively.

    Algorithm 1: HDPGaM: Proposed Hierarchical Dirichlet process gamma mixture algorithmimages/BZ_1121_265_950_1515_1565.png

    Algorithm 2: HPYPGaM: Proposed Hierarchical Pitman-Yor process gamma mixture algorithmimages/BZ_1121_265_1730_1515_2347.png

    4 Experimental Results

    The principal purpose of the experiment section is to investigate the performance of the developed two frameworks based on HDP mixture and HPYP mixture model with Gamma distributions.Hence,we propose to compare them with other statistical models using two challenging applications: Texture categorization and human action categorization.In all these experiments, the global truncation levelKand the group level truncation levelTare both initialized to 120 and 60, respectively.For HDP mixture, we set the hyperparameters of the stick lengths γ and λ as (0.25, 0.25).The parameters of HPYP mixture γa,γb,βaand βbare initialized to (0.5, 0.25, 0.5, 0.25).The hyperparameters of Gamma base distribution are initialized by sampling from priors.

    4.1 Texture Classification

    In thisworkwe are primarily motivated by the problem of modeling and classifying texture images.Contrary to natural images which include certain objects and structures, texture images are very special case of images that do not include a well-defined shape.Texture pattern is one of the most important elements in visual multimedia content analysis.It forms the basis for solving complex machine learning and computer vision tasks.In particular, texture classification supports a wide range of applications, including information retrieval, image categorization [27-30], image segmentation [27,31,32], material classification [33], facial expression recognition [29], and object detection [28,34].The goal here to classify texture images using the two hierarchical infinite mixtures and also by incorporating three different representations (to extract relevant features from images) from the literature, namely Local Binary Pattern (LBP) [35], Local Binary Pattern (LBP) [35], scale-invariant feature transform (SIFT) [36], and dense micro-block difference (DMD) [37].A deep review for these methods is outside the scope of current work.Instead, we focus on some powerful feature extraction methods that have shown interesting state-of-the-art results.

    4.1.1 Methodology

    For this application, we start by extracting features from input images and then we model them using the proposed HDPGaM and HPYPGaM.Each imageIjis considered as a group and is related to a infinite mixture modelGj.Next, every vectorYjiofIjis assumed generated fromGj, whereGjrepresents visual words.The next step is to generate a global vocabulary to share it among all groups viaG0(global infinite model).It is noteworthy that the the building of the visual vocabulary, here, is part of our hierarchical models and therefore, the size of the vocabulary (i.e., number of components)is is inferred automatically from the data thanks to the characteristic of nonparametric Bayesian models.Regarding SIFT features, the bag-of-visual-words model is adopted here to calculate the histogram of visual words from each input image.Regarding the set of DMD descriptors, these are obtained after extracting DMD features and then encoding them though th Fisher vector method as proposed in[37].The resulting descriptors are able to attain good discrimination thanks to their invariance with respect to scale, resolution, and orientation.Finally, each image is represented by a multidimensional vector of high-order statistics1The Matlab code for the features is available at http://www.cs.tut.fi/ mehta/texturedmd..

    4.1.2 Dataset and Results

    We conducted our experiments of texture classification using the proposed hierarchical HDP Gamma mixture (referred to as HDPGaM) and HPYP Gamma mixture (referred to as HPYPGaM)on three publicly available databases.The first one namely UIUCTex [38] contains 25 texture classes and each class has 40 images.The second dataset namely UMD [39] contains 25 textures classes containing each one 40 images.The third dataset namely KTH-TIPS [33] includes 10 classes and each one contains 81 images.Some sample texture images from each class and each dataset are shown in Fig.2.We use 10-fold cross-validation technique to partition these databases and to study the performance.In addition, the evaluation process and the obtained results are based on 30 runs.

    In order to quantify the performance of the proposed frameworks (HDPGaM and HPYPGaM),we proceed by evaluating and comparing the obtained results with seven other methods namely infinite mixture of Gaussian distribution (inGM), infinite mixture of generalized Gaussian distribution (inGGM), infinite mixture of multivariate generalized Gaussian distribution (inMGGM),Hierarchical Dirichlet Process mixture of Gaussian distribution (HDPGM), hierarchical Pitman-Yor process mixture of Gaussian distribution (HPYPGM), Hierarchical Dirichlet Process mixture of generalized Gaussian distribution (HDPGGM), and hierarchical Pitman-Yor process mixture of generalized Gaussian distribution (HPYPGGM).

