• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Simulation of Two Axes Gimbal Using Fuzzy Control

    2022-08-24 12:56:10AymanAlyMohamedElhabibBassemFelembanSalehandDacNhuongLe
    Computers Materials&Continua 2022年7期

    Ayman A.Aly, Mohamed O.Elhabib, Bassem F.Felemban, B.Salehand Dac-Nhuong Le

    1Department of Mechanical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia

    2Control and Mechatronics Division, School of Electrical Engineering, UTM, Johor Bahru, 81300, Malaysia

    3Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam

    4School of Computer Science, Duy Tan University, Danang, 550000, Vietnam

    Abstract: The application of the guided missile seeker is to provide stability to the sensor’s line of sight toward a target by isolating it from the missile motion and vibration.The main objective of this paper is not only to present the physical modeling of two axes gimbal system but also to improve its performance through using fuzzy logic controlling approach.The paper is started by deriving the mathematical model for gimbals motion using Newton’s second law, followed by designing the mechanical parts of model using SOLIDWORKS and converted to xml file to connect dc motors and sensors using MATLAB/SimMechanics.Then, a Mamdani-type fuzzy and a Proportional-Integral-Derivative (PID) controllers were designed using MATLAB software.The performance of both controllers was evaluated and tested for different types of input shapes.The simulation results showed that self-tuning fuzzy controller provides better performance, since no overshoot,small steady-state error and small settling time compared to PID controller.

    Keywords: Gimbal system; self-tuning fuzzy; proportional-integral-derivative(PID) control; cross coupling

    1 Introduction

    Weapon history has evolved in tandem with human history.Recent weapon systems are evolving to cause the least amount of human harm and to neutralize military facilities.The primary goal of a missile is too accurately to shoot the moving and fixed targets.As a result, it has been steadily producing missiles that use different seeker technologies.The seeker system’s function is to actively track up to the target by detecting and locking on to the object.In this system, there are many sources of noise and disturbances, which come from vibrations of the seeker and maneuvering of the missile while flighting, also there is a decoupling in the line of sight (LOS) between the seeker and the object.So, it is realized that the seeker consists of a two-axis gimbal platform to track stably and make a stabilization loop [1].

    In the two-axis gimbal system, dc motors are connected to each axis as actuating parts, for the sensing part, two sensors are used a gyro is used to measure the speed and position sensor for angle measuring.To avoid disturbance and measure stable values, sensors are located on the inner gimbal.Most disturbances result from missile motions, gimbal system geometry, and gimbal system imperfections like mass unbalance [2].Therefore, the dynamics of the plant must be expressed in analytical form before the design of the gimbal system is taken up.The mathematical model and control system of two axes gimbal system has been studied by many research.Rue [3] presented the kinematics and geometrical coupling relationships for two degrees of freedom gimbal assembly for a simplified case when each gimbal is balanced.In [4], Ekstrand derived the equations of motion for the two axes gimbal configuration by assuming the gimbals have no mass imbalance and inertia disturbances and cross-couplings can be eliminated by certain inertia symmetry conditions.For one degree of freedom gimbal studied in [5], the static and dynamic imbalance disturbance torques created by the vibrations of the operating environment can be eliminated by statically and dynamically balancing the gimbal, which is regarded costly and time-consuming.

