• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-integer Order Control Scheme for Pressurized Water Reactor Core Power

    2022-08-24 12:57:58IbrahimMehediMaherALSereihyAsmaaUbaidAlSaggafandUbaidAlSaggaf1
    Computers Materials&Continua 2022年7期

    Ibrahim M.Mehedi, Maher H.AL-Sereihy, Asmaa Ubaid Al-Saggafand Ubaid M.Al-Saggaf1,

    1Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah, 21589, Saudi Arabia

    2Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia

    Abstract: Tracking load changes in a pressurized water reactor (PWR) with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties, a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations, CRONE(Commande Robusted’Ordre Non Entier,meaning Non-integerorder Robust Control) and FOMCON (non-integer order modeling and control).Simulation results are produced using MATLAB?program.Both non-integer results are compared with an integer order PI (Proportional Integral) algorithm to justify the effectivenessof the proposed scheme.Sate-space model Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.

    Keywords: Sate-space model; core power control; non-integer control;pressurized water reactor; PI controller; CRONE FOMCON

    1 Introduction

    Nuclear power generation is a cost-competitive source of clean energy.It provides a stable baseload of energy.It can easily be coupled with other renewable sources of energy such as solar and wind as per their availability.The energy production from a nuclear plant can be lowered or cranked up according to the availability of good wind or solar resources and the high demand for electricity at the load.A Nuclear power has a lower environmental impact than other energy harnessing methods of energy generation.Although nuclear power station is very advantageous, the waste produced is dangerous for both humans and the environment.Beyond these threats, security issues are also crucial to consider while producing nuclear energy.In particular, nuclear power plants equipped with pressurized water reactors (PWRs) are very concerned with controlling their power output while changing their loads.It is really a challenge to design an effective control system to regulate the core power due to its sensitivity and time-varying phenomena.As one of many control techniques, the percent integration differentiation controller (PID) is very popular in both industrial control and nuclear power plant core power control.However, there are some tuning issues for the PID control method to fulfill the exact requirement for core power control [1].There are some other control methods such as,fuzzy logic methods [2], intelligent control methods [3], neural network techniques [4], axial offset strategy [5], optimal control system [6] and State-space model-based predictive control methods [7],that demonstrate the core power control in PWRbased nuclear power stations.Due to the sensitivity of its reactor, the researchers had difficulty controlling the core power even after completing a successful demonstration.Consequently, there are scopes for better control schemes to be demonstrated for the purpose of core power control in a pressurized water reactor while following the required load changes.

    Non-integer control, also known as fractional order control (FOC), has attracted much attention in control engineering due to its powerful performance tuning range and controllability over timevarying systems[8,9].The performance is especially increased in contrast to traditional PID controllers by utilizing non-integer calculus.Several recent papers [8-11] have investigated this fact.The noninteger order controllers have numerous advantages because of their easy design criteria and ease of implementation.They can be employed commonly in different types of systems for industrial automation as well.Robustness is also ensured for the controllers containing non-integer filters.

    An approach to control core power in pressurized water reactors based on non-integer order control is presented in this paper.The state-space model is chosen based on differential equations considering thermal-hydraulic models, neutron dynamics models, and reactivity models.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations, CRONE (Commande Robuste d’Ordre Non Entier, meaning Non-integerorder Robust Control) and FOMCON (non-integer-order modeling and control).The proposed noninteger order control approaches produced better performances than that of the integer-order control method.Comparative simulation results are demonstrated in this current investigation.

    This paper continues as follows: In Section 2, we discuss basic concepts of dynamic models for pressurized water reactors.Non-integer order control scheme is described in Section3.The state-space dynamicmodel of reactor core power control is presented in Section 4.Section 5 presents the computer simulation results obtained using MATLAB?program.Comparisons of integer and non-integer order control schemes are also provided in this Section.Finally, Section 6 concludes the paper with a brief discussion.

