• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of Desertification on the North Bank of Qinghai Lake

    2022-08-24 12:58:40WenzhengYuXinYaoLiShaoJingLiuYanboShenandHanxiaoyaZhang
    Computers Materials&Continua 2022年7期

    Wenzheng Yu, Xin Yao, Li Shao, Jing Liu, Yanbo Shenand Hanxiaoya Zhang

    1School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China

    2School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing,210044, China

    3Public Meteorological Service Center, China Meteorological Administration, Beijing, 100081, China

    4Center for Wind and Solar Energy Resources, China Meteorological Administration, Beijing, 100081, China

    5Faculty of Science, The University of Auckland, 1010, New Zealand

    Abstract: In this paper, RS, GIS and GPS technologies are used to interpret the remote sensing images of the north shore of Qinghai Lake from 1987 to 2014 according to the inversion results of vegetation coverage (FVC),albedo, land surface temperature (LST), soil moisture (WET) and other major parameters after image preprocessing, such as radiometric correction,geometric correction and atmospheric correction.On this basis, the decision tree classification method based on landsat8 remote sensing image is used to classify the desertification land in this area, and the development and change of desertification in this period are analyzed.The results show that the fluctuation of desertification land area in this area increased during the study period, but from 2003 to 2014, the land area of mild desertification, moderate desertification and severe desertification landwere respectively decreased 0.92,145.89 and 29.39 km2, while the area of serious desertification land still has a slow increasing trend.Whether the driving force of desertification change trend in this area is caused by human factors or global change needs to be further studied.

    Keywords: Remote sensing; Qinghai Lake; desertification; classification

    1 Introduction

    Desertification is one of the serious ecological, social and economic problems in the arid and semi-arid areas of the world, which seriously affects and puzzles the survival of all mankind and the sustainable development of society.Therefore, the research of regional desertification classification,dynamic monitoring, evolution rules, driving mechanism and so on has also become a hot and key field of academic research [1-6].

    Since 1990s, with the development of“3S”technology, desertification research has been further developed.Different scholars used the normalized exposure index and multi-temporal moderate-resolution imaging spectroradiometer (MODIS) remote sensing data to classify and dynamically monitor desertification by using the spatiotemporal dynamic indicators of vegetation coverage [1,2,7-9].From these studies, for different scales of remote sensing images, the accuracy of classification results obtained by using thematic index is not very ideal, and there are many indicators that can reflect desertification.However, in the application of remote sensing monitoring,it is necessary to select an appropriate index system to extract desertification information according to the land use characteristics of the study area.

    At present, the research on desertification in the north bank of Qinghai Lake area mainly focuses on two aspects: 1.The spatial distribution pattern of desertification land is analyzed, and the stability and sensitivity of desertification land are evaluated.It is considered that the instability of the patch sandy land is higher than that of the continuous sandy land, and the sensitivity of desertification is mainly moderate and highly sensitive.2.Monitoring land use, extracting land change information,analyzing land spatial-temporal change and differentiation pattern, and simply analyzing and discussing the driving forces of land change [1,4,10,11].

    This papermainly uses different methods and technologies, using high-resolution images, decision tree classification and other mathematical statistical methods to quantitatively analyze the evolution mechanism and rule of desertification on the North Bank of Qinghai Lake, so as to provide decision support for desertification prevention and control in Qinghai Lake area.

    2 Data Source and Preprocessing

    2.1 Data Sources

    In this paper, the time scale is from June to September, 1987 to 2014, the data of Landsat 5 TM images with the track number of 133/34, Landsat 8 OLI and TIRS images are used.The background information and specific parameters of remote sensing images are shown in the following Tab.1.

    Table 1: Continued

    2.2 Preprocessing of Remote Sensing Images

    2.2.1 Radiometric Correction

    In general, the gain and offset parameters given by USGS are used to calculate the radiometric correction of images.Formula:

    where, DN: pixel brightness value of image, dimensionless, value range 0-255; L: radiance,W·m2·sr-1·um-1; gain: W·m-2·sr-1·um-1; Bias: W·m-2·sr-1·um-1; There are two sets of parameters(Tab.2) for the gain and bias of TM images with different dates, and the differences mainly appear in the gain.The calibration parameters of landsat8 image are queried in the MTL file attached to the image [12,13].

