• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Bayesian Based IMM Robust GPS Navigation Filter

    2022-08-24 12:58:06DahJingJwoandWeiYehChang
    Computers Materials&Continua 2022年7期

    Dah-Jing Jwoand Wei-Yeh Chang

    1Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University Keelung,202301, Taiwan

    2TDK Taiwan Corp., Yangmei, Taoyuan, 326021, Taiwan

    Abstract: This paper investigates the navigational performance of Global Positioning System (GPS) using the variational Bayesian (VB) based robust filter with interacting multiple model (IMM) adaptation as the navigation processor.The performance of the state estimation for GPS navigation processing using the family of Kalman filter (KF) may be degraded due to the fact that in practical situations the statistics of measurement noise might change.In the proposed algorithm, the adaptivity is achieved by estimating the timevarying noise covariance matrices based onVB learning using the probabilistic approach, where in each update step, both the system state and time-varying measurement noise were recognized as random variables to be estimated.The estimation is iterated recursively at each time to approximate the real joint posterior distribution of state using the VB learning.One of the two major classical adaptive Kalman filter (AKF) approaches that have been proposed for tuning the noise covariance matrices is the multiple model adaptive estimate (MMAE).The IMM algorithm uses two or more filters to process in parallel, where each filter corresponds to a different dynamic or measurement model.The robust Huber’s M-estimation-based extended Kalman filter (HEKF) algorithm integrates both merits of the Huber M-estimation methodology and EKF.The robustness is enhanced by modifying the filter update based on Huber’s M-estimation method in the filtering framework.The proposed algorithm, referred to as the interactive multi-model based variational Bayesian HEKF (IMM-VBHEKF), provides an effective way for effectively handling the errors with time-varying and outlying property of non-Gaussian interference errors, such as the multipath effect.Illustrative examples are given to demonstrate the navigation performance enhancement in terms of adaptivity and robustness at the expense of acceptable additional execution time.

    Keywords: GPS; variational bayesian; Huber’s M-estimation; interacting multiple model; adaptive; outlier; multipath

    1 Introduction

    Non-Gaussian noise is often encountered in many practical environments and the estimation performance deteriorates dramatically.Known to be one of the dominant error sources in high accuracy global navigation satellite systems (GNSS) [1] positioning systems, such as the Global Positioning System (GPS) [2,3], multipath effects [2,4] occur when GPS signals arrive at a receiver site via multiple paths due to reflections from nearby objects, such as the ground and water surfaces,buildings, vehicles, hills, trees, etc.Many estimation algorithms have been studied to eliminate the positioning error caused by multipath.Since multipath errors are among uncorrelated errors that are not cancelled out during observation differencing, the performance of high precision GPS receivers are mostly limited by the multipath induced errors.One of the most important issues in GPS system performance improvement is the interference suppression techniques.

    The well-known Kalman filter (KF) [5] provides optimal estimate, namely minimum mean square error (MSE), of the system state vector and has been recognized as one of the most powerful state estimation techniques.As a recursive minimum norm estimation technique, the KF exhibits sensitivity to deviations from the assumed underlying probability distributions.Due to its simple structure, stable performance and low computational complexity, the conventional adaptive filtering algorithm where the least MSE is involved has been widely used in a variety of applications in the fields of adaptive signal processing and machine learning.However, the MSE criterion is limited to the assumption of linearity and Gaussianity while most of the noise in real word is non-Gaussian.The performance deteriorates significantly in the non-Gaussian noise environment.The traditional Kalman-type filter provides the best filter estimate when the noise is Gaussian, but most noise in real life is unknown,uncertain and non-Gaussian.The extended Kalman filter (EKF) is a nonlinear version of the KF and has been widely employed as the GPS navigation processor.The fact that EKF highly depends on a predefined dynamics model forms a major drawback.Furthermore, it is not optimal when the system is disturbed by heavy-tailed (or impulsive) non-Gaussian noises.To solve the performance degradation problem with non-Gaussian errors or heavy-tailed non-Gaussian noises, some robust Kalman filters have been developed by using non-minimum MSE criterion as the optimality criterion.

    Essentially based on modification of the quadratic cost function in the filter framework, the Huber M-estimation methodology [6-9] provides between smooth norm properties for small residuals and robust norm properties for large residuals.The technique that relies on Huber’s generalized maximum likelihood (ML) methodology exhibits robustness against deviations from the commonly assumed Gaussian probability density functions and can solve the non-Gaussian distribution problem efficiently and has been successfully employed for robust state estimation, inertial navigation system and visual tracking applications.The robust Huber’s M-estimation-based EKF (HEKF) algorithm integrates both merits of the Huber M-estimation methodology and EKF.For the signals contaminated with non-Gaussian noises or outliers, a robust scheme combining the Huber M-estimation methodology and the EKF framework is beneficial where the Huber M-estimation methodology is used to reformulate the measurement information of the EKF to handle outliers and provide robustness against deviations from Gaussianity.The measurement update can be modified to enhance robustness using the Huber M-estimation methodology.

