• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smart Anti-Pinch Window Simulation Using H-/H∞Criterion and MOPSO

    2022-08-24 12:57:32MaedehMohammadiAzniMohammadAliSadrniaShahabBandandZulkefliBinMansor
    Computers Materials&Continua 2022年7期

    Maedeh Mohammadi Azni, Mohammad Ali Sadrnia, Shahab S.Bandand Zulkefli Bin Mansor

    1Department of Electrical and Robotics Engineering, Shahrood University of Technology, Semnan, Iran

    2Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan

    3Faculty of Information Science and Technology, Universiti Kebangsan Malaysia, 43600, UKM Bangi, Selangor, Malaysia

    Abstract: Automobile power windows are mechanisms that can be opened and shut with the press of a button.Although these windows can comfort the effort of occupancy to move the window, failure to recognize the person’s body part at the right time will result in damage and in some cases, loss of that part.An anti-pinch mechanism is an excellent choice to solve this problem,which detects the obstacle in the glass path immediately and moves it down.In this paper, an optimal solution H-/H∞is presented for fault detection of the anti-pinch window system.The anti-pinch makes it possible to detect an obstacle and prevent damages through sampling parameters such as current consumption, the speed and the position of DC motors.In this research, a speed-based method is used to detect the obstacles.In order to secure the anti-pinch window, an optimal algorithm based on a fault detection observer is suggested.In the residual design, the proposed fault detection algorithm uses the DC motor angular velocity rate.Robustness against disturbances and sensitivity to the faults are considered as an optimization problem based on Multi-Objective Particle Swarm Optimization algorithm.Finally, an optimal filter for solving the fault problem is designed using the H-/H∞method.The results show that the simulated anti-pinch window is pretty sensitive to the fault, in the sense that it can detect the obstacle in 50 ms after the fault occurrence.

    Keywords: H-/H∞; anti-pinch; residual; fault detection; multi-objective particle swarm optimization (MOPSO); multi-objective optimization;automotive; power windows; electric windows

    1 Introduction

    The increasing growth of automated systems and their application in larger and more complex systems, and consequently the increased demand for safety systems, has led to a greater tendency towards fault detection techniques, particularly, model-based methods in dynamic systems.Failure to recognize in due time will result in damage and loss of a significant part of the capabilities and information and human resources in some cases.Due to the damage caused by the fault, the industries were interested in seeking a way to minimize the incidence of faults.It is impossible to prevent a fault in control systems.However, if the fault can be detected in a timely fashion and identified dynamically,then by applying a proper control rule, the amount of damage can be reduced to an acceptable level.Systems that have such capabilities are called fault-tolerant control systems.In these systems, some performance drop is also acceptable in the event of a fault [1,2].

    There are two main approaches to fault detection: model-based fault diagnosis and non-model fault diagnosis [3].The non-model fault diagnosis does not require a dynamic model of the system to detect a fault [4].An analytical model-based diagnostic method is one of the most important methods for fault detection [5].The model-based methods are generally faster and more accurate than the non model approach.These methods use the idea of producing the residual signal, which results from a mismatch between the estimated behavior and the real system [6].There are various methods for generating the residual signal, which are based on the observer-based approach, parity equations approach, and parameter estimation approach [7].

    In the automotive industry, electronic systems, as they provide the customer’s comfort, encounter vehicles with new needs [8].One of these needs is the use of an automatic power window,which requires the finger to be pressed on the command button to move the window until the end of its course.

    Due to non-compliance with safety issues, there have been several incidents involving work with power windows.Therefore, failure to correctly detect the fault will damage the part of the body in the window movement path [2,9].As a result, the anti-pinch window control system has been very much taken into consideration.

    In general, common methods for detecting pinch conditions are divided into two batches.In the first method, the Pinch estimator assumes that the window velocity is significantly reduced and the motion is steady.In this type of estimation, the required value of calculations is low, but its performance decreases in the presence of noise.