    Figure 2: Texture samples in different categories for different datasets (a) KTH-TIPS, (b) UIUCTex,and (c) UMD dataset

    We run all methods 30 times and calculate the average classification accuracy which are depicted in Tabs.1-3 respectively.According to these results, we can notice that HDPGaM and HPYPGaM have the highest achieved accuracy for the three databases in terms of the texture classification accuracy rate.It is noted that when comparing these results by considering the Student’s t-test, the differences in performance are statistically significant between our frameworks and the rest of methods.In particular, results indicate the benefits of our proposed models in terms of texture modeling and classification capabilities which surpass those obtained by HDPGM, HDPGGM,HPYPGM, andHPYPGGM.By contrast, the worst performance is obtained within the infinite Gaussian mixture models.It should be noted that the proposed frameworks outperform the other methods and that the three adopted feature extraction methods (SIFT, LBP and DMD).Thus, these results confirm the merit of the proposed methods.Due to the effectiveness of DMD descriptor for describing and modelling observed texture images, we also find that DMDachieves better accuracy compared with both SIFT and LBP.It shows the merits of DMD which is able to consider all possible fine details images at different resolutions.We also note that with HPYP mixture we can reach better results compared to HDP mixture and this is for all tested distributions.This can be explained by the fact that HPYP mixture model has better generalization capability and better capacity to model heavier-tailed distribution (PYP prior can lead to better modeling ability).

    Table 3: The average accuracy results of texture classification using different algorithms for the 3 texture-datasets using DMD features

    Table 1: The average accuracy results of texture classification using different algorithms for the 3 texture-datasets using SIFT features

    Table 2: The average accuracy results of texture classification using different algorithms for the 3 texture-datasets using LBP features

    Table 3: Continued

    4.2 Human Actions Categorization

    Visual multimedia recognition has been a challenging research topic which could attract many applications such as actions recognition [40,41], image categorization [42,43], biomedical image recognition [44], and facial expressions [29,30].In this work, we are focusing on a particular problem that has received a lot of attention namely Human actions recognition (HAR) through sequence of videos.Indeed, the intention of recognizing activities is to identify and analyze various human actions.At present, HAR is one the hot computer vision topics not only in research but also in industries where automatic identification of any activity can be useful, for instance, for monitoring, healthcare,robotics, and security-based applications [45].Recognizing manually activities is very challenging and time consuming.This issue has been addressed and so various tools have been implemented such as in [40,45-47].However, precise recognition of actions is still required using advanced and efficient algorithms in order to deal with complex situations such as noise, occlusions, and lighting.

    We perform here the recognition of Human activities using the proposed frameworks HDPGaM and HPYPGaM.Our methodology is outlined as following: First, we extract and normalize SIFT3D descriptor [40] from observed images.These features are then quantized as visual words via bag-ofwords (BOW) model and K-means algorithm [48].Then, these features are quantized as visual words via K-means algorithm [48].Then, a probabilistic Latent Semantic Analysis (pLSA) [49] is adopted to construct ad-dimensional vector.In particular, each imageIjis considered as a“group”and is associated with an infinite mixture modelGj.Thus, we suppose that Each SIFT3D feature vector is drawn from the infinite mixture modelGjand“visual words”denote mixture components ofGj.

    On the other hand, a global vocabulary is generated and shared between all groups via the global-modelG0of the proposed hierarchical models.This setting agrees with the purpose behind the hierarchical process mixture model.It is also noted that the building of the visual vocabulary is part of the hierarchical process mixture models and this step is not carried out separately via the k-means algorithm as many other approaches do.It is also noted that the generation of the visual vocabulary is part of our hierarchical process mixture models and this process is not performed separately via kmeans as many other approaches did.In fact, it is due to the property of the nonparametric Bayesian model that the number of components in the global-level mixture model can be deduced from the data.We conducted our experiments of actions recognition using a publicly dataset known as KTH human action dataset [46].This database contains 2391 sequences of different actions grouped into 6 classes.It also represents four scenarios (outdoors (s1), outdoors with scale variation (s2), outdoors with different clothes (s3) and indoors (s4)).Some scenarios from this dataset are given in Fig.3.We randomly divided this dataset into 2 subsets to train the developed frameworks and to evaluate its robustness.