    The variational Bayesian (VB) approach [10-15] is an inference method that utilizes a simple distribution to approximate the true posterior distribution of hidden variables, usually assuming that the hidden variables are independent of each other.The VB has been developed for a wide range of models to perform approximate posterior inference at low computational cost in comparison with the sampling methods.These methods assume a simpler, analytically tractable form for the posterior.The purpose of the variation is to find a variational distribution of the posterior probability density function (pdf) to minimize the Kullback-Leibler divergence (KLD) between the true posterior pdf.Two main approaches are either to derive a factored free form distribution or to assume a fixed form posterior distribution (e.g., a multivariate Gaussian, with possibly a suitable parametrization of the model).

    The classical way of solving the problem of uncertain parameters is to use adaptive filters [16]where the model parameters or the noise statistics are estimated together with the dynamic states.The classical noise adaptive filtering approaches can be divided into Bayesian, maximum likelihood,correlation and covariance matching methods.The Bayesian approach is the most general of these and the other approaches can often be interpreted as approximations to the Bayesian approach.Examples of Bayesian approaches to noise adaptive filtering include state augmentation based methods,multiple model methods such as the interacting multiple model (IMM) algorithm [17-21].The IMM algorithm has the configuration that runs in parallel several model-matched state estimation filters, which exchange information (namely interact) at each sampling time.The IMM algorithm has been originally applied to target tracking, and recently extended to navigation application.A model probability evaluator calculates the current probability of the vehicle being in each of the possible modes.A global estimate of the vehicle’s state is computed using the latest mode probabilities.The algorithm carries out a soft-switching between the various modes by adjusting the probabilities of each mode, which are used as weightings in the combined global state estimate.The covariance matrix associated with this combined estimate takes into account the covariances of the mode-conditioned estimates as well as the differences between these estimates.

    The algorithm proposed in this paper intends to provide an effective way for effectively handling the errors with time-varying and outlying property of non-Gaussian interference errors.The method utilizes the VB learning to approximate the noise strength for time-varying noise covariances, the Huber M-estimation methodology to enhance robustness especially for overcoming the problem of contamination distribution or outliers, and the IMM algorithm to furtherly tune the noise covariance matrices.The remaining of this paper is organized as follows.In Section 2, preliminary background on the Huber’s M-estimation-based extended Kalman filter is reviewed.The variational Bayesian algorithm is discussed in Section3.In Section4,the interacting multiple model algorithm is presented.In Section 5, simulation experiments are carried out to evaluate the performance and effectiveness.Conclusions are given in Section 6.

    2 Huber’s M-Estimation-Based Extended Kalman Filter

    For the nonlinear single model equations in discrete-time form, we have

    where the state vector xk∈Rn, process noise vector wk∈Rm, measurement vector zk∈Rm,measurement noise vector vk∈Rm,Qkis the process noise covariance matrix and Rkis the measurement noise covariance matrix.The vectors wkand vkin Eqs.(1) and (2) are zero mean Gaussian white sequences has zero cross-correlation with each other:

    whereE[·]represents expectation, and superscript “ T”denotes matrix transpose.The symbol δikstands for the Dirac function:

    Based on robust strategy, the Huber M-estimation methodology possesses the ability to solve pollution distribution or outliers by improving filter update.The essence of Huber’s robust estimation method is to solve the filter estimation value when the minimum cost function is obtained.For further applications,based on the generalized maximum likelihood estimation, amore general object function is given by Huber

    where ρ(·) is an appropriate positive symmetric function,υk,iis the residual.The cost function given by Huber is

    where γ is the default parameter.Amounts of experiences show that the performance is best when γ= 1.345.For Huber’s filtering robustness framework, reweighted average is used by

    where υk,iis the residual,φ(υk,i) =ρ′(υk,i) is the influence function.

    The Huber M-estimation methodology makes use of the weighting matrix to recast the measurement information.The weighting matrix can be interpreted in terms of reweighting the residual error covariance and constructing the measurement process.The modified covariance has the form

    The HEKF algorithm is summarized as follow:

    Stage 1: Prediction steps/time update equations

    (1) Predict the state vector

    (2) Predict the state error covariance matrix

    Stage 2: Correction steps/measurement update equations

    (3) Compute the residual

    (4) Compute the reweighting covariance matrix for measurement noise

    (5) Compute Kalman gain matrix

    (6) Update state vector

    (7) Update state error covariance matrix

    3 The Variational Bayesian Approach

    The variational Bayesian approach is an inference method that utilizes a simple distribution to approximate the true posterior distribution of hidden variables to find a variational distribution of the posterior probability density function (pdf) to minimize the KLD between the true posterior pdf.The variable decibel parameter is estimated by iterative calculations in which the gradient descent algorithm is involved.The difference between the lower bounds of two adjacent repeated calculations is used as the basis for judging convergence.