    2 Dynamics Models of PWRs

    Three dynamic models are combined to model the core power dynamics system of PWRs.These include a dynamic model using neutron analysis, hydraulic model using thermal analysis, and reactivity model for pressurized water reactors [12-16].

    2.1 Dynamics Models Based on Neutron Analysis

    Neutron dynamic model is considered the primary step for the dynamics modeling of water reactors.Due to the reduced computational workload,multi-group delayed neutrons are consolidated into one group [4].The simplified dynamic equation for the rate of neutron density and the concentration of delayed neutrons are as follows:

    Here,qanddare the rates of change of neutron density and the rate of change of concentration of delayed neutron, respectively.The other symbols σ,?and μ stand for reactivity, required time to generate a neutron, and the decay constant for the delayed neutron.Moreover,γ is the total effective fractional delayed neutrons.Now the above kinematic equations are expressed as follows:

    Therefore, the real-time core power,Qr(t) is defined as the product of nominal core powerQ0and the neutron density,q:

    It is assumed that the nominal core power remains constant, therefore,qis represented as relative core power.

    2.2 Hydraulic Models Based on Thermal Analysis

    Similarly, the thermal-hydraulic models are defined accounting for energy conservation [7].Based on this model, the cooling water transfers heat to the secondary circuit and the fuel transfers heat to the cooling water, using heat transfer coefficientsQh(t) andQs(t).Therefore, the energy conservation equations are obtained as follows:

    In this instance,Mrepresents the mass flow rate of cooling water at a given heat capacity, while C represents the coefficient of heat transfer from fuel to cooling water.TfandTware the average temperatures of the fuel and cooling water.The temperature of cooling water at the inlet and outlet isTiandTo.Temperature differences between the inlet and outlet of cooling water are assumed to be constant.Therefore, we would expect that this value will hover between 300°C and 330°C.The thermal transfer between fuel and cooling water was assumed to occur with other cooling water parameters unchanged.Consequently, the inlet temperature does not deviate from its point of balance, i.e.,ΔTi=0.Calculate the average cooling water temperature using the formula(Ti+To).Heat is transferred from the fuel to the cooling water by using the following dynamic equations:

    where φcis cooling water heat capacity,ffis the fraction quantity power stored in reactor fuel and φfis the fuel heat capacity.

    2.3 Reactivity Models of PWRs

    The reactive models are introduced in [17].By moving the control rod, the reactivity is achieved.It is the product of total reactivity worth of control rod,Hrand the velocity of the control rod,Jras shown here:

    Here,αcand αfare the reactivity coefficient of cooling water and fuel of PWRs.Tfo,Tj, andTrare initial temperatures of steady-state fuel, the inlet of cooling water, and outlet of cooling water,respectively.It is already assumed that there is no change in the inlet temperature of cooling water from the point of balance.Therefore, the following equation is achieved.

    3 Scheme Using Fractional Order Integral Action

    In order to enhance the tracking attainments and disturbance rejection, fractional order integral control with state feedback control is very valuable [18].The state-space expression for linear timeinvariant (LTI) systems is as follows:

    Here, the state vector is denoted byx(t)∈Rnand matrixA∈Rn×nis called the coefficient matrix.u(t)∈R andy(t)∈R are the input and output signals.q(t)∈R is for disturbance input.The control gain vector and out vector are denoted by column matricesB∈Rn×1andC∈R1×n, respectively.Control laws are written as follows if the integral control is incorporated:

    whereX(t) = [x(t)xr(t)]’is the augmented state vector andxr(t) is the output of the integral action.

    Among several suitable methods, Ackermann’s formula is widely used to evaluate the state feedback vector gain,Kp, andKr.Actually, the state feedback control helps to locate the suitable positions of the poles.For this reason, a non-integer order integrator, 1/sαmay be used to reduce the effects of zeros during transient responses.In this case, the static gainKrwill be changed by a compensatorK(s).Further, the state feed-back gainKsis utilized to stabilize the system, and a cascaded compensator,K(s) is used along the forward path of 1/sαin order to enhance the transient performance of the closed-loop system as shown in Fig.1.It introduces the concept of non-integer order control architecture.In this case, Bode’s ideal transfer function [9] is utilized as an open-loop reference model to designK(s) of Fig.1.It entails the opportunity of variable gains so that the robust closed-loop system is ensured exhibiting the iso-damping properties in step response.