    Our purpose through this application is to show the advantages of investigating our proposed hierarchical models HDPGaM and HPYPGaM over other conventional hierarchical mixtures and other methods from the state of the art.Therefore, we focused first on evaluating the performance of HDPGaM and HPYPGaM over Hierarchical Dirichlet Process mixture of Gaussian distribution(HDPGM), hierarchical Pitman-Yor process mixture of Gaussian distribution (HPYPGM), Hierarchical Dirichlet Process mixture of generalized Gaussian distribution (HDPGGM), and hierarchical Pitman-Yor process mixture of generalized Gaussian distribution (HPYPGGM).It is noted that we learned all the implemented models using variational Bayes.The average recognition performances of our frameworks and models based on HDP mixture and HPYP mixture are depicted in Tab.4.

    Figure 3: Sample frames of the KTH dataset actions with different scenarios

    Table 4: Average recognition performance (%) obtained using our frameworks and other models based on HDP mixture and HPYP mixture for KTH database

    As we can see in this table, the proposed frameworks were able to offer the highest recognition rates (82.27% for HPYPGaM and 82.13% for HDPGaM) among all tested models.For different runs, we have p-values<0.05 and therefore, the differences in accuracy between our frameworks and other models are statistically significant according to Student’s t-test.Next, we compared our models against other mixture models (here finite Gaussian mixture (GMM) and finite generalized Gaussian mixture (GGMM) and methods from the literature.The obtained results are given in Tab.5.

    Table 5: Average recognition performance (%) obtained using our frameworks and other methods from the literature for KTH database

    Accordingly, we can observe that models again are able to provide higher discrimination rate than the other methods.Clearly, these results confirm the effectiveness of our frameworks for activities modeling and recognition compared to other conventional Dirichlet and Pitman-Yor processes based on Gaussian distribution.Another remark is that our model HPYPGaM outperforms our second model HDPGaM for this specific application and this demonstrates the advantages of using hierarchical Pitman-Yor process over Dirichlet process which is flexible enough to be used for such recognition problem.

    5 Conclusions

    In this paper two non-parametric Bayesian frameworks based on both hierarchical Dirichlet and Pitman-Yor processes and Gamma distribution are proposed.The Gamma distribution is considered because of its flexibility for semi-bounded data modelling.Both frameworks are learned using variational inference which has certain advantages such as easy assessment of convergence and easy optimization by offering a trade-off between frequentist techniques and MCMC-based ones.An important property of our approach is that it does not need the specification of the number of mixture components in advance.We carried out experiments on texture categorization and human action recognition to demonstrate the performance of our models which can be used further for a variety of other computer vision and pattern recognition applications.