    3.1 Variational Bayesian Extended Kalman Filter

    Based on the Bayesian rule, the posterior distribution of the system state and the measurement noise covariance can be represented as

    which can be simplified top(zk|xk,Rk).For the first-order Markov process

    the Chapman-Kolmogorov equation can be obtained through the integration.

    Given the next measurement zk, the predictive distribution is updated to a posterior distribution using the Bayes rule

    The conditional probability distribution can be approximated as a product of Gaussian and Inverse-Gamma distributions

    whereN(?k|k-1,Pk|k-1) is the Gaussian distribution for prediction xkwith parameters?k|k-1and Pk|k-1.αk|k-1,i,βk|k-1,iare two parameters of the Inverse-Gamma distribution for, thei-th diagonal element of Rk.

    The variational Bayesian extended Kalman filter (VBEKF) employes a heuristic approach in the calculation process and predicts the distribution parameter by the first-order approximation

    The parameters of the new distribution is updated through

    and the measurement noise variance can be estimated

    The VBEKF algorithm is summarized as follows:

    Stage 1: Prediction steps/time update equations

    (1) Predict the state vector:

    (2) Predict the state error covariance matrix

    (3) Predict the distribution parameter

    Stage 2: Correction steps/measurement update equations

    (4) Compute measurement noise variance

    (5) Compute Kalman gain matrix

    (6) Update state vector

    (7) Update state error covariance matrix

    (8) Update the measurement distribution parameter

    3.2 Variational Bayesian Huber’s M-Estimation Based Extended Kalman Filter

    The positioning accuracy is degraded due to the presence of outliers and time-varying noise strength.Incorporation of the VB and Huber M-estimation methodologies into the EKF yielding the variational Bayesian Huber’s M-estimation based extended Kalman filter (VBHEKF) algorithm can effectively overcome the outliers and time-varying variance in the measurement noise and improve the positioning accuracy.The VBHEKF algorithm is summarized as follows:

    Stage 1: Prediction steps/time update equations

    (1) Predict the state vector

    (2) Predict the state error covariance matrix

    (3) Predict the distribution parameters

    Stage 2: Correction steps/measurement update equations

    (4) Compute measurement noise variance:

    (5) Compute the residual

    (6) Compute the reweighting covariance matrix for measurement noise

    (7) Compute Kalman gain matrix

    (8) Update state vector

    (9) Update state error covariance matrix

    (10) Update the measurement distribution parameter

    4 Interacting Multiple Model Extended Kalman Filter

    Based on pseudo-Bayesian theory, the IMM algorithm employs two or more filters to process in parallel where each filter corresponds to a different state space or measurement model.It is an adaptive mechanism which dynamically identifies uncertainties or modeling errors can be adopted and is mainly an algorithm involving Markov chain switching coefficients between different models.In each model an EKF is running, and the IMM algorithm makes uses of model probabilities to weight the inputs and output of a bank of parallel filters at each time instant.

    Assuming that a target with r states, corresponding to r models, set the system state equation and system observation equation represented by thej-th model are as follows:

    where the state vector xk∈Rn, process noise vector wk∈Rm, measurement vector zk∈Rm,measurement noise vector vk∈Rm,Qkis the process noise covariance matrix and Rkis the measurement noise covariance matrix.The vectors wkand vkin Eqs.(35) and (36) are zero mean Gaussian white sequences has zero cross-correlation with each other:

    whereE[·]represents expectation, and superscript “ T”denotes matrix transpose.The symbol δikstands for the Dirac function:

    The IMM-EKF algorithm is summarized as follows:

    Stage 1: Model interaction/mixing

    Compute mixed state and corresponding covariances of modelj

    Stage 2: Model filtering

    Stage 3: Model probabilities update

    Compute the likelihood function

    wherevj= zk-and.The model probability is updated according to the model likelihood and model transition probability

    Stage 4: Combination of model estimates and covariances

    The algorithm performs real-time detection by setting model filters corresponding to the number of possible models, setting weight coefficients and model update probabilities for each filter, and finally performing weighted fusion to calculate the current optimal system state estimation to achieve the purpose of model adaptation.