    Another type that detects the pinch condition is when the motor torque exceeds a predetermined value, requiring an additional current sensor to prevent false alarms [10-12].

    H-/H∞is a method that decreases the effect of disturbance on the residual and increases the effect of the fault on it.We use H-to show the criterion of the fault effect [13], which should be maximized and used H∞to show the disturbance effect.The criterion H-and H∞is defined as [14,15]:

    Trfand Trdare the transfers of the fault and the disturbance to the residual signal, respectively.The two scalars β0>0 ,γ0>0 [14].It should be kept in mind that in condition (1), H-is not really the norm.For fault detection, H-is defined as follows.

    Definition:For the system given as y(s)= G(s)u(s) the criterion H-is as [16]:

    If the number of rows G(s) is greater than the number of its columns and?ω,G(-jω)GT(jω)>0,we have:

    If the number of rows G(s) is less than the number of its columns and?ω.GT(-jω)G(jω)>0:

    To calculate this criterion, we introduce the following Lemma.

    Lemma:Assume that A, B, P, S, R are matrices with suitable dimensions; while P and R are symmetric, R>0 and (A, B) are stable.Suppose two assumptions are satisfied [16]:

    1.A does not have an eigenvalue on the imaginary axis.

    2.P is defined as a positive semi-definite or negative semi-definite, while for (A, P), there is no observable mode on the imaginary axis.

    Then X is a unique real symmetric response for the following equation [17]:

    where, A - BR-1ST-BR-1BTX is stable.

    In this research, an optimal algorithm is considered using the H-/H∞method for the anti-pinch window system.In this algorithm, angular velocity rate information is used as a fault under pinch conditions.The fault detection observer is designed sensitive to the fault and robust to disturbances.To be more specific, in the result section, we can see that the fault detection has happened within 50 ms after the fault occurrence, resulting in having a window with negligible damage to the obstacle which is on its path.

    2 Methodology

    In most cars, lifting the window is done using a very precise lever that keeps it leveling up.A small electric motor is connected to a spiral gear and several circular gears to produce sufficient lifting force to lift the window.

    One of the important features of the power windows is that they cannot be opened by pressing; the helical gear prevents it.Most spiral gears are locked automatically due to the angle of contact between the helical gear and the round gear teeth.The helical gear can rotate the round gear, but the rounded gear cannot rotate the helical gear.The friction between the teeth makes the gears lock.The lever has a long arm attached to the bar that holds the bottom of the window.When the window rises, the end of the arm slips into the slot on the bar.On the other hand, there is a large plate at the end of the rod,where the gear teeth fall into it.The motor rotates the gear engaged with these teeth.

    New generation cars are equipped with power windows that reduce the passenger’s quest for moving car windows [18].If the object is placed in the window path, for example, the child’s hand, the window must stop at the moment.One method that automakers use to control the power of the window is the design of a circuit that measures the torque of the lift motor.If the motor torque decreases, the circuit will invert the inlet to the motor, and thus the window will return to the bottom.But the problem here is how long a fault is detected [19].In fact, less time is desirable for our problem since less damage occurs to the obstacle.The overall view of the power window is shown in Fig.1.

    We consider the linear time-invariant system as following [14]:

    where x is the state vector, u input control, y is the measurement vector, n is white noise, v is the disturbance, and f is the fault vector input.

    Figure 1: The overall view of the power window

    The residual generator is considered as follows [14]:

    Which shows that the dynamics of the residual signal r depends on the state e in addition to the parameters f, v and n.Another form of residual in Eq.(8) is as follows [14]:

    where Trf, Trnand Trvare transfer functions from f, n and v to r, respectively.