    Acknowledgement:The authors would like to thank Taif University Researchers Supporting Project number(TURSP-2020/26),Taif University,Taif,Saudi Arabia.They would like also to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R40), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    Funding Statement:The authors would like to thank Taif University Researchers Supporting Project number(TURSP-2020/26),Taif University,Taif,Saudi Arabia.They would like also to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R40),Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品99久久久久久久久| 秋霞在线观看毛片| 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 寂寞人妻少妇视频99o| 97精品久久久久久久久久精品| 99热国产这里只有精品6| 婷婷色av中文字幕| 多毛熟女@视频| 人妻一区二区av| 六月丁香七月| 色网站视频免费| 99热全是精品| 日本色播在线视频| 久久精品国产a三级三级三级| 两个人的视频大全免费| 久久久a久久爽久久v久久| 国产成人a∨麻豆精品| 欧美日韩视频精品一区| 99热这里只有是精品50| 日韩免费高清中文字幕av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩东京热| 精品亚洲成国产av| 精品卡一卡二卡四卡免费| 午夜日本视频在线| 蜜桃在线观看..| 天天操日日干夜夜撸| 在线观看免费高清a一片| 国产黄片美女视频| 国产成人freesex在线| 久久99热这里只频精品6学生| 亚洲综合色惰| 男女啪啪激烈高潮av片| 中文资源天堂在线| 嘟嘟电影网在线观看| 午夜福利影视在线免费观看| 极品人妻少妇av视频| 欧美区成人在线视频| 久久婷婷青草| 日本黄色片子视频| 综合色丁香网| 精品久久久久久电影网| 天堂中文最新版在线下载| 80岁老熟妇乱子伦牲交| 麻豆精品久久久久久蜜桃| 国产av国产精品国产| av免费在线看不卡| freevideosex欧美| 亚洲久久久国产精品| 观看免费一级毛片| 国产精品久久久久久久久免| 国产免费一区二区三区四区乱码| 一区二区av电影网| 午夜福利网站1000一区二区三区| 欧美激情国产日韩精品一区| 久久久久久久亚洲中文字幕| 久久6这里有精品| 一区二区av电影网| 大话2 男鬼变身卡| 国产日韩欧美在线精品| 毛片一级片免费看久久久久| 99久久中文字幕三级久久日本| 欧美亚洲 丝袜 人妻 在线| 在线播放无遮挡| 国产爽快片一区二区三区| 国模一区二区三区四区视频| 我的女老师完整版在线观看| 国内少妇人妻偷人精品xxx网站| 午夜免费男女啪啪视频观看| 一本久久精品| 日韩制服骚丝袜av| 成人免费观看视频高清| 内地一区二区视频在线| 亚洲四区av| 久久综合国产亚洲精品| 少妇人妻久久综合中文| 国产免费一级a男人的天堂| 亚洲中文av在线| 人妻 亚洲 视频| 亚洲人与动物交配视频| 激情五月婷婷亚洲| 免费观看av网站的网址| 在线观看一区二区三区激情| 99九九在线精品视频 | 亚洲精品aⅴ在线观看| 亚洲国产成人一精品久久久| 18禁在线播放成人免费| 26uuu在线亚洲综合色| 成年美女黄网站色视频大全免费 | 偷拍熟女少妇极品色| 这个男人来自地球电影免费观看 | 久久精品国产鲁丝片午夜精品| 久久久久精品久久久久真实原创| 国产又色又爽无遮挡免| 久久久久久久大尺度免费视频| 国产精品无大码| 免费av不卡在线播放| 精品一区二区三卡| 国产精品蜜桃在线观看| 好男人视频免费观看在线| 国产精品免费大片| 欧美日韩视频精品一区| 国产av码专区亚洲av| 人妻制服诱惑在线中文字幕| 免费少妇av软件| 精品国产国语对白av| 一本色道久久久久久精品综合| 91午夜精品亚洲一区二区三区| 中国美白少妇内射xxxbb| 乱人伦中国视频| 国产精品一二三区在线看| videossex国产| 黑人高潮一二区| 国产精品福利在线免费观看| 亚洲中文av在线| 男女无遮挡免费网站观看| 久久99热6这里只有精品| 亚洲av电影在线观看一区二区三区| 久久热精品热| 你懂的网址亚洲精品在线观看| 日本黄色日本黄色录像| 精品视频人人做人人爽| 久久久久久久国产电影| 