    Figure 1: Non-integer compensator based state feedback control

    Bode’s ideal method uses the following closed-loop transfer function:

    Here, the performance of tracking system depends on υcfor transient conditions and η is responsible for overshoot.It is mentioned in [9] that the gain crossover frequency ωcand the phase margin φmare used to calculate υcand η.

    An underdamped behaviour is obtained for step response of Eq.(12) which has range of damping ratio from zero to one.The value of η is calculated by the Eq.(14) [9].

    Here,Mp(%) is the maximum overshoot.It can be mentioned that the state feedback gain,Ksis suitable for the stable systems as well as unstable systems.The detailed design of the integer filter gain,(K(s))and state feedback gain,(Ks)are available in[19].Now the control law of the architecture shown in Fig.1 is as follows:

    Here, the derivation of non-integer order is evaluated by the following equation of an integral operator,Dμ[9]:

    This non-integer order integral operator,Dμis used to produce new state,xrwith respect to the reference parameters,r.Actually,fractional integrator,integrates the tracking error to producexr.In Eq.(15),K(t) is the impulse response ofK(s).This is added through convolution with the gain vector,Ks.Once again, an integration of power μ(μ=η) is cascaded withK(s), to establish the closed-loop ideal transfer function of Eq.(12).

    The vectorKsplaces arbitrarily the number of characteristic roots of inner-loop as follows:

    Ackermann’s technique [19] is used to calculate the characteristic roots.The integer filterK(s) is evaluated by

    In Eq.(10),N(s) is the numerator of the linearized system.A low pass filter,is incorporated to makeK(s) more realizable.The explanation and proof ofK(s) are available in [19].

    4 State-space Model of Core Power Control

    The non-integer order control scheme applied in core power control is based on the non-integer order theory of calculus.In this regard, the state-space based mathematical model is considered for the pressurized reactor core.The model is described as follows [20]:

    Here,xis state variables and˙xis its derivatives.The output variable is expressed byyanduis the control variable of the state space.Coefficient matrices are expressed byA, B, CandD.

    According to the slow perturbation theory, deviation of neutron density,?qis very small than the balance value,q0.The neutron density equation is expressed as follows:

    Therefore, the Eq.(3) is simplified and linearized as bellow [13]:

    The state variables of this model is

    As an output variable we consider the deviation value of neutron density,?q, and the control rod velocity,Jras the control input.With the help of linear algebra and differential geometry, the coefficient matrices are deduced as follows [21]:

    5 Non-integer Order Control Approximation

    Controlling of core power in nuclear power stations with pressurized water reactors is demonstrated using PI control of non-integer order.A controller design that does not track the changes in the level of core power can be more flexible using non-integer order controllers.

    The proposed non-integer PI controller is approximated through two different approximations; CRONE, developed by A.Oustaloup, and Non-integer order modeling and control (FOMCON); a MATLAB?toolbox [22].The current investigation focuses on these two non-integer order approximations.

    5.1 CRONE

    CRONE (Commande Robuste d’Ordre Non Entier, meaning Non-integer-order Robust Control)controller developed by A.Oustaloup [9].It is a MATLAB and Simulink toolbox designed for a noninteger controller and developed by the CRONE team.Some Some Methods in the CRONE toolbox for noninteger MIMO transfer functions can be implemented in an object-oriented version for the tool.The CRONE toolkit is used by several toolboxes, such as.Ninteger and FOMCON [23,24].The transfer function using Ninteger toolbox of CRONE approximation is shown as follows [25]:

    Functions in frequency domain are processed by this function.ωznand ωpndepend on the domain of working frequency [ωh,ωl] andk′is an adjustable gain.