    On the other hand, many controllers were designed and studied for years to stabilize the gimbal system.Nonlinear controllers such as, in [6] Sliding Mode Controller (SMC) is used under the assumption of uncoupled identical elevation and azimuth, although the controller was able to provide good results in terms of control design specifications, it lacks the simplicity of the design.In[7]authors presented a novel control approach to improve the performance of the system against internal and external disturbances, which consists of a backstepping controller, nonlinear disturbance observer,and two third-order reference models.According to simulation results, the controller improved the angular velocity precision and accurately tracks the desired rotation angles and angular velocities with very good transient and steady-state responses.Altan [8] used Model Predictive Control (MPC) with Hammerstein model to improve real time target tracking performance under external disturbance for a three-axis gimbal system.Based on the simulation and experimental results he found MPC algorithm with Hammerstein model provided good tracking to the target while maintaining the stability under external disturbances compared to the PID controller.Linear and optimal controllers (PID, Linear Quadratic.Regulator(LQR))are limited to linear systems, andmuch tuning for parameters is required to obtain good performance and is difficult to be realized.Recently fuzzy logic controlling approach has been developed to improve the performance of the system and to deal with nonlinear models and uncertainties [9,10].Therefore, this paper will focus on the designing of an intelligent controller (fuzzy logic controller) for a two-axis gimbal system and the PID controller will be used for comparison purposes.

    This paper is organized as follows, it started by derivation the mathematical model of the system by using Lagrange equations followed by 3D physical modeling of two-axis gimbal using MATLAB Simscape, after that fuzzy logic controller based Mamdani type designed for inner and outer loops.Finally, the simulation results of both fuzzy and PID controllers are presented.

    2 Mathematical Modeling

    Let the figure of under consideration system as shown as in Fig.1.

    Figure 1: Two axis gimbal system

    It contains a body with outer and inner gimbals such that the tracking sensor is mounted on the inner gimbal.In this regard, three references frames can be defined as body frameB, outer frameO,and inner frameI.The coordinate axes of these frames are {XB,YB,ZB}, {XO,YO,ZO} , and {XI,YI,ZI}respectively.As it is seen in figure φ is the rotation angle of outer frame about theZOaxis in the positive direction with respect to the body frame, and θ is the rotation angle of the inner frame about the outer frame aboutYIaxis.

    LetLOBis the transformation fromBtoOandLIOis the transformation fromOtoI, the transformation matrices will be:

    For the inertial angular velocities of frameB,O, andIwith respect to themselves, the following vectors are introduced:

    p,q, andrare stands for roll, pitch, and yaw respectively, as usual notations in the flight system.

    Jrepresents the moment of inertia and product of inertia denoted byDord.If we assumed that the center of the gimbal is in the common center of rotation, then there is no mass unbalance in the gimbals.If we consider the stabilization loop of the system, with the above notations, the aim is to keep the sensor non-rotating in the inertial space in the presence of the disturbances, which is achieved by keepingqi=ri= 0.qiandrican be measured in two ways; the first way by fixing a two-axis rate gyro on the inner gimbal.The other way is to use body-fixed rate gyros and using the gimbal angles ? and θ.For this, consider the following vector:

    From the above equation, the relations between angular velocities of the outer gimbal, body, and inner gimbal are as follow:

    From Eqs.(6) and (7), the angular velocities of the outer and inner gimbals will be as follows:

    2.1 Equation of Motion about the Pitch Axis

    The gimbal dynamics model can be derived from the torque relationships about the inner and outer gimbals.The equation of motion for the inner gimbal can be expressed as follows:

    whereTUIx(t),TUIy(t), andTUIz(t) are the mass unbalance torque about the inner gimbal axes,TIy(t) is the applied control torque,TIx(t),TIz(t) are the reaction torque between inner and outer gimbal, andTIfω(t) stands for the friction and cable restraint torque and can be generate both linear and nonlinear disturbance as follows:

    The inner gimbal motion equation about the pitch axis can be expressed as:

    whereTIyis the external torque about the pitch axisTI,fricandTI,CRare non-linear friction and non-lnonlinear cable restraint torque respectively,KIf,KIware the viscous friction and cable restraint coefficients respectively, andTDis the undesired external disturbance torques due to the inertial terms as:

    The relation (14) can be considered with some approximation, and it is seen that how the disturbance torques due to theinertial terms can be vanished.For instance, if the products of the inertia are negligible and moments of inertiaJixandJizbe equal, that is,

    Then,TDis equal zero.In the procedure of the design, it should be tried satisfying the condition(14) and (15) in order to delete the disturbance due to the inertial terms.By using the relation (9), the Eq.(14) can be rewritten as:

    If the body is non-rotating, i.e.,p=q=r= 0, then from the relation (8) we havep0=q0= 0 andTBwill be zero.However,TCis not necessarily zero and the motion of the outer gimbals.In the control point of view,TCrelated to the cross couplings between two axes, andTBis the disturbance due to the rotation of the body.It is obvious that if Eqs.(14) and (15) are satisfied, both terms will vanish.