国产中年淑女户外野战色| 一区二区三区免费毛片| 亚洲精品久久午夜乱码| 激情五月婷婷亚洲| 777米奇影视久久| 日韩伦理黄色片| 免费人妻精品一区二区三区视频| 国产免费福利视频在线观看| 欧美人与善性xxx| 一级毛片aaaaaa免费看小| 亚洲av在线观看美女高潮| 晚上一个人看的免费电影| 另类精品久久| 日本黄色片子视频| 一级黄片播放器| 一级黄片播放器| a 毛片基地| 成年人午夜在线观看视频| 一本一本综合久久| 大香蕉97超碰在线| 久久99热6这里只有精品| 狠狠精品人妻久久久久久综合| 久久久久国产精品人妻一区二区| 简卡轻食公司| 国产精品一二三区在线看| 国产亚洲一区二区精品| 成人二区视频| 韩国av在线不卡| 人妻系列 视频| 在线免费观看不下载黄p国产| 韩国av在线不卡| 亚洲欧美日韩另类电影网站| 一级黄片播放器| 国产精品久久久久久精品古装| 欧美3d第一页| 最近2019中文字幕mv第一页| 婷婷色综合www| 日韩av在线免费看完整版不卡| 午夜福利,免费看| 国产美女午夜福利| 亚洲成人手机| 七月丁香在线播放| 在线观看免费日韩欧美大片 | 一区二区三区免费毛片| 在线天堂最新版资源| 免费大片黄手机在线观看| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 久久人人爽人人爽人人片va| 啦啦啦在线观看免费高清www| 久久久久久伊人网av| 亚洲一区二区三区欧美精品| 男女免费视频国产| 久久女婷五月综合色啪小说| 中文资源天堂在线| 在线观看一区二区三区激情| 国产在线一区二区三区精| 一级av片app| 欧美日韩av久久| 中文字幕精品免费在线观看视频 | 午夜激情久久久久久久| 三级国产精品欧美在线观看| 国产伦理片在线播放av一区| 成人美女网站在线观看视频| 国产精品伦人一区二区| 欧美日韩av久久| 精品一区二区三区视频在线| 午夜免费鲁丝| 国产高清国产精品国产三级| 九九久久精品国产亚洲av麻豆| 2022亚洲国产成人精品| 精品亚洲成国产av| 国内精品宾馆在线| 一本色道久久久久久精品综合| 美女脱内裤让男人舔精品视频| 在线播放无遮挡| 午夜免费观看性视频| 久久久久久久亚洲中文字幕| 熟妇人妻不卡中文字幕| 九九爱精品视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品,欧美精品| 少妇丰满av| 精品卡一卡二卡四卡免费| av在线观看视频网站免费| 国产毛片在线视频| 黑人巨大精品欧美一区二区蜜桃 | 久久久精品免费免费高清| 在线亚洲精品国产二区图片欧美 | 菩萨蛮人人尽说江南好唐韦庄| .国产精品久久| 欧美变态另类bdsm刘玥| 久久精品国产亚洲网站| 久久精品国产亚洲网站| 成人特级av手机在线观看| 亚洲精品日韩在线中文字幕| 亚洲成色77777| 欧美+日韩+精品| 久久婷婷青草| 亚洲图色成人| 日韩一区二区三区影片| 狂野欧美白嫩少妇大欣赏| 国产av国产精品国产| 久久青草综合色| 五月玫瑰六月丁香| 又粗又硬又长又爽又黄的视频| 肉色欧美久久久久久久蜜桃| 国产成人一区二区在线| av专区在线播放| 国产一区有黄有色的免费视频| 老熟女久久久| 日本91视频免费播放| 精品久久久噜噜| 国产成人精品一,二区| 欧美成人精品欧美一级黄| 97精品久久久久久久久久精品| 精品久久久精品久久久| 一区二区三区四区激情视频| av一本久久久久| 有码 亚洲区| 97超视频在线观看视频| 五月玫瑰六月丁香| 一本—道久久a久久精品蜜桃钙片| 美女国产视频在线观看| 欧美少妇被猛烈插入视频| av天堂久久9| 一级毛片久久久久久久久女| 有码 亚洲区| 亚洲内射少妇av| 又粗又硬又长又爽又黄的视频| 最新中文字幕久久久久| 国产一区二区在线观看av| 日韩中字成人| freevideosex欧美| 日本av免费视频播放| 免费高清在线观看视频在线观看| 男的添女的下面高潮视频| 人妻系列 视频| 国内揄拍国产精品人妻在线| 亚洲精品乱码久久久久久按摩| 交换朋友夫妻互换小说| 人妻制服诱惑在线中文字幕| 欧美+日韩+精品| 久久鲁丝午夜福利片| 中文资源天堂在线| 在线观看一区二区三区激情| 国产深夜福利视频在线观看| 久热久热在线精品观看| 国产高清三级在线| 精品亚洲乱码少妇综合久久| 亚洲成人一二三区av| 国产美女午夜福利| 国产中年淑女户外野战色| 亚洲国产最新在线播放| 免费大片18禁| 综合色丁香网| 精品国产国语对白av| 三级国产精品片| 丝袜在线中文字幕| 亚洲图色成人| 欧美3d第一页| 久久久久久人妻| 特大巨黑吊av在线直播| 免费黄色在线免费观看| 国产乱来视频区| 中文字幕制服av| 如何舔出高潮| 亚洲精品一二三| 国产成人一区二区在线| 少妇的逼水好多| 国产一区二区三区综合在线观看 | 亚洲精品自拍成人| 99视频精品全部免费 在线| 亚洲成色77777| 两个人的视频大全免费| 免费人妻精品一区二区三区视频| 精品久久久久久久久亚洲| 国产午夜精品久久久久久一区二区三区| 人人妻人人澡人人看| 国产男人的电影天堂91| 久久久国产一区二区| 伦理电影免费视频| 一级毛片 在线播放| 欧美国产精品一级二级三级 | 国产高清国产精品国产三级| 嫩草影院入口| 老司机影院成人| 最近的中文字幕免费完整| 青春草国产在线视频| 在线免费观看不下载黄p国产| 丰满饥渴人妻一区二区三| 国产 精品1| 99热这里只有是精品在线观看| 99热这里只有是精品在线观看| 日本爱情动作片www.