    2.1 Analytical Model of the Fault Detection Algorithm

    The angular velocity ω is considered as a state variable and we havefrom [14]:

    where b, J, Tc, Tpand Tware viscous friction coefficient, moment inertia, control torque, pinch torque and load torque, respectively.In addition, T =Tp+Twis considered as the second state variable.The torque rate is also added as the third state variable:

    The matrices A, B, C2and D2of the Eq.(7) are as follows [14]:

    The DC motor parameters are obtained by experiments.The values of these parameters are shown in the Tab.1.

    Table 1: Nominal values of motor parameters [14]

    By placing the above table data in the matrices A, B, C2, D2:

    According to Eq.(6), to detect the fault, we select the matrices Ef, Ev, En, Ff, Fvand Fnas [14]:, Fn=[0.05] , Fv=[0] , Ff=[1]

    3 Simulation of the System by Solving the MOPSO Algorithm

    We want to transform the problem of controller design into an optimization problem and then solve the problem using the MOPSO algorithm [20].We design the system in a way that can withstand any kind of uncertainty.We consider the linear state equation as [17]:

    And, the measurement equation is:

    The goal is to put the system in a proper position by applying a u so that z meet zero [21,22].

    According to the Eqs.(12)-(14) we have:

    The transfer function model is as [23]:

    And, the closed-loop transfer function for input w and output z is:

    Since, Tzw(s) is a multivariable transfer function, we should use the norm of that to solve the problem.At first, we consider the constant gain controller design problem as an optimization problem.Afterward, with the help of the MOPSO algorithm, we find L so that‖Tzw(s)‖is minimized.In fact, z must remain independent of the w; if we can supply it, we will have a robust controller.

    The design goal in our chosen system is to reduce the angular velocity rate of the motorto zero.In fact, in our chosen system Z∝.

    Therefore, Eqs.(12)-(14) are rewritten as:

    In the Eq.(18),α∈[890 896] is uncertainty and α0= 893.1 [14].The toolbox is simulated to create a robust fault detection system, as shown in Fig.2.

    Figure 2: Anti-pinch window simulation toolbox

    The impulse signal is v with a delay of 0 s, a domain of 50, and a width of 0.3 s.In addition, white noise is simulated with 0.00014, and its sampling frequency is 0.01.

    The delay of impulse signal f is 2.7 s, with the amplitude of 1, and the width of 1 s.Now, we obtain a lookup using the MOPSO algorithm in MATLAB software.

    4 Simulation and Results

    In this section, we face a multi-objective optimization problem.The goal of problem-solving is to reduce the disturbance effect and increase the fault effect,meaning that we have to define two objective functions and simultaneously optimize their value [24,25].Therefore, we use the MOPSO algorithm and define the cost functions according to the criterion H-/H∞, as:

    Fig.3 shows the response of the MOPSO algorithm, which is represented by o and *, where * are members of the archive.The horizontal and vertical graphs represent the Z1and Z2cost functions in Eq.(20) respectively.It can be seen that each particle has been selected from the leader’s archive and has done its own.

    Figure 3: The cost functions of the mopso algorithm in the h-/h∞method

    As shown in Fig.4, the sensitivity to the disturbance is well-faded and H-/H∞is succeeded in separating the fault from disturbance.We can get the fault detection time using the threshold level which is shown with a discontinuous line in Fig.4.This figure shows that after the pinch occurs in 2.7 s, the detection is done after 50 msec.

    Figure 4: The residual signal in the h-/h∞method in the presence of fault and disturbance

    4.1 Closed-Loop System Analysis with L Controller and H-/H∞

    In control systems, in order to formulate the controller design problem meeting the required characteristics, we use weighting functions [26].In this section, we use the H-/H∞criterion and select 20 points from the shape of the bode diagram of an additive fault which is shown in Fig.5.Afterward,we considerwa(weighting functions) as a second-order function, resulting in obtaining its transfer function according to the selected points as follows:

    To achieve the optimal level of disturbance reduction, it is necessary to establish a relation between S (the closed-loop system sensitivity function) andwa: ||[waS]||∞<1 [26].