    2.2 The Equation of Motion about the Yaw Axis

    The equation of motion for outer gimbal can be expressed as:

    In which, all the parameters and coefficients are defined as a similar manner in the Section (2.1)andTOfw(t) again can be written as:

    whereTOzis the external torque about the yaw axis and other coefficients are as before with suitable index,JSis the total moment of inertia about the outer gimbalZoaxis.If the inner gimbal rotates,angle θ will change and thereforeJSis an instantaneous moment of inertia aboutZoaxis dependent upon θ variations as follows:

    The external undesired disturbance torquesTDin Eq.(21) can be considered as:

    where,

    These terms of disturbance torque can be interpreted as follows.Suppose the rotation angle of θ is constant, i.e.,˙= 0.It is resulted thatTd3+ 0.Relations (24) and (25) indicate thatTd1andTd2are the disturbance terms of equation motion of the rigid body for the gimbal system aboutZoaxis.Td1is due to the difference of the moments of inertia andTd2comes from the products of inertia and both are dependent upon θ.However, in the case of that θ is varying, the gimbal system is not further a rigid body and an extra term is produced,Td3, which affects the equation of motion.In this case also,we can consider the conditions which cause disturbance rejection.Most of the disturbance terms in relations (24)-(26) can be deleted by satisfying the following conditions:

    By using the relation˙θ=qi-qo, the sum of the disturbances terms is:

    If the mechanical design is such that the condition (34) is satisfied, then the total disturbance reduce toJiypoq, which cannot be deleted.

    The last manipulation which should be done on the derived equation of the outer gimbal is to rewrite the equation according to theriinstead ofrosinceriis the controlled output variable.This can be simply accomplished by using the relations (8) and (9).In the similar manner of the inner gimbal,theTDcan be interpreted by introducing the cross coupling.

    By using relation˙θ=qi-qo,TDis rewritten as:

    where,

    For a non-rotating bodyp,q, andrare zero and we havepo=qo= 0, which results inTb= 0.However, even in this case there is a cross coupling termTcwhich is due to the inner gimbal motion.Tcwill be zero if conditions (27) and (28) are satisfied.

    3 Physical Modeling

    Physical modeling is a way of modeling and simulating systems that consist of real physical components.It employs a physical network approach, where Simscape blocks correspond to physical elements, such as pumps, motors, and op-amps.By joining these blocks by lines corresponding to the physical connections that transmit power.This approach can describe the physical structure of a system, instead of linear and nonlinear equations.These virtual devices can drastically reduce the cost of testing control systems, software, and hardware.It can also improve the quality of the final product by enabling more complete testing of the entire system.SOLIDWORKS was used to design the gimbal, which consists of 3 parts as in Figs.2 and 3 and connected by two revolute joints.Each joint was driven by a dc-motor (not shown in the figures below) via a gearbox.The mounting point of the camera on the body (3) in the θ direction.

    Figure 2: Two axis gimbal Simscape diagram

    4 Fuzzy Controller Design

    Fuzzy logic and fuzzy sets have been around now for more than 20 years.In 1965, Zadeh first proposed fuzzy sets, which are considered as an approach to processing data, and they became popular in the different fields of science.In (1974) Mamdani presented a fuzzy controller method and it gained high popularity in the engineering field [11-20].Fuzzy Logic similar to the human decision-making methodology deals with vague and imprecise information.