在线观看| 人人妻人人添人人爽欧美一区卜| 一本色道久久久久久精品综合| 亚洲自偷自拍三级| 黑人猛操日本美女一级片| 91久久精品国产一区二区三区| 日韩不卡一区二区三区视频在线| 国产一区二区在线观看日韩| av又黄又爽大尺度在线免费看| 夫妻午夜视频| 亚洲欧美日韩卡通动漫| 日韩强制内射视频| 亚洲国产精品一区三区| 日日爽夜夜爽网站| 伊人久久国产一区二区| 欧美变态另类bdsm刘玥| 亚洲久久久国产精品| 日本免费在线观看一区| 我的老师免费观看完整版| 亚洲精品亚洲一区二区| 最黄视频免费看| 亚洲综合色惰| 七月丁香在线播放| 日本猛色少妇xxxxx猛交久久| 噜噜噜噜噜久久久久久91| 中文字幕av电影在线播放| 国产综合精华液| 多毛熟女@视频| 久久久久久久久大av| 国产成人a∨麻豆精品| 少妇 在线观看| 免费黄网站久久成人精品| 99久久精品一区二区三区| 久久亚洲国产成人精品v| 亚洲国产日韩一区二区| 永久网站在线| 日韩中字成人| 国产精品女同一区二区软件| 午夜福利视频精品| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 国产在线男女| 99国产精品免费福利视频| 亚洲av在线观看美女高潮| 又黄又爽又刺激的免费视频.| 亚洲国产精品999| 成年美女黄网站色视频大全免费 | 亚洲国产精品成人久久小说| 狂野欧美白嫩少妇大欣赏| 亚洲精品中文字幕在线视频 | 国产精品嫩草影院av在线观看| 人妻系列 视频| 国产一级毛片在线| 又爽又黄a免费视频| 自线自在国产av| 久久这里有精品视频免费| 久久精品国产亚洲av涩爱| 亚洲精品aⅴ在线观看| 成年美女黄网站色视频大全免费 | 天美传媒精品一区二区| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 国产欧美日韩一区二区三区在线 | 精品久久国产蜜桃| 美女xxoo啪啪120秒动态图| 久久精品久久精品一区二区三区| 色婷婷久久久亚洲欧美| 日本av手机在线免费观看| 偷拍熟女少妇极品色| 一区二区三区乱码不卡18| 国产精品一区www在线观看| 中国美白少妇内射xxxbb| 精品国产乱码久久久久久小说| 免费观看无遮挡的男女| 在线观看www视频免费| 乱人伦中国视频| 国产在线一区二区三区精| 夜夜爽夜夜爽视频| 欧美激情国产日韩精品一区| 黑丝袜美女国产一区| 久久99蜜桃精品久久| 日本猛色少妇xxxxx猛交久久| 久久99热这里只频精品6学生| 在线 av 中文字幕| 亚洲国产欧美日韩在线播放 | 新久久久久国产一级毛片| 成年女人在线观看亚洲视频| 九九在线视频观看精品| 欧美人与善性xxx| 国产精品一区二区性色av| 国产熟女午夜一区二区三区 | 乱人伦中国视频| 青青草视频在线视频观看| 啦啦啦视频在线资源免费观看| 国产成人aa在线观看| 日本欧美国产在线视频| 亚洲国产欧美日韩在线播放 | 日韩不卡一区二区三区视频在线| 欧美精品一区二区大全| 国产亚洲5aaaaa淫片| 一区在线观看完整版| 各种免费的搞黄视频| 亚洲,一卡二卡三卡| 日韩免费高清中文字幕av| 欧美 亚洲 国产 日韩一| 王馨瑶露胸无遮挡在线观看| 中文字幕精品免费在线观看视频 | 国内少妇人妻偷人精品xxx网站| 久久人人爽人人片av| 伊人亚洲综合成人网| 18禁在线播放成人免费| 国产男女内射视频| 少妇丰满av| 中国国产av一级| 伦理电影免费视频| 一本大道久久a久久精品| 国产老妇伦熟女老妇高清| 丁香六月天网| 精品少妇黑人巨大在线播放| 国产有黄有色有爽视频| 久久久午夜欧美精品| av免费在线看不卡| 国产乱人偷精品视频| 亚洲精品国产av蜜桃| 精品视频人人做人人爽| 国产高清不卡午夜福利| 街头女战士在线观看网站| 在线观看三级黄色| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 亚洲精品视频女| 国产伦精品一区二区三区视频9| 精品久久国产蜜桃| 丰满少妇做爰视频| 欧美xxxx性猛交bbbb| 国产美女午夜福利| 又爽又黄a免费视频| h日本视频在线播放| 看非洲黑人一级黄片| 久久综合国产亚洲精品| 能在线免费看毛片的网站| 中文字幕亚洲精品专区| 精品人妻熟女毛片av久久网站| 久久热精品热| 亚洲激情五月婷婷啪啪| 美女国产视频在线观看| av卡一久久| 少妇熟女欧美另类| 91精品一卡2卡3卡4卡| 国产一区二区三区综合在线观看 | 