    5.2 FOMCON

    The FOMCON (non-integer-order modelling and control) is MATLAB toolbox developed by Tepljakov, Petlenkov, and Belikov [23,24,26].This unit is based on mini toolbox, FOTF.The details of“FOTF”can be found at [27].FOMCON offers graphical user interfaces (GUIs), Simulink blocks,system identification, and control design functionality.FOMCON’s relationship to other toolboxes is shown in Fig.2 [28].

    Figure 2: Other tool boxes related to FOMCON

    6 Simulation Results

    Due to the sensitivity of the nuclear reactor, it is difficult to follow the core power according to load changes.In order to justify the performance of the proposed control method, simulations of the non-integer PI controller were designed to compare with the integer PI controller.Tab.1 shows the prime constraints of PWR for the purpose of this investigation.

    Table 1: PWR’s constraints for computer simulation

    The linearized model, composed of the values shown in Tab.1, along with other necessary numerical values, can be described this way:

    Two different numerical toolboxes are used to approximate the non-integer integral.Here,α is non-integer operator.Chosen frequency domain limits are ωl=10 and ωh=1000.Adjusted gaink’is 1.Both CRONE and FOMCON toolboxes provide integrator blocks in Simulink, which makes the simulation easier.

    Simulated results indicate good performance of the non-integer PI controller for core power control compared to the integer PI controller.Fig.3 shows tracking the performance of non-integer PI using CRONE and FOMCON approximation.The desired core power level was deferring from 100%→60%→100% of nominal core power.

    Figure 3: Tracking performance of non-integer PI (100%→60%→100%)

    It is observed that two numerical approximations are used to implement the non-integer order integrator.The proposed non-integer PI controller improves the performance in terms of tracking error and rise time.However, CRONE appears to be faster than FOMCON in terms of rising time.

    As depicted in Fig.4 the performance of the non-integer PI controller was tracked for the expected core power deffer from 50%→60%→50% nominal core power.

    Figure 4: Tracking performance of non-integer PI (50%→60%→50%)

    Figs.5 and 6 show the effectiveness of the proposed non-integer PI controller compared to the integer PI controller.In Fig.5, the expected core power value was deferring from 50%→60%→50 of core power at nominal value, and in Fig.6, the expected core power level was differing from 0%→10%→0% of nominal core power.

    Figure 5: Tracking performance of non-integer PI (50%→60%→50%)

    Figure 6: Tracking performance of non-integer PI (0%→10%→0%)

    We can see that the proposed non-integer PI controller improved control performance and has better performance than integer PI in terms of tracking error and overshoot.

    7 Conclusion

    This paper presented non-integer order control methods to regulate the core power of the pressurized water reactor for nuclear power stations.This non-traditional control method possesses a high-performance tuning range.Designing this non-integer order controller is not cumbersome.Moreover, the ease of its implementation has made it an attractive choice.The non-integer order control methods are also commonly employed in industrial automation.Ensuring robustness is anadditional advantage of a non-integer controller.Therefore, the non-integer order control method is very useful for core power control in PWR.State-space analysis of the reactor core was used to develop the proposed control technique.The simulation results illustrate the usefulness and improved stability of the non-integer order state-space method.The proposed control technique can react swiftly to the changes of load and thus tracking error is reduced promptly and efficiently.The effectiveness of the proposed non-integer order methods is justified through a performance comparison with the integerorder PI control method.In addition, robustness is ensured by the proposed control scheme.

    Acknowledgement:This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no.(KEP-Msc-36-135-38).The authors,therefore, acknowledge with thanks DSR technical and financial support.