    5 Illustrative Examples

    To validate the effectiveness of the proposed approaches, simulation experiments have been carried out to evaluate the performance of the proposed approach in comparison with the other conventional methods for GPS navigation processing.The computer codes were developed by the authors using the Matlab?software.The commercial software Satellite Navigation (SatNav) Toolbox by GPSoft LLC [22] was employed for generation of the GPS satellite orbits/positions and thereafter, the satellite pseudoranges, carrier phase measurement, and constellation, required for simulation.

    The simulated pseudorange error sources corrupting GPS measurements include ionospheric delay, tropospheric delay, receiver noise and multipath.It is assumed that the differential GPS(DGPS)mode is available and therefore most of the receiver-independent common errors can be corrected,while the multipath and receiver thermal noise cannot be eliminated.The multipath interferences are added into the GPS pseudorange observation data during the vehicle moving.Two scenarios dealing with two types of interferences in pseudorange observables are carried out, which covers pseudorange errors involving (1) outlier type of multipath interferences during the vehicle moving, and (2) timevarying variance in the measurement noise with additional outliers.

    Fig.1 shows the test trajectory for the simulated vehicle and the skyplot during the simulation.In the simulation, there are 8 GPS satellites available.Since the research focus on the mitigation of multipath errors, the influence of measurement noise is relatively critical.A vehicle is designed to perform the uniform accelerated motion to reduce the impact caused by unmodeling system dynamic errors.First of all, performance comparison for the four estimator/filter including EKF,VBEKF, HEKF and VBHEKF is shown.Secondly, performance enhancement based on the IMM configuration is presented.

    Figure 1: Test trajectory for the simulated vehicle (left) and the skyplot (right) during the simulation

    5.1 Scenario 1: Pseudorange Observable Involving Outlier Type of Multipath Errors

    In Scenario 1, mitigation of the errors for pseudorange observable involving outlier type of multipath interferences is investigated.There are totally seven time durations where additional randomly generated errors are intentionally injected into the GPS pseudorange observation data during the vehicle moving.Tab.1 provides the information of the standard deviation for the 5 outliers.

    Table 1: Information of the standard deviation for the five outliers

    5.1.1 Performance Comparison for EKF and its Variants

    Comparison of GPS navigation accuracy for the four schemes: EKF, VBEKF, HEKF and VBHEKF is shown in Fig.2.The results show that either the VB or Huber’s algorithms can assist EKF to effectively deal with the outliers in the pesudorange observables individually and combination of the two algorithms can furtherly enhance the performance.

    Figure 2: Comparison of positioning accuracy for extended Kalman filter (EKF) and its variants-Scenario 1

    5.1.2 Performance Enhancement Based on the Interacting Multiple Model Configuration

    Incorporation of the IMM into the various filters is utilized for further performance enhancement.Fig.3 illustrates the positioning accuracy when the IMM configuration is involved for various algorithms: IMM-EKF, IMM-VBEKF, IMM-HEKF and IMM-VBHEKF.For the case that the VB does not possess sufficient capability to resolve the outlier type of interference, the IMM-VBHEKF demonstrates substantial performance improvement in navigation accuracy with acceptable extra computational expense.Tab.2 summarizes the estimation performance and execution time for various algorithms.

    Figure 3: Comparison of positioning accuracy when the interacting multiple model (IMM) configuration is involved for Scenario 1

    Table 2: Performance comparison for various algorithms-Scenario 1

    5.2 Scenario 2: Errors Involving Time-Varying Variance in Measurement Noise with Additional Outliers

    Scenario 2 is designed for investigating the performance when dealing with the time-varying Gaussian measurement noise with additional outliers.Description of time varying measurement variances in the five time intervals is shown in Tab.3.The variances of time-varying measurement noiserρiin the five time intervals for this scenario are assumed to follows the variation:rρi= 1→10→1→17→1 (in unit of m2), where the‘a(chǎn)rrows (→)’is employed for indicating the time-varying trajectory of variances.The set of unknown time-varying statistical parameters of noise needs to be estimated with the system states and the error covariance.

    Table 3: Description of the variation of noise strength and number of additional outliers in the five time intervals for Scenario 2

    5.2.1 Performance Comparison for EKF and its Variants

    Comparison of GPS navigation accuracy for the EKF, VBEKF, HEKF and VBHEKF is shown in Fig.4 where comparison of positioning accuracies without outlier and with outlier, respectively is provided.The results show that both VB and Huber based EKF can effectively improve the positioning performance.As can be seen, both the VB and Huber algorithms can be adopted into the EKF to improve GPS navigation accuracy in the environment of time-varying Gaussian noise.When additional outliers are involved in addition to the time-varying interferences, neither VB nor Huber only algorithm possesses sufficient capability to resolve the problem for such kind of challenge.The VBHEKF demonstrates substantial performance improvement in navigation accuracy at the expense of acceptable extra computational cost.