    Figure 3: Two axis gimbal SOLIDWORKS design

    Thus, it is easier to understand since its working principle depends on the linguistic statements.The fuzzy controller comprises four main phases, which are the fuzzification phase where the input values are converted to a fuzzy variable (linguistic variables).In this paper we used two input variables to control the dc motors, which are error (e) of the dc motor motion, and its derivative error (e.) with three fuzzy subsets are both, which are [H M L] and [N Z P] respectively, by using three Gaussian membership functions as in Figs.4a and 4b.

    The output has five subsets represented using z-membership functions as shown in Fig.5, the subsets are [FC SC NC OS OF], whereFCis fast close,SCis slow to close,NCis no change,OSis open slow, andFCis open fast.For the Fuzzy inference system, the MAX-MIN approach was used to determine the degree of membership function of the output variables.In the defuzzification phase, all the consequents were aggregated to obtain a crisp output in order to produce a non-fuzzy control that best represents the degree of certainty of an inferred fuzzy control action.They are several numbers of procedures of defuzzification the rules output-aggregate for the Mamdani method.In this project Center of gravity was used because it is considered the most efficient in that it gives a defuzzification output.

    Figure 4: (a) Membership function of the error; (b) Membership function of the derivative error

    Figure 5: Output membership function

    5 Simulation Results

    The two axes gimbal system is validated using MATLAB/Simulink environment is depicted with SimMechanics model in Fig.2.A comparison of the proposed self-tuning fuzzy controller and conventional PID is carried out using step input commands in elevation and azimuth axes.As an example, one case of system response is displayed in Figs.6a and 7a, respectively.The response of elevation illustrates that the rise time of PID control is 0.086 s with a small overshoot amplitude of 0.5% and for fuzzy it was 0.011 s with no overshoots while the steady-state error also improved from 0.0015 to be 0.001.The azimuth response with different step input amplitude assured the superiority of the proposed self-tuning fuzzy compared with the traditional PID.The rise time decreased from 0.093 s to be 0.013 s and the overshoot amplitude is changed from 0.063% to be nearly zero also the steady-state error decrease from 0.006 to be 0.002.The angle rates obtained from the derivation of the angle positions are shown in Figs.6c and 7c.It is clear that the PID controller creates an overshoot and increases settling time.While a fuzzy controller can meet the variation of angle position and improve the transient and steady-state performance by achieving fast response with no overshoot as compared to conventional PID.

    Figure 6: (a) The gimbal elevation step response for angular input; (b) the error signal; (c) the angular rate signal

    Figure 7: (a) The gimbal azimuth step response for angular input; (b) the error signal; (c) the angular rate signal

    To confirm this efficiency, many comparison tests indicated using different inputs shapes.

    In the following figures, a sin waves input is applied with different amplitudes for elevation and azimuth axes.The elevation axis response gave an error of 5.24×10-3with PID control and 0.15×10-3with fuzzy control while the azimuth response gave an error of 0.014 with PID control and 0.003 with fuzzy control.The error and control signal presented in Figs.8c and 9c.

    Figure 8: (a) The gimbal elevation sinusoidal response for angular input; (b) the error signal; (c) the controllers signals

    Figure 9: (a) The gimbal azimuth sinusoidal response for angular input; (b) the error signal; (c) the controllers signals

    With the help of the control parameters of the electromechanical simulation model, the proposed fuzzy controller can track the command angle rapidly and accurately, by which high stabilization performance can be attained.

    Due to fact, the elevation axis of the system is compatible with the azimuth axis to produce the final motion of the system.Therefore, it is necessary to test the control performance under movable base conditions by simulating the axes at various angles.In Fig.10 the input to elevation is sin wave and for elevation is cosine wave which finally produces a complete circle.