    Funding Statement:This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no.(KEP-Msc-36-135-38).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    我要搜黄色片| 观看免费一级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 久久久久久久久久黄片| 午夜福利在线观看吧| 乱人视频在线观看| 精品无人区乱码1区二区| 成人综合一区亚洲| 亚洲第一区二区三区不卡| 少妇丰满av| 成人漫画全彩无遮挡| 国产精品美女特级片免费视频播放器| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 午夜精品在线福利| 天堂网av新在线| 99视频精品全部免费 在线| 亚洲成人中文字幕在线播放| 69av精品久久久久久| 国产单亲对白刺激| 国内精品一区二区在线观看| av国产免费在线观看| 99九九线精品视频在线观看视频| 中文字幕精品亚洲无线码一区| 精品国内亚洲2022精品成人| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 亚洲在线观看片| 精品熟女少妇av免费看| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 亚洲不卡免费看| 九草在线视频观看| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 白带黄色成豆腐渣| 最新中文字幕久久久久| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 国产精品1区2区在线观看.| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 国产在视频线精品| 亚洲天堂国产精品一区在线| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 亚洲av一区综合| 国产淫片久久久久久久久| 久久午夜福利片| 欧美区成人在线视频| 国产三级中文精品| 国产三级在线视频| 亚洲av成人av| 一个人观看的视频www高清免费观看| 国语对白做爰xxxⅹ性视频网站| 一夜夜www| 男女视频在线观看网站免费| 毛片一级片免费看久久久久| 国产91av在线免费观看| 欧美日韩国产亚洲二区| 久久99热这里只频精品6学生 | 丝袜美腿在线中文| 少妇人妻精品综合一区二区| av在线亚洲专区| 国产精品福利在线免费观看| 九九热线精品视视频播放| 国产黄色视频一区二区在线观看 | 一二三四中文在线观看免费高清| 成年av动漫网址| 国产毛片a区久久久久| 色噜噜av男人的天堂激情| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 波野结衣二区三区在线| 亚洲国产欧洲综合997久久,| 色视频www国产| 欧美日韩国产亚洲二区| 久久久久久伊人网av| 一区二区三区免费毛片| 大又大粗又爽又黄少妇毛片口| 永久免费av网站大全| 久久久久久国产a免费观看| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| av在线播放精品| 国产91av在线免费观看| 午夜福利网站1000一区二区三区| 18禁在线播放成人免费| 18禁动态无遮挡网站| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 2021少妇久久久久久久久久久| 免费观看精品视频网站| 日韩av在线免费看完整版不卡| 国产精品精品国产色婷婷| 超碰97精品在线观看| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 亚洲四区av| 国产精品电影一区二区三区| 村上凉子中文字幕在线| 91在线精品国自产拍蜜月| 精品久久久久久成人av| 国内精品美女久久久久久| 国产av不卡久久| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 亚洲18禁久久av| 国产美女午夜福利| 99久久成人亚洲精品观看| 嘟嘟电影网在线观看| 亚洲精品亚洲一区二区| 日韩欧美精品v在线| 小蜜桃在线观看免费完整版高清| 日本熟妇午夜| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品sss在线观看| 有码 亚洲区| 性插视频无遮挡在线免费观看| 国产精品美女特级片免费视频播放器| 国产在视频线在精品| 国产伦一二天堂av在线观看| 国产极品精品免费视频能看的| 亚洲精品成人久久久久久| 久久久久久久久大av| 亚洲av电影在线观看一区二区三区 | 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 搡女人真爽免费视频火全软件| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| 中文乱码字字幕精品一区二区三区 | 国产成人午夜福利电影在线观看| 搡女人真爽免费视频火全软件| 亚洲四区av| 亚洲国产日韩欧美精品在线观看| 亚洲av.av天堂| 国产真实乱freesex| 国产精品不卡视频一区二区| 国产精品一及| 国产一级毛片在线| 三级国产精品欧美在线观看| 一区二区三区四区激情视频| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 午夜免费激情av| 国产伦精品一区二区三区四那| av免费观看日本| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 国产精品三级大全| 成人亚洲精品av一区二区| 亚洲欧美精品自产自拍| 免费看美女性在线毛片视频| 少妇人妻精品综合一区二区| 精品国内亚洲2022精品成人| 国产免费福利视频在线观看| 午夜a级毛片| 搡老妇女老女人老熟妇| 中文字幕久久专区| 男人舔女人下体高潮全视频| 国产真实乱freesex| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 三级毛片av免费| 国产毛片a区久久久久| 国产亚洲91精品色在线| 午夜精品国产一区二区电影 | 日韩视频在线欧美| 国产不卡一卡二| 一本一本综合久久| 99久久九九国产精品国产免费| 国产精品人妻久久久影院| 人妻系列 视频| 日韩,欧美,国产一区二区三区 | 国产亚洲一区二区精品| 成人美女网站在线观看视频| 色网站视频免费| 男女下面进入的视频免费午夜| 亚洲av电影在线观看一区二区三区 | 一级爰片在线观看| 国产毛片a区久久久久| 亚洲国产精品sss在线观看| 欧美性猛交╳xxx乱大交人| 狂野欧美白嫩少妇大欣赏| 精品人妻一区二区三区麻豆| 三级经典国产精品| 日日啪夜夜撸| 亚洲国产欧洲综合997久久,| 亚洲国产最新在线播放| 欧美3d第一页| av专区在线播放| 高清午夜精品一区二区三区| 深夜a级毛片| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 黄色欧美视频在线观看| 国产白丝娇喘喷水9色精品| 成人三级黄色视频| 最近中文字幕高清免费大全6| av在线老鸭窝| 亚洲av成人精品一二三区| 狂野欧美白嫩少妇大欣赏| .国产精品久久| 中文字幕熟女人妻在线| 观看免费一级毛片| 亚洲美女视频黄频| 亚洲精品456在线播放app| 免费观看在线日韩| 亚洲高清免费不卡视频| 国产探花极品一区二区| 成年女人永久免费观看视频| 久久久a久久爽久久v久久| 国产一区二区三区av在线| 久久久久网色| 久久久久国产网址| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添av毛片| 床上黄色一级片| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 午夜免费激情av| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 国产精品福利在线免费观看| 国产精品爽爽va在线观看网站| 精品欧美国产一区二区三| 联通29元200g的流量卡| 亚洲国产最新在线播放| 日韩欧美国产在线观看| 在线天堂最新版资源| 日日撸夜夜添| 在现免费观看毛片| 免费观看精品视频网站| 久久精品人妻少妇| 国产高清国产精品国产三级 | 亚洲无线观看免费| 久久精品国产自在天天线| 国产精品久久视频播放| 看片在线看免费视频| 美女大奶头视频| 亚洲高清免费不卡视频| 欧美97在线视频| 久久久久精品久久久久真实原创| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 成人漫画全彩无遮挡| 国产探花在线观看一区二区| 日韩制服骚丝袜av| 国产91av在线免费观看| 黄片wwwwww| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 乱人视频在线观看| 国产精品不卡视频一区二区| 国产视频首页在线观看| 赤兔流量卡办理| 97超视频在线观看视频| 日韩欧美国产在线观看| 黄片wwwwww| 色视频www国产| 精品人妻偷拍中文字幕| 老司机影院成人| 免费av不卡在线播放| 在线观看美女被高潮喷水网站| 国产精品电影一区二区三区| 变态另类丝袜制服| 国产高清三级在线| 最新中文字幕久久久久| 99热这里只有精品一区| www日本黄色视频网| 建设人人有责人人尽责人人享有的 | АⅤ资源中文在线天堂| 