    Table 2: Gain and offset values

    2.2.2 Geometric Correction

    55 geometric correction points are selected, all points are evenly distributed on the image, and the error is controlled within one pixel.

    2.2.3 Atmospheric Correction

    This paper uses the fast line-of-sight atmospheric analysis of spectral hypercubes module of environment for visualizing images (ENVI) software for atmospheric correction, and the relevant parameters can be obtained from the MTL attached to the image File.

    2.3 Parameter Inversion

    2.3.1 Vegetation Coverage (FVC)

    According to the distribution of normalized difference vegetation index (NDVI) values of TM images in different years in the study area, combined with experts’opinions, and are assigned values.The range of is generally between-0.1 and 0.2, and the range of is generally between 0.6 and 0.8, the inversion results are shown in Fig.1:

    Figure 1: FVC inversion results

    The modified soil adjusted vegetation index (MSAVI) was used as the calculation formula:

    In the formula, NIR and R are the near infrared band and red band of the image respectively [9,13].The inversion results are shown in Fig.2:

    Figure 2: Inversion results of soil-adjusted vegetation index

    2.3.2 Albedo

    The direct inversion method is used in this paper.The albedo formula of TM is:

    In the formula, R1, R3, R5, R5and R7are bands 1, 3, 4, 5 and 7 of TM image respectively [9,12,14].The inversion results are shown in Fig.3.

    2.3.3 Land Surface Temperature (LST)

    The resolution of Landsat TM5 image used in this paper is 30 m.The study area is dominated by grassland bare land, but it is difficult to have 100% vegetation coverage or bare soil surface.Due to different seasons, the growth of vegetation is not the same the method to improve emissivity through NDVI threshold was proposed [9], [12-14], the formula is:

    Figure 3: Albedo inversion results

    In the formula,Pvis the vegetation coverage,RvandRsare the temperature ratio of pure vegetation and bare soil respectively,εvand εsare the specific emissivity of pure vegetation and bare soil respectively, anddεis the geometric shape.When the surface is relatively flat,dεcan generally be taken as 0.After the correction of emissivity, the brightness temperature is converted to the surface temperature, the formula is:

    In the formula,λ=11.5 um; h is Planck constant, taking 6.26·10-34, J·s; c is the speed of light,2.998·108m/s;α is Stefan Bolzmann constant, 1.38 10-23J/K.The inversion results are shown in the Fig.4:

    Figure 4: Surface temperature inversion results

    2.3.4 Soil Moisture (WET)

    According to the characteristic space of TS NDVI, the dry edge equation and wet edge equation are obtained.a1andb1are the coefficients of dry edge equation,a2andb2are the coefficients of wet edge equation.TVDI [9,12,14] is obtained by substituting them into the formula.The results are shown in Fig.5.

    Figure 5: TVDI inversion results

    3 Classification of Desertification

    3.1 Analysis of Desertification Classification Methods

    3.1.1 Statistical Methods

    Maximum likelihood method and minimum distance method are the most commonly used statistical methods for remote sensing image classification.The maximum likelihood method is a classification method based on Bayesian criterion, while the minimum distance method is a variety of classification methods based on various decision distance functions.With the development of remote sensing technology, the data of remote sensing image is more and more abundant.When facing multi band image data, the maximum likelihood classification method has some problems, such as large amount of data, slow operation speed and so on.Because the objects feature in the remote sensing image are scattered and the gray value range is wide, there are often linear and non-linear classification problems between targets and between targets and background, which greatly affect the classification accuracy of the minimum distance method [12,15-18].

    3.1.2 Decision Tree Taxonomy

    Decision tree classification algorithm has the characteristics of clear, intuitive, flexible and high efficiency, which shows great advantages in classification accuracy.At present, the commonly used desertification classification methods of medium and low-resolution remote sensing images mainly include supervised classification, unsupervised classification and decision tree classification.The object-oriented classification method has better effect on high resolution remote sensing images [15,19,20].However, other classification methods, such as neural network classification, fuzzy classification, support vector machine classification and so on, cannot be popularized and applied in the field of desertification research because of the complexity of the algorithm or the higher requirements of Geoscience Knowledge.Huo Aidi, Ma Jingyu et al.adopted three methods of supervised classification, unsupervised classification and decision tree classification.Based on the four desertification monitoring indicators retrieved from MODIS data, they classified the Western Hunshandake desertification area in the autumn equinox of 2000, and compared the classification accuracy of the three classification methods [9,14, 19-21].The results are shown in Tab.3.