    Figure 5: Bode diagram of an additive fault

    We assume that for all types of frequency:

    To reach this condition, we can say if and only if σ[(I+GL)-1]<.To be more specific, if the frequency sensitivity function remains within limits imposed by the inverse weighting function, the control performances are met [27].The exceptional values ofare shown in Fig.6.using the h-/h∞

    Figure 6: Exceptional values

    The result of the comparison between the sensitivity function and the inverse weighting function is shown in Fig.7.As can be seen, the sensitivity function is located below thegraph at low frequencies as it was our required goal to meet control performances.

    Figure 7: The inverse of the weighted function (blue line) and the sensitivity function using the h-/h∞(green line)

    4.2 Comparison of System Simulation Results with MOPSO and LMI Algorithms

    Using the LMI algorithm, the observer’s gain for this system is obtained from [14]:

    Fig.8 shows the residual signal in the LMI and MOPSO methods using the H-/H∞criterion.The comparison of the pinch detection time in these two methods shows that MOPSO has been more successful and can detect a fault 20 milliseconds earlier than LMI, resulting in reducing the injury that is applied to the obstacle in the window path.

    Figure 8: The residual signal comparison in the mopso and lmi method using the h-/h∞

    5 Conclusions

    In this paper, the design of the H-/H∞observer and its use in detecting and isolating the sensor fault in the anti-pinch system of the car were discussed.According to the results obtained, it is pretty evident that in the H-/H∞method, the effect of the fault on the residual signal increases, and at the same time, the effect of the unknown input is almost fading.In this paper, the MOPSO method was used to solve the H-/H∞problem; it was shown that the proposed algorithm could well capture the optimal value for observer gain.This simulation shows that the effect of the fault on the residual has increased, and the observer can detect the fault in 50 ms after once the glass of window meets the obstacle placed in the path of the window.The results show that the H-/H∞method is effective to solve our problem and achieve our requirement.However, in this method, we had to set the values of the noise, disturbance, and fault to simulate the model; if we have a method that does not need to set the values for these three parameters, we will have a simpler simulation model for this system.