    Figure 4: Comparison of positioning accuracy for EKF and its variants-Scenario 2 (a) without outlier(b) with outlier

    5.2.2 Performance Enhancement Based on the Interacting Multiple Model Configuration

    Comparison of positioning accuracies for the four algorithms: IMM-EKF, IMM-VBEKF, IMMHEKF and IMM-VBHEKF is shown in Fig.5.Positioning accuracies for the cases without and with outliers, respectively, are presented.The Huber’s approach does not catch up the variation of noise strength very well.With the assistance of VB, the VBHEKF can further improve the performance.From the other view point, the adaptation capability of noise variance for the VBHEKF has been improved with the assistance of the IMM mechanism.Tabs.4 and 5 summarize the performance for various algorithms without and with outliers, respectively.Among the various approaches, the IMMVBHEKF provides the best positioning accuracy with only limited amount of extra execution time.

    Table 4: Performance comparison for Scenario 2-without outliers

    Table 5: Performance comparison for Scenario 2-with outliers

    Figure 5: Comparison of positioning accuracy for Scenario 2 when the IMM configuration is involved when IMM algorithm is incorporated (a) without outlier (b) with outlier

    6 Conclusions

    In this paper, an interacting multiple model based variational Bayesian robust extended Kalman filter is adopted for processing GPS navigation states.The method utilizes the variational Bayesian learning to approximate the noise strength and to provide a strong tracking capability for time-varying noise covariances; the Huber M-estimation methodology based on the robust strategy is employed to enhance robustness especially for overcoming the problem of contamination distribution or outliers;the IMM algorithm is introduced for further tuning of the noise covariance matrices.Combination the three merits leads to the estimator referred to as the IMM-VBHEKF.Illustrative examples have been provided for validation of the method.Two scenarios are presented representing two possible peudorange error patterns, including (1) observable involving outlier type of multipath errors;(2) observable involving time-varying variance in measurement noise with additional outliers.The proposed method has demonstrated performance enhancement in terms of adaptivity and robustness at the expense of acceptable additional execution time.

    Funding Statement:This work has been partially supported by the Ministry of Science and Technology,Taiwan [Grant Numbers MOST 108-2221-E-019-013 and MOST 109-2221-E-019-010].