    Liu Aixia and Shen Wenming used unsupervised classification, maximum likelihood method and decision tree classification respectively, based on the five desertification monitoring indicators retrieved from MODIS data, the desertification degree of Horqin Sandy Land in 2001 was classified.Combined with the desertification monitoring map of Horqin Sandy Land in the late 1990s based on TM image, the classification results of the three classification methods were evaluated [14,19].The results are shown in Tab.4.

    Table 3: Classification accuracy results

    Table 4: Classification accuracy results

    It can be seen from Tabs.3 and 4 that among the three classification methods, the overall accuracy and kappa coefficient of decision tree classification method are the highest.Therefore, according to the current situation of desertification in Qinghai Lake area and the characteristics of TM image, the decision tree classifier is selected to carry out the classification of desertification in Qinghai Lake area.

    3.2 Desertification Classification Based on Landsat8 Images

    3.2.1 Data Introduction

    Landsat8 carries two main loads: OLI land imager and TIRS thermal infrared sensor.The OLI land imager consists of 9 bands with a spatial resolution of 30 m, including a 15 m panchromatic band with an imaging width of 185×185 km.OLI includes all bands of TM sensor.In order to avoid the atmospheric absorption characteristics, OLI readjusts the band.The larger adjustment is OLI band 5(0.845-0.885μm),excluding the water vapor absorption characteristics at0.825μm;OLI panchromatic band band8 has a narrow band range, which can better distinguish vegetation and non-vegetation features in panchromatic images; In addition, there are two new bands: one is the blue band (band 1:0.433-0.453 μm), which is mainly used for coastal zone observation, and the other is the short wave infrared band (band 9: 1.360-1.390 μm), which can detect the strong absorption characteristics of water vapor for cloud detection.The parameters of the two sensors are shown in Tabs.5 and 6.

    Table 5: Comparison of OLI and TM sensor parameters

    Table 6: TIRS sensor parameters

    3.2.2 Desertification Decision Tree Classification Based on Landsat8 Images

    Landsat8 uses a new OLI land imager and TIRS thermal infrared sensor.It is not clear whether the retrieval methods of NDVI, vegetation coverage, soil adjusted vegetation index, albedo, land surface temperature and soil moisture suitable for landsat5 are also suitable for landsat8 images.According to the existing research results, landsat5 NDVI and vegetation coverage inversion methods are also suitable for landsat8 images.However, there are still many uncertainties in the two thermal infrared bands of landsat8.At the same time, NASA does not recommend using split window algorithm to retrieve land surface temperature.Therefore, this paper attempts to use the single window algorithm to retrieve the first thermal infrared band of landsat8.The newly added cirrus band in landsat8 can be used for cloud detection, so NDVI, vegetation coverage, land surface temperature, soil moisture and cirrus band apparent emissivity are used as landsat8 desertification monitoring system to classify the desertification in the study area.The parameters of NDVI, vegetation coverage, land surface temperature and soil moisture based on landsat8 image were obtained by using parameter inversion method.The apparent emissivity of cirrus cloud band can be retrieved from the formula provided by NASA [10,14,19], and the formula is as follows:

    In the formula,ρ λ′is the atmospheric top reflectance without sun angle correction;Mpis the gain parameter;Apis the offset parameter;Qcalis the pixel brightness value of the image, that is, DN value.The values ofMpandApcan be obtained from the MTL file attached to the image.

    The formula of the atmospheric top reflectance with solar angle correction is as follows:

    In the formula,ρλ is the atmospheric top reflectance corrected by the solar angle;θ is the solar altitude angle, which can be obtained from the MTL file attached to the image [1,10,11,14,15,19,21].