    Funding Statement:This research was supported by DP-FTSM-2021, Dana Lonjakan Penerbitan FTSM, UKM.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    老熟妇乱子伦视频在线观看| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 一进一出抽搐gif免费好疼| 波多野结衣巨乳人妻| 99riav亚洲国产免费| 在线观看一区二区三区| 9191精品国产免费久久| 在线观看美女被高潮喷水网站 | 国产又黄又爽又无遮挡在线| 国产亚洲欧美在线一区二区| 香蕉久久夜色| bbb黄色大片| 一个人免费在线观看的高清视频| 久久久成人免费电影| 一区二区三区激情视频| 久久久精品大字幕| 在线观看免费午夜福利视频| 男女做爰动态图高潮gif福利片| 又紧又爽又黄一区二区| 一卡2卡三卡四卡精品乱码亚洲| 日本 欧美在线| 99re在线观看精品视频| 欧美日韩精品网址| 国产成人欧美在线观看| 久久久精品欧美日韩精品| 18禁观看日本| 国产伦一二天堂av在线观看| 在线观看免费午夜福利视频| 久久久久久大精品| 精华霜和精华液先用哪个| 成人国产综合亚洲| 国产综合懂色| 男人和女人高潮做爰伦理| 麻豆国产97在线/欧美| 免费看a级黄色片| 手机成人av网站| 欧美一级a爱片免费观看看| 18禁美女被吸乳视频| 国产一级毛片七仙女欲春2| 免费在线观看视频国产中文字幕亚洲| 精品午夜福利视频在线观看一区| 久久久久九九精品影院| 九九热线精品视视频播放| 欧美av亚洲av综合av国产av| 日本黄色视频三级网站网址| 免费观看精品视频网站| 又爽又黄无遮挡网站| 午夜免费激情av| 久久久久久国产a免费观看| 草草在线视频免费看| 亚洲av成人av| 婷婷六月久久综合丁香| 黄色 视频免费看| 亚洲午夜理论影院| 久久伊人香网站| 桃色一区二区三区在线观看| 欧美成狂野欧美在线观看| 天天添夜夜摸| 亚洲av免费在线观看| 亚洲专区中文字幕在线| 免费无遮挡裸体视频| 国产aⅴ精品一区二区三区波| 欧美3d第一页| 久9热在线精品视频| 搡老妇女老女人老熟妇| 男女床上黄色一级片免费看| 亚洲一区二区三区色噜噜| 久久精品亚洲精品国产色婷小说| 国产激情久久老熟女| 亚洲国产色片| 狠狠狠狠99中文字幕| 日韩欧美三级三区| 伊人久久大香线蕉亚洲五| 国产精品98久久久久久宅男小说| 国内精品久久久久精免费| 色视频www国产| 男人和女人高潮做爰伦理| 午夜亚洲福利在线播放| 欧美日韩中文字幕国产精品一区二区三区| 在线永久观看黄色视频| 五月伊人婷婷丁香| 好男人电影高清在线观看| 一级黄色大片毛片| 特级一级黄色大片| 中文在线观看免费www的网站| 别揉我奶头~嗯~啊~动态视频| av在线天堂中文字幕| 中文字幕人妻丝袜一区二区| 99国产极品粉嫩在线观看| 少妇丰满av| 国产精品女同一区二区软件 | 国产精品久久电影中文字幕| 狂野欧美白嫩少妇大欣赏| 久久久色成人| 怎么达到女性高潮| 男插女下体视频免费在线播放| 在线观看美女被高潮喷水网站 | АⅤ资源中文在线天堂| 久久精品夜夜夜夜夜久久蜜豆| 神马国产精品三级电影在线观看| 国产乱人伦免费视频| 日韩欧美在线乱码| 国产高清videossex| 亚洲成a人片在线一区二区| 1024手机看黄色片| 国产精品久久久久久人妻精品电影| 在线免费观看的www视频| 国产一区在线观看成人免费| 日本免费一区二区三区高清不卡| 岛国在线观看网站| netflix在线观看网站| 欧美极品一区二区三区四区| 亚洲人与动物交配视频| 午夜福利视频1000在线观看| 俺也久久电影网| 最近最新中文字幕大全免费视频| 麻豆国产97在线/欧美| 1024香蕉在线观看| www日本黄色视频网| 男女午夜视频在线观看| 在线观看免费视频日本深夜| h日本视频在线播放| 亚洲中文日韩欧美视频| 中文字幕久久专区| 黑人欧美特级aaaaaa片| 午夜成年电影在线免费观看| 无人区码免费观看不卡| 久久久色成人| tocl精华| 亚洲色图 男人天堂 中文字幕| 午夜福利在线观看吧| 亚洲欧美一区二区三区黑人| 欧美性猛交黑人性爽| 1024香蕉在线观看| 黄色女人牲交| 亚洲九九香蕉| 亚洲国产欧美人成| 老汉色av国产亚洲站长工具| 日韩欧美三级三区| 日韩欧美一区二区三区在线观看| 亚洲国产看品久久| 少妇人妻一区二区三区视频| 97人妻精品一区二区三区麻豆| 亚洲 国产 在线| 一区二区三区高清视频在线| 国产99白浆流出| 欧美日韩黄片免| 国产午夜福利久久久久久| 午夜视频精品福利| 精品电影一区二区在线| 国产三级中文精品| 亚洲乱码一区二区免费版| 国产爱豆传媒在线观看| 1000部很黄的大片| av在线蜜桃| 国产高潮美女av| 神马国产精品三级电影在线观看| 少妇熟女aⅴ在线视频| 在线国产一区二区在线| 免费看日本二区| 亚洲欧美精品综合久久99| 午夜福利成人在线免费观看| www.