久久久久久久亚洲中文字幕| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 精品欧美国产一区二区三| 国产老妇女一区| 亚洲av熟女| 亚洲,欧美,日韩| 日韩强制内射视频| 日韩在线高清观看一区二区三区| 中文字幕熟女人妻在线| 国产精品不卡视频一区二区| 听说在线观看完整版免费高清| 秋霞伦理黄片| 国国产精品蜜臀av免费| av专区在线播放| 亚洲国产欧洲综合997久久,| 啦啦啦观看免费观看视频高清| 日韩大片免费观看网站 | 免费观看a级毛片全部| 少妇熟女欧美另类| 人人妻人人澡欧美一区二区| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕 | 欧美极品一区二区三区四区| 最新中文字幕久久久久| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 老司机福利观看| 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的 | 久久久精品欧美日韩精品| 一级毛片aaaaaa免费看小| 在线免费观看的www视频| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| av免费观看日本| 成人二区视频| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| 久久亚洲精品不卡| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 亚洲人成网站在线播| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 菩萨蛮人人尽说江南好唐韦庄 | 91av网一区二区| 桃色一区二区三区在线观看| 深夜a级毛片| 久久精品国产99精品国产亚洲性色| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 99热全是精品| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 久久久久精品久久久久真实原创| 直男gayav资源| www.色视频.com| 日本三级黄在线观看| 亚洲怡红院男人天堂| 色尼玛亚洲综合影院| 精品久久久久久电影网 | 男女国产视频网站| 国产亚洲精品av在线| 一级二级三级毛片免费看| 欧美日韩国产亚洲二区| 99在线人妻在线中文字幕| 国产91av在线免费观看| 色视频www国产| 在线播放无遮挡| 精品久久久久久电影网 | 亚洲欧美成人精品一区二区| 高清av免费在线| 亚洲不卡免费看| 国产三级在线视频| 国产精品嫩草影院av在线观看| 淫秽高清视频在线观看| 中文乱码字字幕精品一区二区三区 | 久久午夜福利片| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 亚洲欧美清纯卡通| 国产伦一二天堂av在线观看| 97超视频在线观看视频| 国产亚洲一区二区精品| 寂寞人妻少妇视频99o| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 婷婷色麻豆天堂久久 | 国产黄片美女视频| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 男女啪啪激烈高潮av片| 亚洲国产最新在线播放| 日韩欧美在线乱码| 精品一区二区免费观看| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 女的被弄到高潮叫床怎么办| 午夜精品在线福利| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 久久久亚洲精品成人影院| 禁无遮挡网站| 久久久久国产网址| 日韩强制内射视频| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 国产乱来视频区| 国产一级毛片七仙女欲春2| 性插视频无遮挡在线免费观看| 亚洲国产日韩欧美精品在线观看| 少妇的逼好多水| 直男gayav资源| 久久国产乱子免费精品| 国产乱来视频区| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 成年版毛片免费区| av在线天堂中文字幕| 国产色婷婷99| 欧美性感艳星| .