    According to the above parameters, NDVI values of severe desertification land, moderate desertification land, mild desertification land and non-desertification land are all greater than 0.The vegetation coverage of non-desertification land is more than 60%, that of mild desertification land is between 30% and 60%, that of moderate desertification land is between 10% and 30%, and that of severe desertification land is less than 10%.The surface features with NDVI value less than 0 include water body, severely desertified land, cloud, cloud shadow and snow cover.The surface temperature of the desertified land is between 288-302 k, the surface temperature of the seriously desertified land is about 300 K, the temperature of the water body is about 285 k, and the surface features below 290 k are clouds, cloud shadows and snow.The soil moisture of seriously desertified land is about 0.5% larger than that of water body.On the surface reflectance image of cirrus band, the reflectance of cloudfree area is below 0.05, while that of cloud covered area is above 0.1.According to the above features,the decision tree classification process based on landsat8 is constructed, as shown in Fig.6.

    Figure 6: Classification flow chart of decision tree

    4 Classification Results and Accuracy Evaluation

    4.1 Interpretation Results

    Based on the existing research results and field investigation, this paper uses the decision tree classification method to interpret the TM remote sensing images of desertification on the North Bank of Qinghai Lake area, and the results are shown in Fig.7.

    4.2 Accuracy Evaluation

    The accuracy evaluation of this paper is based on the classification results of TM images in 1987, 1995 and 2006 of Hu Mengjun et al.Based on the desert resolution signs established by earth, the classification results of 1987, 1995, 2006, 2013 and 2014 are compared with the visual interpretation results.The accuracy evaluation results are shown in Tab.7.It can be seen from Tab.7 that the decision tree classification method based on vegetation coverage, adjusted soil vegetation index, albedo, land surface temperature and soil moisture have high extraction accuracy.The overall classification accuracy of the three periods is more than 80%, and the kappa coefficient exceeds the minimum allowable discrimination accuracy of 0.7, which meets the requirements of remote sensing image classification accuracy.

    4.3 Statistical Results of Desertification on the North Bank of Qinghai Lake

    According to the results of TM remote sensing interpretation, this paper uses Envi’s classification statistical tool to make statistics on the land area of different degrees of desertification in Haiyan Lake Basin in different years.The incomplete data of individual years are supplemented by linear interpolation method.The results are shown in Tab.8.

    4.4 Analysis on the Evolution Law of Desertification Land in the North Bank of Qinghai Lake

    This paper analyzes the evolution law of different types of desertification land in Qinghai Lake area from 1987 to 2014, and the results are shown in Fig.8.As shown in Fig.8, from 1987 to 1996,the total area of desertified land increased by 175.82 km2, of which the area of mild desertified land increased by 60.47 km2, the area of moderate desertified land increased by 121.33 km2, the area of severe desertified land increased by 18.23 km2, the area of severe desertified land decreased by 24.21 km2, and the area of moderate desertified land developed the fastest.This is mainly due to the rapid growth of population in the area around Qinghai Lake in the 1990s, which leads to the increasing demand for the development of agriculture and animal husbandry, the excessive reclamation of grassland and the aggravation of desertification.After 1996, the area of desertified land began to decline, but after entering the 21st century, the area of desertified land has an increasing trend.Compared with 1996, the area of desertified land in 2003 decreased by 35.56 km2, the area of mild and moderate desertified land showed a reverse trend, and the area of severe and very severe desertified land still showed an increasing trend.This is mainly due to the continuous increase of cultivated land around Qinghai Lake in the late 1990s.According to the data, the cultivated land around Qinghai Lake increased by 5299 km2from 1994 to 1999.The population growth and overgrazing led to the destruction of grassland and the aggravation of desertification.After 2001, the area of desertified land began to reverse obviously.The area of desertified land decreased from 1003 km2in 2003 to 858.72 km2in 2014, and the area of desertified land decreased by 144.28 km2.The area of mild, moderate and severe desertified land decreased by 0.92, 145.89 and 29.39 km2respectively.However, the land area of serious desertification is still increasing slowly.