精华液| 日本在线视频免费播放| 欧美一级a爱片免费观看看| 99热精品在线国产| 国内精品久久久久精免费| 国产精品野战在线观看| 成人欧美大片| 国产熟女xx| 国内精品一区二区在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品1区2区在线观看.| 757午夜福利合集在线观看| 老熟妇乱子伦视频在线观看| 麻豆成人av在线观看| 亚洲 欧美 日韩 在线 免费| 1000部很黄的大片| 最好的美女福利视频网| 女人高潮潮喷娇喘18禁视频| 美女免费视频网站| 久久婷婷人人爽人人干人人爱| 九九久久精品国产亚洲av麻豆 | 99久久精品热视频| 草草在线视频免费看| 久久精品影院6| or卡值多少钱| 香蕉丝袜av| 亚洲欧美日韩卡通动漫| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩一区二区精品| 国产亚洲欧美98| 亚洲欧美精品综合久久99| 伦理电影免费视频| 日韩大尺度精品在线看网址| 国产1区2区3区精品| 免费观看精品视频网站| 亚洲av片天天在线观看| 超碰成人久久| 全区人妻精品视频| 亚洲专区中文字幕在线| 美女午夜性视频免费| 欧美在线黄色| 国产蜜桃级精品一区二区三区| 香蕉av资源在线| 亚洲av成人av| 欧美性猛交╳xxx乱大交人| 性色avwww在线观看| 久99久视频精品免费| 国产精品久久电影中文字幕| 脱女人内裤的视频| 免费在线观看视频国产中文字幕亚洲| 午夜两性在线视频| 精品电影一区二区在线| 在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 99国产精品一区二区蜜桃av| 日韩有码中文字幕| 亚洲第一欧美日韩一区二区三区| 真实男女啪啪啪动态图| 午夜日韩欧美国产| 国产精品国产高清国产av| 激情在线观看视频在线高清| 国产伦精品一区二区三区四那| 韩国av一区二区三区四区| 一进一出抽搐gif免费好疼| 免费av毛片视频| 偷拍熟女少妇极品色| 精品无人区乱码1区二区| 在线国产一区二区在线| 日韩精品青青久久久久久| 久久久久久大精品| 国内精品久久久久久久电影| 亚洲中文日韩欧美视频| 男人舔女人的私密视频| 欧美性猛交黑人性爽| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕一二三四区| 国产激情久久老熟女| 动漫黄色视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲精品乱码久久久v下载方式 | 极品教师在线免费播放| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 狠狠狠狠99中文字幕| 午夜精品一区二区三区免费看| 巨乳人妻的诱惑在线观看| 99在线视频只有这里精品首页| 欧美激情久久久久久爽电影| 欧美日韩乱码在线| 欧美日本视频| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 亚洲美女视频黄频| a在线观看视频网站| 老司机午夜福利在线观看视频| 两个人视频免费观看高清| 亚洲成人久久爱视频| 一本精品99久久精品77| 黄色日韩在线| 亚洲,欧美精品.| 亚洲成av人片免费观看| 天堂网av新在线| 在线观看66精品国产| 欧美黄色片欧美黄色片| 日本a在线网址| 成人三级做爰电影| 国产精品99久久99久久久不卡| 国产精品久久久av美女十八| 亚洲欧美日韩卡通动漫| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 999精品在线视频| 午夜福利欧美成人| 露出奶头的视频| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 亚洲成人久久性| 亚洲av成人av| 又大又爽又粗| 成人欧美大片| 男人舔女人的私密视频| 99热只有精品国产| 亚洲七黄色美女视频| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| 亚洲激情在线av| 免费人成视频x8x8入口观看| 伦理电影免费视频| 1000部很黄的大片| 国产精品日韩av在线免费观看| 热99re8久久精品国产| 中文字幕av在线有码专区| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 99精品在免费线老司机午夜| 18禁黄网站禁片免费观看直播| a在线观看视频网站| 国产亚洲精品一区二区www| 