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    中文字幕高清在线视频| 又大又爽又粗| 久热这里只有精品99| 9191精品国产免费久久| 日本av免费视频播放| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区三区在线| 天堂8中文在线网| 后天国语完整版免费观看| 午夜福利免费观看在线| 国产xxxxx性猛交| 国产精品一区二区精品视频观看| 天天躁日日躁夜夜躁夜夜| 婷婷丁香在线五月| 亚洲七黄色美女视频| 欧美黑人欧美精品刺激| 国产深夜福利视频在线观看| 麻豆成人av在线观看| 午夜福利影视在线免费观看| 精品久久久久久电影网| 人人妻人人澡人人爽人人夜夜| 91麻豆精品激情在线观看国产 | 成人国产一区最新在线观看| 欧美国产精品va在线观看不卡| 淫妇啪啪啪对白视频| 十分钟在线观看高清视频www| 亚洲五月婷婷丁香| 成在线人永久免费视频| 欧美av亚洲av综合av国产av| 老熟妇仑乱视频hdxx| 一级毛片精品| 十分钟在线观看高清视频www| 母亲3免费完整高清在线观看| 国产在线视频一区二区| 日韩成人在线观看一区二区三区| 黄色 视频免费看| 在线观看www视频免费| 欧美日韩av久久| 淫妇啪啪啪对白视频| 国产单亲对白刺激| av福利片在线| 狠狠狠狠99中文字幕| 俄罗斯特黄特色一大片| 亚洲精品粉嫩美女一区| 人妻一区二区av| 中文字幕制服av| 国产精品久久久久久精品电影小说| 我的亚洲天堂| 正在播放国产对白刺激| 夜夜夜夜夜久久久久| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 国内毛片毛片毛片毛片毛片| 男女无遮挡免费网站观看| 在线观看66精品国产| 人人澡人人妻人| 国产片内射在线| 国产精品免费大片| 男人操女人黄网站| 亚洲性夜色夜夜综合| 美女高潮喷水抽搐中文字幕| 91麻豆精品激情在线观看国产 | 在线观看66精品国产| 欧美 亚洲 国产 日韩一| 中文字幕av电影在线播放| 久久久久精品国产欧美久久久| 久久久久视频综合| 99久久国产精品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片大片在线免费观看| av视频免费观看在线观看| 亚洲少妇的诱惑av| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久精品电影小说| 精品国产国语对白av| 国产精品电影一区二区三区 | 日韩一卡2卡3卡4卡2021年| 波多野结衣一区麻豆| 香蕉丝袜av| 老汉色av国产亚洲站长工具| 91大片在线观看| 免费在线观看日本一区| tocl精华| 亚洲av电影在线进入| 99re在线观看精品视频| 一区二区三区激情视频| 国产激情久久老熟女| 久久免费观看电影| 亚洲人成77777在线视频| 成年动漫av网址| 老司机靠b影院| 水蜜桃什么品种好| 成年女人毛片免费观看观看9 | 精品一区二区三区视频在线观看免费 | 热re99久久精品国产66热6| 亚洲色图综合在线观看| 精品午夜福利视频在线观看一区 | 久9热在线精品视频| 国产亚洲精品久久久久5区| 国产在线视频一区二区| 男女无遮挡免费网站观看| 另类精品久久| 色播在线永久视频| www.精华液| 久久久久精品国产欧美久久久| 国产精品秋霞免费鲁丝片| 午夜福利在线观看吧| 人人妻人人澡人人爽人人夜夜| 久久久精品免费免费高清| 18禁观看日本| 色老头精品视频在线观看| 一级毛片精品| 777米奇影视久久| 69精品国产乱码久久久| 久久人妻熟女aⅴ| 亚洲精品国产精品久久久不卡| 午夜福利欧美成人| 丝袜在线中文字幕| 欧美性长视频在线观看| 国产亚洲精品一区二区www | 精品国产乱码久久久久久小说| 日韩欧美免费精品| 99在线人妻在线中文字幕 | 999久久久精品免费观看国产| 男男h啪啪无遮挡| 9色porny在线观看| svipshipincom国产片| 纯流量卡能插随身wifi吗| 真人做人爱边吃奶动态| 国产av国产精品国产| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区精品| 最近最新免费中文字幕在线| 日韩欧美免费精品| 一个人免费在线观看的高清视频| 亚洲精品美女久久久久99蜜臀| 一区福利在线观看| 国产亚洲精品第一综合不卡| 在线观看www视频免费| 欧美日韩精品网址| 亚洲一区中文字幕在线| 国产成人免费无遮挡视频| 久久午夜综合久久蜜桃| 亚洲国产中文字幕在线视频| 久久久久国产一级毛片高清牌| 69精品国产乱码久久久| 日韩大码丰满熟妇| 这个男人来自地球电影免费观看| 男女免费视频国产| 女性生殖器流出的白浆| 宅男免费午夜| 国产淫语在线视频| 国产精品麻豆人妻色哟哟久久| 免费黄频网站在线观看国产| 一区福利在线观看| 精品国产一区二区三区四区第35| 新久久久久国产一级毛片| 亚洲全国av大片| 天天躁夜夜躁狠狠躁躁| 每晚都被弄得嗷嗷叫到高潮| 女同久久另类99精品国产91| 国产精品熟女久久久久浪| 国产av国产精品国产| 最新美女视频免费是黄的| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色 | 成人影院久久| svipshipincom国产片| 2018国产大陆天天弄谢| 在线av久久热| aaaaa片日本免费| 青草久久国产| a级毛片在线看网站| 国产精品久久久久久人妻精品电影 | 国产成人精品无人区| av有码第一页| 亚洲精品粉嫩美女一区| 国产在线一区二区三区精| 日本vs欧美在线观看视频| 亚洲熟女精品中文字幕| 欧美老熟妇乱子伦牲交| 欧美变态另类bdsm刘玥| 一级黄色大片毛片| 水蜜桃什么品种好| 国产精品1区2区在线观看. | 久久精品亚洲av国产电影网| 亚洲一区二区三区欧美精品| 一级片免费观看大全| 久久99一区二区三区| 夜夜爽天天搞| 1024视频免费在线观看| 久久免费观看电影| 1024视频免费在线观看| 亚洲五月婷婷丁香| 99精品久久久久人妻精品| 精品国产一区二区久久| 一本—道久久a久久精品蜜桃钙片| 国产单亲对白刺激| 多毛熟女@视频| 国产成人啪精品午夜网站| 成人18禁高潮啪啪吃奶动态图| 黄片播放在线免费| 黄色毛片三级朝国网站| 久久精品亚洲精品国产色婷小说| 激情在线观看视频在线高清 | 成人精品一区二区免费| 香蕉久久夜色| 国产精品熟女久久久久浪| 一二三四在线观看免费中文在| 在线观看www视频免费| 久久久国产欧美日韩av| 久热这里只有精品99| 老熟妇仑乱视频hdxx| 女人被躁到高潮嗷嗷叫费观| 亚洲 国产 在线| 新久久久久国产一级毛片| 啦啦啦免费观看视频1| 日韩欧美一区视频在线观看| 国产精品久久久人人做人人爽| 91精品三级在线观看| 99精国产麻豆久久婷婷| 欧美在线一区亚洲| 国产av又大| av片东京热男人的天堂| 夫妻午夜视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品av麻豆狂野| 无限看片的www在线观看| 九色亚洲精品在线播放| 999精品在线视频| 亚洲国产毛片av蜜桃av| 在线永久观看黄色视频| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 免费看十八禁软件| 在线观看免费午夜福利视频| av网站在线播放免费| 久久久久久久久免费视频了| 成人精品一区二区免费| 女性被躁到高潮视频| 热re99久久精品国产66热6| 精品人妻1区二区| 一区福利在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产中文字幕在线视频| 人人澡人人妻人| 一本综合久久免费| 精品国产亚洲在线| www.