    Table 7: Evaluation table of classification accuracy of decision tree

    Table 8: Desertification area of Haiyan Lake basin in different years

    Figure 8: The evolution law of different types of desertification land in qinghai lake area

    5 Conclusion and Discussion

    In this paper, RS, GIS and GPS technologies are used to interpret the remote sensing images of Hubei coast of Qinghai Province from 1987 to 2014 based on the retrieval results of main parameters such as FVC, albedo, LST and WET after image preprocessing such as radiometric correction,geometric correction and atmospheric correction.On this basis, the decision tree classification method based on landsat8 remote sensing image was used to classify the desertification land in this area, and the development and change of desertification in this period were analyzed.The results showed that the fluctuation of desertification land area in this area increased during the study period, but from 2003 to 2014, the area of mild desertification, moderate desertification and severe desertification land decreased by 0.92, 145.89 and 29.39 km2respectively, while the area of serious desertification land still has a slow increasing trend.Whether the driving force of desertification change trend in this area is caused by human factors or global change needs to be further studied.

    Funding Statement:This work was supported by the National Natural Science Foundation of China“Study on the dynamic mechanism of grassland ecosystem response to climate change in Qinghai Plateau”under grant number U20A2098, and the Second Tibet Plateau Scientific Expedition and Research Program (STEP) under grant number 2019QZKK0804.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美亚洲日本最大视频资源| 91麻豆av在线| 大片免费播放器 马上看| 美女视频免费永久观看网站| 亚洲精品一二三| 电影成人av| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 欧美日韩精品网址| 免费少妇av软件| 大陆偷拍与自拍| 别揉我奶头~嗯~啊~动态视频| 欧美久久黑人一区二区| 少妇 在线观看| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 两个人免费观看高清视频| 丝袜美腿诱惑在线| 日韩大片免费观看网站| av电影中文网址| 亚洲专区中文字幕在线| 91成年电影在线观看| 一区在线观看完整版| 精品第一国产精品| 亚洲专区国产一区二区| 一区福利在线观看| 69av精品久久久久久 | 国产一区有黄有色的免费视频| 国产一区二区三区在线臀色熟女 | 老鸭窝网址在线观看| 在线av久久热| 激情在线观看视频在线高清 | 国产成人精品无人区| 国产一区二区在线观看av| 亚洲色图综合在线观看| 国产男靠女视频免费网站| 国产男女超爽视频在线观看| 一本—道久久a久久精品蜜桃钙片| 精品少妇内射三级| 国产精品影院久久| 免费女性裸体啪啪无遮挡网站| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | av片东京热男人的天堂| 9191精品国产免费久久| 乱人伦中国视频| 91精品三级在线观看| 亚洲av国产av综合av卡| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 午夜福利,免费看| 欧美精品人与动牲交sv欧美| 国产人伦9x9x在线观看| 国产一区二区三区视频了| 天堂动漫精品| 极品人妻少妇av视频| 国产免费视频播放在线视频| 亚洲 国产 在线| 啦啦啦 在线观看视频| 欧美日韩视频精品一区| 色视频在线一区二区三区| 亚洲精品国产区一区二| 久久久国产精品麻豆| 