哪里可以看免费的av片| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 国产精品一区二区免费欧美| 亚洲av免费在线观看| 99久久成人亚洲精品观看| 国产真人三级小视频在线观看| 桃色一区二区三区在线观看| 亚洲乱码一区二区免费版| 无人区码免费观看不卡| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 老熟妇仑乱视频hdxx| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 久久精品91无色码中文字幕| 小说图片视频综合网站| 又大又爽又粗| 久久精品91蜜桃| 丝袜人妻中文字幕| 一区二区三区激情视频| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 久久久久国内视频| 亚洲熟女毛片儿| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 亚洲五月天丁香| 老司机在亚洲福利影院| 18美女黄网站色大片免费观看| 亚洲色图av天堂| av视频在线观看入口| 一个人看视频在线观看www免费 | 一个人免费在线观看的高清视频| 黑人操中国人逼视频| 亚洲国产欧美人成| 亚洲国产欧美网| 亚洲无线在线观看| netflix在线观看网站| 国产精品爽爽va在线观看网站| 99国产精品99久久久久| 听说在线观看完整版免费高清| 午夜日韩欧美国产| 免费大片18禁| 久久久久国产精品人妻aⅴ院| 免费观看人在逋| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 免费看光身美女| 亚洲av第一区精品v没综合| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 免费看美女性在线毛片视频| 欧美精品啪啪一区二区三区| 亚洲黑人精品在线| 国产精品乱码一区二三区的特点| 亚洲七黄色美女视频| 免费看光身美女| 亚洲欧美一区二区三区黑人| 国产黄片美女视频| 午夜免费激情av| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 亚洲在线自拍视频| 国产高清视频在线观看网站| 成人一区二区视频在线观看| 噜噜噜噜噜久久久久久91| 一区二区三区国产精品乱码| 国产精品爽爽va在线观看网站| 国产亚洲精品综合一区在线观看| 91av网站免费观看| 手机成人av网站| 免费人成视频x8x8入口观看| 久久国产精品影院| 国模一区二区三区四区视频 | 精品欧美国产一区二区三| 国产极品精品免费视频能看的| 久久性视频一级片| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 国产高潮美女av| 精品熟女少妇八av免费久了| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 在线视频色国产色| 国产精品 欧美亚洲| 久久精品夜夜夜夜夜久久蜜豆| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 级片在线观看| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 免费看光身美女| 18禁美女被吸乳视频| 老司机在亚洲福利影院| 欧美xxxx黑人xx丫x性爽| 一区二区三区激情视频| 亚洲国产色片| av天堂中文字幕网| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 国产精品一区二区精品视频观看| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 国产成人福利小说| 久久九九热精品免费| 99国产精品99久久久久| 91字幕亚洲| 欧美午夜高清在线| 好男人在线观看高清免费视频| 夜夜躁狠狠躁天天躁| 欧美+亚洲+日韩+国产| 最近最新免费中文字幕在线| 无人区码免费观看不卡| 9191精品国产免费久久| 国产av在哪里看| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影| 香蕉丝袜av| 好男人在线观看高清免费视频| 免费在线观看日本一区| 色在线成人网| 1024手机看黄色片| 真人做人爱边吃奶动态| 在线视频色国产色| 禁无遮挡网站| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 禁无遮挡网站| 手机成人av网站| 日韩欧美免费精品| 亚洲午夜理论影院| 亚洲无线在线观看| 日本熟妇午夜| 禁无遮挡网站| 亚洲av成人不卡在线观看播放网| 老司机福利观看| 