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| 乱码一卡2卡4卡精品| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 亚洲国产精品一区二区三区在线| 美女国产视频在线观看| 六月丁香七月| 国产一区有黄有色的免费视频| 国产探花极品一区二区| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 日本91视频免费播放| 永久网站在线| a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| av有码第一页| 男女啪啪激烈高潮av片| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 老女人水多毛片| 国产精品久久久久久久电影| 免费观看av网站的网址| 国产一区二区在线观看日韩| 精品少妇久久久久久888优播| 亚洲成人一二三区av| 赤兔流量卡办理| 国产精品成人在线| 久久 成人 亚洲| 丁香六月天网| 熟女电影av网| 黄色毛片三级朝国网站 | 搡女人真爽免费视频火全软件| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| 少妇丰满av| 亚洲高清免费不卡视频| 日本91视频免费播放| 国产一区二区在线观看日韩| 亚洲精品第二区| 永久网站在线| 一二三四中文在线观看免费高清| 赤兔流量卡办理| 亚洲自偷自拍三级| 国语对白做爰xxxⅹ性视频网站| 精品久久久噜噜| 高清黄色对白视频在线免费看 | 国产亚洲91精品色在线| 午夜老司机福利剧场| 日日啪夜夜爽| 精品熟女少妇av免费看| 午夜激情久久久久久久| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 亚洲精品色激情综合| 少妇人妻精品综合一区二区| 91精品一卡2卡3卡4卡| 又大又黄又爽视频免费| 卡戴珊不雅视频在线播放| 亚洲国产欧美日韩在线播放 | 午夜免费观看性视频| 久久99精品国语久久久| 91在线精品国自产拍蜜月| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 久久久国产一区二区| 欧美日韩av久久| 亚洲精品456在线播放app| 97超碰精品成人国产| 99热国产这里只有精品6| 黄色欧美视频在线观看| 国产av精品麻豆| 午夜久久久在线观看| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 精品国产一区二区久久| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂| 22中文网久久字幕| 国产亚洲最大av| 丰满饥渴人妻一区二区三| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 亚洲电影在线观看av| 久久人人爽人人爽人人片va| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 有码 亚洲区| 青春草国产在线视频| 国产精品一区二区三区四区免费观看| 一级毛片 在线播放| 简卡轻食公司| av有码第一页| 黑人高潮一二区| 狂野欧美激情性bbbbbb| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 99热这里只有精品一区| 我的老师免费观看完整版| 久久97久久精品| 久久久精品免费免费高清| 亚洲国产av新网站| 国产日韩欧美视频二区| 熟女电影av网| 久久久久久久精品精品| 十八禁高潮呻吟视频 | 最近中文字幕2019免费版| 日韩三级伦理在线观看| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 亚洲av.av天堂| 欧美精品亚洲一区二区| 久久国产精品大桥未久av | 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 国产精品久久久久久精品古装| 国产一区二区三区综合在线观看 | 在现免费观看毛片| 亚洲无线观看免费| 一级毛片 在线播放| 丰满饥渴人妻一区二区三| 高清午夜精品一区二区三区| a级毛片免费高清观看在线播放| 午夜精品国产一区二区电影| www.av在线官网国产| 日韩三级伦理在线观看| 亚洲,一卡二卡三卡| 日韩视频在线欧美| 国产欧美日韩综合在线一区二区 | 黑丝袜美女国产一区| 国产亚洲最大av| 中文字幕制服av| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 国产淫语在线视频| 草草在线视频免费看| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 国产国拍精品亚洲av在线观看| 亚洲精品国产av蜜桃|