国产精品久久| 禁无遮挡网站| 亚洲精品久久久久久婷婷小说 | 国产精品一区二区在线观看99 | 国产69精品久久久久777片| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 亚洲精品国产成人久久av| 精品少妇黑人巨大在线播放 | 91久久精品电影网| 国产毛片a区久久久久| 免费搜索国产男女视频| 身体一侧抽搐| 国产亚洲一区二区精品| 亚洲av成人精品一二三区| 99热这里只有是精品50| 嫩草影院精品99| 黄色一级大片看看| 亚洲综合精品二区| 久久热精品热| 一级av片app| 免费播放大片免费观看视频在线观看 | 免费无遮挡裸体视频| 国产精华一区二区三区| 午夜日本视频在线| 国产91av在线免费观看| 亚洲av成人av| 国产精品99久久久久久久久| 国模一区二区三区四区视频| 日韩人妻高清精品专区| 麻豆乱淫一区二区| 亚洲怡红院男人天堂| 中文字幕久久专区| 一个人免费在线观看电影| 国语自产精品视频在线第100页| 国产精品熟女久久久久浪| 2022亚洲国产成人精品| 国产91av在线免费观看| 国产av不卡久久| 在线播放无遮挡| 91精品伊人久久大香线蕉| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 国产精品久久久久久精品电影| 美女被艹到高潮喷水动态| 乱人视频在线观看| 亚洲成人av在线免费| 水蜜桃什么品种好| 26uuu在线亚洲综合色| 成人美女网站在线观看视频| 一级毛片久久久久久久久女| 九九在线视频观看精品| 久久精品国产亚洲网站| 国产成人91sexporn| 麻豆一二三区av精品| 久久6这里有精品| 国产成人精品久久久久久| 久久人人爽人人片av| 亚洲欧洲国产日韩| 99热精品在线国产| 亚洲不卡免费看| 变态另类丝袜制服| www.av在线官网国产| 午夜精品在线福利| 久久国产乱子免费精品| 成人美女网站在线观看视频| 亚洲av一区综合| 高清午夜精品一区二区三区| 国产精品一二三区在线看| 亚洲国产精品专区欧美| kizo精华| 日韩高清综合在线| 婷婷色麻豆天堂久久 | 国产亚洲午夜精品一区二区久久 | 麻豆成人av视频| 日韩高清综合在线| 久久99精品国语久久久| 国产又黄又爽又无遮挡在线| 欧美性感艳星| 成年女人看的毛片在线观看| 建设人人有责人人尽责人人享有的 | 日韩欧美精品免费久久| 日韩一本色道免费dvd| 亚洲人成网站在线播| 99在线人妻在线中文字幕| 成人高潮视频无遮挡免费网站| 日韩亚洲欧美综合| 91av网一区二区| 欧美一级a爱片免费观看看| 国产黄色小视频在线观看| 天堂中文最新版在线下载 | 国产成人a∨麻豆精品| 男的添女的下面高潮视频| 久久久久久久国产电影| 97在线视频观看| 一个人看的www免费观看视频| 亚洲欧美一区二区三区国产| 亚洲美女视频黄频| 国产成人午夜福利电影在线观看| 97热精品久久久久久| 日产精品乱码卡一卡2卡三| 国产在视频线在精品| 亚洲av电影在线观看一区二区三区 | 国产又黄又爽又无遮挡在线| 免费大片18禁| 日本黄大片高清| 99久国产av精品| 亚洲熟妇中文字幕五十中出| 岛国毛片在线播放| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 久久久欧美国产精品| 一边摸一边抽搐一进一小说| 人人妻人人澡欧美一区二区| 国产一区有黄有色的免费视频 | 久久国内精品自在自线图片| 中文欧美无线码| 丝袜喷水一区| 69人妻影院| 欧美一区二区精品小视频在线| 中文字幕亚洲精品专区| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 日本黄色片子视频| 又粗又硬又长又爽又黄的视频| 大香蕉久久网| 午夜激情欧美在线| 国产精品国产三级国产av玫瑰| 亚洲在久久综合| 精品欧美国产一区二区三| 国产不卡一卡二| 少妇的逼水好多| 一本久久精品| 免费观看a级毛片全部| 成人欧美大片| av国产久精品久网站免费入址| 欧美日本亚洲视频在线播放| 久久久久久久亚洲中文字幕| 亚洲av熟女| 国产三级中文精品| 国产色爽女视频免费观看| 91在线精品国自产拍蜜月| 国产乱人视频| 国产综合懂色| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 国产乱人偷精品视频| 国产成人精品婷婷| 日韩欧美在线乱码| 亚洲aⅴ乱码一区二区在线播放| 天堂网av新在线| 两个人的视频大全免费| 成人av在线播放网站| 日本与韩国留学比较| 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看 | 伊人久久精品亚洲午夜| 六月丁香七月| 纵有疾风起免费观看全集完整版 | 韩国高清视频一区二区三区| 国产高潮美女av| 国产美女午夜福利| 日产精品乱码卡一卡2卡三| 欧美成人免费av一区二区三区| 日韩精品有码人妻一区| av黄色大香蕉| 国产亚洲91精品色在线| 欧美变态另类bdsm刘玥| 我要搜黄色片| 一个人看的www免费观看视频| 国产淫片久久久久久久久| 少妇人妻一区二区三区视频| 国产av一区在线观看免费| 日本猛色少妇xxxxx猛交久久| 色5月婷婷丁香| 亚洲av熟女| 你懂的网址亚洲精品在线观看 | 精品一区二区三区人妻视频| 青春草国产在线视频|