成人黄色视频免费在线看| 91老司机精品| 久久人人97超碰香蕉20202| 黄色视频不卡| 免费不卡黄色视频| 国产精品熟女久久久久浪| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 国产精品欧美亚洲77777| 一级黄色大片毛片| 捣出白浆h1v1| 国产成人影院久久av| 中文字幕最新亚洲高清| 亚洲欧美精品综合一区二区三区| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 国产精品一区二区免费欧美| 老熟女久久久| 人成视频在线观看免费观看| 欧美大码av| 午夜两性在线视频| 90打野战视频偷拍视频| 成人国语在线视频| 久久久久网色| 十八禁网站免费在线| 日韩有码中文字幕| 99九九在线精品视频| 精品人妻1区二区| 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| 另类精品久久| 久久精品人人爽人人爽视色| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| tube8黄色片| 天天操日日干夜夜撸| 婷婷丁香在线五月| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 18在线观看网站| 男女高潮啪啪啪动态图| 免费日韩欧美在线观看| 久久精品国产亚洲av香蕉五月 | 淫妇啪啪啪对白视频| 蜜桃国产av成人99| 色94色欧美一区二区| 人人妻人人澡人人看| 热re99久久国产66热| 午夜免费成人在线视频| 麻豆av在线久日| 国产片内射在线| 亚洲熟女毛片儿| www.999成人在线观看| 国产成人av教育| cao死你这个sao货| 我的亚洲天堂| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 国产男女内射视频| 亚洲三区欧美一区| 国产在线免费精品| 色综合欧美亚洲国产小说| 午夜激情av网站| 精品视频人人做人人爽| 99国产综合亚洲精品| 亚洲国产毛片av蜜桃av| av一本久久久久| 91精品国产国语对白视频| 一级片'在线观看视频| 99精品在免费线老司机午夜| 午夜免费鲁丝| 国产精品久久久久成人av| 一区二区三区激情视频| 国产无遮挡羞羞视频在线观看| 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 日韩欧美免费精品| 欧美人与性动交α欧美精品济南到| 欧美中文综合在线视频| 精品国产乱子伦一区二区三区| 成年版毛片免费区| av线在线观看网站| 高清视频免费观看一区二区| 69av精品久久久久久 | 夜夜骑夜夜射夜夜干| 欧美成人午夜精品| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| 国产精品影院久久| 久久精品91无色码中文字幕| 亚洲色图综合在线观看| 久久精品aⅴ一区二区三区四区| 一区二区三区精品91| 免费一级毛片在线播放高清视频 | 制服人妻中文乱码| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 色综合婷婷激情| 国产xxxxx性猛交| 中国美女看黄片| 黄色毛片三级朝国网站| 一个人免费看片子| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 在线观看人妻少妇| 亚洲一区二区三区欧美精品| 精品一区二区三区av网在线观看 | 99香蕉大伊视频| av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 最黄视频免费看| www日本在线高清视频| 一进一出好大好爽视频| 亚洲成国产人片在线观看| 激情在线观看视频在线高清 | 99热国产这里只有精品6| 色播在线永久视频| 午夜福利一区二区在线看| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| 久久中文看片网| 性少妇av在线| 久久国产精品影院| videosex国产| 国产男女内射视频| 亚洲精品在线观看二区| 香蕉国产在线看| 精品高清国产在线一区| 一本一本久久a久久精品综合妖精| 精品一区二区三区四区五区乱码| 超碰97精品在线观看| 大陆偷拍与自拍| 国产男女内射视频| videos熟女内射| 亚洲一区二区三区欧美精品| 亚洲va日本ⅴa欧美va伊人久久| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 成在线人永久免费视频| 国产在线精品亚洲第一网站| 精品一区二区三卡| 亚洲成a人片在线一区二区| 亚洲三区欧美一区| 国产精品九九99| 亚洲免费av在线视频| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 精品欧美一区二区三区在线| 另类精品久久| 日韩欧美免费精品| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 丰满饥渴人妻一区二区三| 视频区欧美日本亚洲| 欧美日韩视频精品一区| 午夜日韩欧美国产| 国产淫语在线视频| 久久这里只有精品19| 无限看片的www在线观看| 免费看a级黄色片| 色精品久久人妻99蜜桃| 国产精品电影一区二区三区 | 精品少妇黑人巨大在线播放| 国产精品免费大片| 国产精品久久久av美女十八| 欧美成狂野欧美在线观看| 国产精品熟女久久久久浪| 在线天堂中文资源库| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 国产精品成人在线| 又紧又爽又黄一区二区| 国产免费福利视频在线观看| 久久国产亚洲av麻豆专区| 一进一出好大好爽视频| 国产精品免费大片| 亚洲第一av免费看| 精品国产乱码久久久久久小说| 亚洲欧美精品综合一区二区三区| 亚洲av日韩在线播放| 