免费av毛片视频| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 国产精品久久久久久亚洲av鲁大| 成人三级做爰电影| 国产成年人精品一区二区| 午夜日韩欧美国产| 国产成人精品无人区| 成人特级黄色片久久久久久久| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频| 国产精品免费一区二区三区在线| 色综合婷婷激情| а√天堂www在线а√下载| 在线a可以看的网站| 最近在线观看免费完整版| 神马国产精品三级电影在线观看| 欧美中文综合在线视频| 亚洲18禁久久av| 在线国产一区二区在线| 69av精品久久久久久| 午夜福利在线观看免费完整高清在 | 在线观看舔阴道视频| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 欧美色欧美亚洲另类二区| 日韩 欧美 亚洲 中文字幕| 国产在线精品亚洲第一网站| 90打野战视频偷拍视频| 婷婷亚洲欧美| 亚洲成av人片免费观看| 久久人人精品亚洲av| 日本三级黄在线观看| 久久精品影院6| 亚洲一区二区三区不卡视频| a在线观看视频网站| 日韩精品青青久久久久久| 婷婷丁香在线五月| 久久精品影院6| 亚洲一区二区三区不卡视频| a在线观看视频网站| 男人舔女人的私密视频| 国产精品久久电影中文字幕| 国产av不卡久久| 成人永久免费在线观看视频| 男插女下体视频免费在线播放| 99国产极品粉嫩在线观看| 国产激情久久老熟女| 久久久水蜜桃国产精品网| 免费在线观看视频国产中文字幕亚洲| 久久久久九九精品影院| 国产三级在线视频| 国产高清三级在线| 极品教师在线免费播放| 全区人妻精品视频| 欧美色欧美亚洲另类二区| 国产免费av片在线观看野外av| 天堂网av新在线| 一个人免费在线观看电影 | 在线看三级毛片| 国内揄拍国产精品人妻在线| 99精品在免费线老司机午夜| 亚洲aⅴ乱码一区二区在线播放| 久久精品91蜜桃| 亚洲一区高清亚洲精品| 精品国产美女av久久久久小说| 色综合婷婷激情| 麻豆av在线久日| 大型黄色视频在线免费观看| 99久久综合精品五月天人人| 国内揄拍国产精品人妻在线| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| 精品国产三级普通话版| 99热这里只有精品一区 | 国产黄色小视频在线观看| 免费一级毛片在线播放高清视频| 18禁国产床啪视频网站| 欧美中文综合在线视频| 亚洲国产看品久久| 精品午夜福利视频在线观看一区| 国产三级在线视频| 操出白浆在线播放| 悠悠久久av| 一本一本综合久久| 悠悠久久av| 久久久国产成人免费| 午夜福利在线观看免费完整高清在 | 国产成人欧美在线观看| 此物有八面人人有两片| 久久久久性生活片| 亚洲乱码一区二区免费版| 国产日本99.免费观看| 久久久久亚洲av毛片大全| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 久9热在线精品视频| 亚洲中文字幕一区二区三区有码在线看 | 中出人妻视频一区二区| www日本黄色视频网| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 级片在线观看| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 成人特级av手机在线观看| 国产伦在线观看视频一区| а√天堂www在线а√下载| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 国产极品精品免费视频能看的| 亚洲人与动物交配视频| 亚洲真实伦在线观看| 校园春色视频在线观看| 黄色女人牲交| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品av在线| 欧美日韩乱码在线| 麻豆成人av在线观看| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| 手机成人av网站| 久久久久性生活片| 亚洲av免费在线观看| 国产毛片a区久久久久| 国产美女午夜福利| 国产精品,欧美在线| 免费在线观看视频国产中文字幕亚洲| 精品熟女少妇八av免费久了| 99久久精品热视频| 无限看片的www在线观看| 久久九九热精品免费| 日本 av在线| 中文字幕高清在线视频| 美女cb高潮喷水在线观看 | 国产高清三级在线| 亚洲七黄色美女视频| 日韩人妻高清精品专区| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 母亲3免费完整高清在线观看| 九九在线视频观看精品| 欧美乱妇无乱码| 91字幕亚洲| x7x7x7水蜜桃| 91av网一区二区| 亚洲天堂国产精品一区在线|