自偷自拍.com| 午夜福利一区二区在线看| 人人妻人人澡人人爽人人夜夜| 国产精品 国内视频| 免费观看a级毛片全部| 老司机福利观看| 久久99热这里只频精品6学生| 欧美国产精品va在线观看不卡| 悠悠久久av| 亚洲国产看品久久| 人人妻人人澡人人爽人人夜夜| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 欧美久久黑人一区二区| 午夜福利影视在线免费观看| 不卡一级毛片| 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 99精国产麻豆久久婷婷| 丝袜人妻中文字幕| 国产欧美日韩综合在线一区二区| 操美女的视频在线观看| 精品国产一区二区久久| 伦理电影免费视频| 国产成+人综合+亚洲专区| 亚洲欧美日韩另类电影网站| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 日韩视频一区二区在线观看| 国产色视频综合| 亚洲精品国产色婷婷电影| 亚洲精品av麻豆狂野| 国产精品免费视频内射| 国产精品影院久久| 欧美日本中文国产一区发布| 99国产综合亚洲精品| 成人手机av| 成人18禁在线播放| 99九九在线精品视频| 久久婷婷成人综合色麻豆| av视频免费观看在线观看| 99国产综合亚洲精品| 制服诱惑二区| 国产精品免费大片| 国精品久久久久久国模美| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 99精品欧美一区二区三区四区| 亚洲国产精品一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 国产成人av激情在线播放| 九色亚洲精品在线播放| 乱人伦中国视频| 国产一区二区三区综合在线观看| 男女下面插进去视频免费观看| 国产精品秋霞免费鲁丝片| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 国产在线一区二区三区精| 亚洲精品美女久久av网站| 久久99一区二区三区| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区三| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 国产成人av激情在线播放| 国产精品98久久久久久宅男小说| 国产又爽黄色视频| 久久中文字幕一级| 国产极品粉嫩免费观看在线| 我的亚洲天堂| 亚洲五月色婷婷综合| 丝袜美足系列| 一边摸一边抽搐一进一出视频| 亚洲 国产 在线| 91麻豆精品激情在线观看国产 | 亚洲精品av麻豆狂野| 日韩一区二区三区影片| 久久毛片免费看一区二区三区| 男女免费视频国产| 亚洲第一欧美日韩一区二区三区 | 日韩中文字幕欧美一区二区| 国产主播在线观看一区二区| 国产成人精品无人区| 日韩中文字幕视频在线看片| 午夜日韩欧美国产| 国产在线一区二区三区精| 国产精品.久久久| 操出白浆在线播放| 精品一区二区三区av网在线观看 | 丁香欧美五月| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 无限看片的www在线观看| 91成人精品电影| 国内毛片毛片毛片毛片毛片| aaaaa片日本免费| 欧美乱码精品一区二区三区| 91成人精品电影| 日韩欧美免费精品| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 亚洲男人天堂网一区| av福利片在线| 亚洲色图综合在线观看| 成人国产一区最新在线观看| 亚洲中文av在线| 99热网站在线观看| 午夜福利影视在线免费观看| 日本欧美视频一区| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 99精品欧美一区二区三区四区| 免费人妻精品一区二区三区视频| 怎么达到女性高潮| 超碰97精品在线观看| 91精品三级在线观看| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 色在线成人网| 99国产综合亚洲精品| 国产成人免费观看mmmm| 欧美性长视频在线观看| 久久狼人影院| 最新的欧美精品一区二区| 两个人看的免费小视频| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 成人国产av品久久久| 无遮挡黄片免费观看| a级毛片在线看网站| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 免费在线观看完整版高清| 超色免费av| 久久青草综合色| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲专区字幕在线| 99re在线观看精品视频| 人成视频在线观看免费观看| www.