亚洲全国av大片| 免费看十八禁软件| 女性被躁到高潮视频| 十八禁网站免费在线| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 99久久99久久久精品蜜桃| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站 | 精品午夜福利视频在线观看一区 | 两性夫妻黄色片| 亚洲自偷自拍图片 自拍| 国产午夜精品久久久久久| av一本久久久久| 国产一区有黄有色的免费视频| 国产成人影院久久av| 淫妇啪啪啪对白视频| 久久午夜综合久久蜜桃| 天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 亚洲色图av天堂| 99re在线观看精品视频| 久久人妻福利社区极品人妻图片| 女人精品久久久久毛片| 精品少妇内射三级| 国产在线一区二区三区精| 狠狠婷婷综合久久久久久88av| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 精品一区二区三卡| 久久精品成人免费网站| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 黄色视频,在线免费观看| 人妻久久中文字幕网| 九色亚洲精品在线播放| 亚洲第一青青草原| 91国产中文字幕| 成人永久免费在线观看视频 | 两个人看的免费小视频| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 精品亚洲乱码少妇综合久久| 午夜老司机福利片| 韩国精品一区二区三区| 99香蕉大伊视频| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 人人妻人人添人人爽欧美一区卜| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品古装| 又大又爽又粗| 麻豆乱淫一区二区| 午夜福利在线观看吧| 在线 av 中文字幕| 久久久久久久精品吃奶| 无限看片的www在线观看| 90打野战视频偷拍视频| 日日摸夜夜添夜夜添小说| 高清视频免费观看一区二区| 精品一区二区三区av网在线观看 | 91麻豆av在线| 精品一区二区三卡| 人妻久久中文字幕网| 久久久国产欧美日韩av| 日本vs欧美在线观看视频| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 国产精品免费视频内射| 亚洲欧美一区二区三区黑人| 欧美人与性动交α欧美软件| 亚洲九九香蕉| 无限看片的www在线观看| 黑丝袜美女国产一区| 99国产精品99久久久久| 国产成人精品在线电影| 色视频在线一区二区三区| 1024香蕉在线观看| 黄色丝袜av网址大全| 国产高清激情床上av| 久久久国产一区二区| 亚洲第一av免费看| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 欧美黑人精品巨大| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 国产成人啪精品午夜网站| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 国产精品久久久人人做人人爽| 亚洲欧洲日产国产| 亚洲视频免费观看视频| www.熟女人妻精品国产| 久久久精品免费免费高清| 国产精品久久电影中文字幕 | 国产欧美日韩精品亚洲av| av天堂久久9| 日韩 欧美 亚洲 中文字幕| 大码成人一级视频| 国产主播在线观看一区二区| 午夜成年电影在线免费观看| 久热这里只有精品99| 国产精品久久电影中文字幕 | 亚洲熟妇熟女久久| 午夜福利视频精品| 老汉色av国产亚洲站长工具| 一本色道久久久久久精品综合| 午夜福利影视在线免费观看| 夜夜夜夜夜久久久久| 亚洲av成人一区二区三| 涩涩av久久男人的天堂| 黄片大片在线免费观看| 一级毛片女人18水好多| 日韩免费av在线播放| 国产有黄有色有爽视频| 国产成人啪精品午夜网站| 精品一区二区三区视频在线观看免费 | 人人妻,人人澡人人爽秒播| 美女高潮到喷水免费观看| 视频在线观看一区二区三区| 国产亚洲午夜精品一区二区久久| 老熟女久久久| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 大香蕉久久网| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 日韩有码中文字幕| 黄网站色视频无遮挡免费观看| 亚洲九九香蕉| 亚洲精品av麻豆狂野| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽 | 69精品国产乱码久久久| 日日摸夜夜添夜夜添小说| 18禁观看日本| 最近最新中文字幕大全免费视频| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 色播在线永久视频| 亚洲中文av在线| 亚洲国产欧美网| 国产成人精品在线电影| 99九九在线精品视频| 久久久久精品人妻al黑| 丁香六月欧美| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 亚洲av日韩在线播放| 欧美日韩精品网址| a级毛片在线看网站| 九色亚洲精品在线播放| 久久久久国内视频| 成人av一区二区三区在线看| 久久这里只有精品19| av线在线观看网站| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 一级毛片精品| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| 亚洲色图av天堂| 又大又爽又粗| 狠狠精品人妻久久久久久综合| 在线观看免费午夜福利视频| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 十八禁高潮呻吟视频| 麻豆av在线久日| 9191精品国产免费久久| 999精品在线视频| 十八禁网站免费在线| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 免费看a级黄色片| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 精品乱码久久久久久99久播| 操出白浆在线播放| 免费在线观看视频国产中文字幕亚洲| 国产不卡一卡二| 菩萨蛮人人尽说江南好唐韦庄| 不卡一级毛片| 国产精品自产拍在线观看55亚洲 | 高潮久久久久久久久久久不卡| 97在线人人人人妻| 国产三级黄色录像| 亚洲专区字幕在线| 91成人精品电影| 桃红色精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 91成年电影在线观看| 我的亚洲天堂| 男女无遮挡免费网站观看| 亚洲成国产人片在线观看| 少妇粗大呻吟视频| 国产一区二区激情短视频| 色综合欧美亚洲国产小说| 精品人妻1区二区| 久久99一区二区三区| www.熟女人妻精品国产| 久久久国产欧美日韩av| 99香蕉大伊视频| 国产精品亚洲一级av第二区| 天天操日日干夜夜撸| 久久久精品区二区三区| 中文欧美无线码| 亚洲全国av大片| 亚洲第一欧美日韩一区二区三区 | 夜夜夜夜夜久久久久| 美女午夜性视频免费| 婷婷丁香在线五月| 欧美黑人欧美精品刺激| 国产亚洲精品一区二区www | 最近最新中文字幕大全电影3 | 欧美精品人与动牲交sv欧美| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 男女无遮挡免费网站观看| 黄片播放在线免费| 国产一区二区激情短视频| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 动漫黄色视频在线观看| aaaaa片日本免费| 免费观看人在逋| 久久国产精品影院| 热99re8久久精品国产| 亚洲国产看品久久| 成人三级做爰电影| 一本一本久久a久久精品综合妖精| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 久久久精品94久久精品| 十八禁高潮呻吟视频| 香蕉国产在线看| 成人特级黄色片久久久久久久 | 午夜激情久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 咕卡用的链子| 18禁国产床啪视频网站| e午夜精品久久久久久久| 中文亚洲av片在线观看爽 | 久久中文字幕一级| 午夜日韩欧美国产| 亚洲视频免费观看视频| 在线av久久热| tube8黄色片| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 精品国产一区二区久久| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 黄色成人免费大全| 男女边摸边吃奶| 久热爱精品视频在线9| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区| 在线看a的网站| 激情在线观看视频在线高清 | 大香蕉久久成人网| www日本在线高清视频| 国产精品自产拍在线观看55亚洲 | 成年人黄色毛片网站| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 欧美日韩一级在线毛片| 欧美日韩精品网址| 国产一区二区三区在线臀色熟女 | 大片免费播放器 马上看| 久久久精品免费免费高清| 免费不卡黄色视频| 悠悠久久av| 在线看a的网站| 亚洲 欧美一区二区三区| 亚洲第一av免费看| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 夜夜爽天天搞| 久久久久网色| 中文字幕人妻丝袜制服| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| 黑人操中国人逼视频| 国产主播在线观看一区二区| 99久久国产精品久久久| 午夜激情av网站| av有码第一页| 久久久久国产一级毛片高清牌| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 成人国产av品久久久| 一个人免费看片子| 国产熟女午夜一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华精| 国产视频一区二区在线看| 欧美乱妇无乱码| 三上悠亚av全集在线观看| av福利片在线| 午夜精品国产一区二区电影| 日韩有码中文字幕| 男女午夜视频在线观看| 久久久久久亚洲精品国产蜜桃av| 一本一本久久a久久精品综合妖精| 欧美 亚洲 国产 日韩一| 国产精品偷伦视频观看了| 亚洲欧美色中文字幕在线| 久久人人爽av亚洲精品天堂| 老司机影院毛片| 丰满饥渴人妻一区二区三| 桃花免费在线播放| 亚洲第一青青草原| 国产在视频线精品| 中文欧美无线码| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 大型av网站在线播放| 三上悠亚av全集在线观看| 国产亚洲欧美精品永久| 午夜福利免费观看在线| 黄网站色视频无遮挡免费观看| 亚洲成a人片在线一区二区| 中文字幕人妻丝袜一区二区| a级毛片黄视频| 在线观看免费午夜福利视频| 国产精品国产av在线观看| 久久精品亚洲精品国产色婷小说| 久9热在线精品视频| 两个人免费观看高清视频| 中文字幕高清在线视频| 欧美日韩成人在线一区二区| 亚洲美女黄片视频| av国产精品久久久久影院| 一级,二级,三级黄色视频| 亚洲专区中文字幕在线| 搡老乐熟女国产| 少妇裸体淫交视频免费看高清 | 午夜免费鲁丝| 久久亚洲真实| 91成人精品电影| av天堂久久9| 国产精品av久久久久免费| 亚洲中文字幕日韩| 久久久久国产一级毛片高清牌| 国产在线视频一区二区|