熟女人妻精品国产| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 国产精品美女特级片免费视频播放器 | 九色亚洲精品在线播放| 久久亚洲精品不卡| 国产精品偷伦视频观看了| 久久人人爽av亚洲精品天堂| 不卡一级毛片| 人人妻人人澡人人爽人人夜夜| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 麻豆av在线久日| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 日本黄色日本黄色录像| 视频区图区小说| 日韩免费高清中文字幕av| 国产淫语在线视频| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 亚洲欧美激情在线| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 香蕉国产在线看| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 一夜夜www| 国产精品 欧美亚洲| 天堂俺去俺来也www色官网| 19禁男女啪啪无遮挡网站| 69精品国产乱码久久久| 王馨瑶露胸无遮挡在线观看| 啦啦啦免费观看视频1| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 女人被躁到高潮嗷嗷叫费观| 免费观看人在逋| 亚洲综合色网址| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| 99久久国产精品久久久| 中文字幕精品免费在线观看视频| 久久精品熟女亚洲av麻豆精品| 欧美乱妇无乱码| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 国产男女内射视频| bbb黄色大片| 久久久久久亚洲精品国产蜜桃av| 国产成人免费观看mmmm| 一区在线观看完整版| 国产亚洲午夜精品一区二区久久| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 青草久久国产| 中文字幕精品免费在线观看视频| 深夜精品福利| 欧美成人免费av一区二区三区 | 日日夜夜操网爽| 久久精品熟女亚洲av麻豆精品| 三级毛片av免费| 午夜日韩欧美国产| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 国产福利在线免费观看视频| 国产av国产精品国产| 搡老岳熟女国产| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 男女床上黄色一级片免费看| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 露出奶头的视频| 91老司机精品| avwww免费| 亚洲伊人久久精品综合| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女 | 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 热99re8久久精品国产| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 搡老乐熟女国产| 亚洲成人免费av在线播放| 欧美日韩视频精品一区| a级毛片黄视频| 国产不卡av网站在线观看| 首页视频小说图片口味搜索| 亚洲精品在线美女| 男女下面插进去视频免费观看| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 一级片'在线观看视频| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 一级毛片精品| 午夜福利一区二区在线看| 成人国语在线视频| 一区二区三区激情视频| 久久中文字幕人妻熟女| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 精品久久久久久电影网| 国产亚洲一区二区精品| 国产精品久久久久久人妻精品电影 | 成年人午夜在线观看视频| 岛国毛片在线播放| 成人18禁在线播放| tube8黄色片| 国产成人av教育| 亚洲中文字幕日韩| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 午夜福利乱码中文字幕| 老司机午夜福利在线观看视频 | 久久天堂一区二区三区四区| 老司机午夜福利在线观看视频 | 人妻一区二区av| 午夜激情久久久久久久| 色在线成人网| 亚洲国产av影院在线观看| 国产亚洲av高清不卡| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 老汉色av国产亚洲站长工具| 久久人妻av系列| 人妻 亚洲 视频| 亚洲综合色网址| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 飞空精品影院首页| 亚洲av国产av综合av卡| 精品福利观看| 久久精品国产亚洲av高清一级| 精品少妇内射三级| 19禁男女啪啪无遮挡网站| 久久久精品94久久精品| 999久久久国产精品视频| 免费观看a级毛片全部| 麻豆成人av在线观看| 男女下面插进去视频免费观看| 免费一级毛片在线播放高清视频 | 国产精品久久久av美女十八| 国产麻豆69| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美软件| 国产av精品麻豆| 在线观看舔阴道视频| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 免费在线观看完整版高清| av天堂久久9| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 少妇精品久久久久久久| 首页视频小说图片口味搜索| 日韩制服丝袜自拍偷拍| 欧美日韩一级在线毛片| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 制服诱惑二区| 久久婷婷成人综合色麻豆| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费 | 视频区欧美日本亚洲| 精品国内亚洲2022精品成人 | 久久免费观看电影| 香蕉久久夜色| 国产男女超爽视频在线观看| 中文字幕高清在线视频| 91成年电影在线观看| 黄色毛片三级朝国网站| 国产在线免费精品| 国产1区2区3区精品| 久久国产精品大桥未久av| 一本综合久久免费| 香蕉丝袜av| 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人| 岛国在线观看网站| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区mp4| 又大又爽又粗| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 老汉色∧v一级毛片| 久久九九热精品免费| 国产亚洲一区二区精品| 亚洲五月婷婷丁香| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 另类精品久久| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 好男人电影高清在线观看| 操美女的视频在线观看| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | 最黄视频免费看| 日韩中文字幕欧美一区二区| 制服诱惑二区|