    Figure 10: The gimbal response for elevation sin and azimuth cosine inputs

    Previous results clearly reflect the efficiency of the self-tuning fuzzy controller compared to the conventional PID.The test assures the superiority of the proposed fuzzy compared with the classical PID control.It has good tracking accuracy whether for azimuth gimbal or elevation gimbal.

    6 Conclusion

    In this paper, a two axes gimbal system was proposed and formulated utilizing Newton’s second law.The equations for the gimbals’ motion were derived and introduced in two formulations according to the dynamic mass unbalance.The gimbal system was simulated using MATLAB/SimMechanics.A comparison between the system responses with different inputs shapes was made and the comparison results verified the proposed model.The responses have been analyzed, then the performance of the Self-tuning fuzzy controller has been tested using transient response analysis and a quantitative study of error analysis.Based on the obtained results, some observations can be cleared.

    The proposed self-tuning fuzzy control provides good adaptivity to the gimbal system which offers high performance so that it can be utilized more efficiently in the dynamical environment that usually imposes large variable base rates.It is clear that the proposed fuzzy controller can reduce the response settling time as compared with the conventional PID controller.

    Finally, the proposed fuzzy controller improves the closeness of System response and supports the system relative stability by reducing the response overshoot considerably without increasing the response rise time dramatically.

    Acknowledgement:Taif University Researchers Supporting Project number (TURSP-2020/260), Taif University, Taif, Saudi Arabia.

    Funding Statement:The authors would like to thank the Deanship of Scientific Research at Taif University for the grant received for this research.This research was supported by Taif University with research grant TURSP-2020/260,https://www.tu.edu.sa/En/Deanship-of-Scientific-Research/83/News/22911/Researchers-Supporting-Project-(TURSP).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    videos熟女内射| 自线自在国产av| 欧美乱色亚洲激情| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av高清一级| 亚洲性夜色夜夜综合| 欧美午夜高清在线| 女人高潮潮喷娇喘18禁视频| 国产成人欧美| 欧美乱色亚洲激情| 国产在线精品亚洲第一网站| 91成年电影在线观看| 999久久久国产精品视频| 麻豆乱淫一区二区| 国产高清视频在线播放一区| 在线观看www视频免费| 侵犯人妻中文字幕一二三四区| 女人爽到高潮嗷嗷叫在线视频| 视频在线观看一区二区三区| 精品免费久久久久久久清纯 | 少妇 在线观看| 一级,二级,三级黄色视频| 亚洲熟妇中文字幕五十中出 | 午夜两性在线视频| 一级黄色大片毛片| 岛国在线观看网站| 亚洲精品国产色婷婷电影| 女警被强在线播放| 老汉色av国产亚洲站长工具| 美女国产高潮福利片在线看| 亚洲自偷自拍图片 自拍| 欧美大码av| 亚洲精品国产一区二区精华液| 美女 人体艺术 gogo| 中文欧美无线码| 老鸭窝网址在线观看| 国产欧美亚洲国产| 岛国毛片在线播放| 国产精品综合久久久久久久免费 | 丝袜美足系列| 欧美国产精品一级二级三级| 精品久久久久久电影网| 亚洲av第一区精品v没综合| 大香蕉久久网| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| 999久久久国产精品视频| 动漫黄色视频在线观看| 午夜免费鲁丝| 午夜免费鲁丝| 久久国产精品人妻蜜桃| 国产片内射在线| 法律面前人人平等表现在哪些方面| 国产国语露脸激情在线看| 十八禁网站免费在线| 国产精品影院久久| 亚洲精品国产区一区二| 久久久精品区二区三区| 超碰97精品在线观看| 亚洲欧美精品综合一区二区三区| 成人永久免费在线观看视频| 亚洲av成人一区二区三| 久久久久久久久免费视频了| 老司机午夜福利在线观看视频| 777米奇影视久久| 免费不卡黄色视频| 亚洲成国产人片在线观看| 女人被狂操c到高潮| 久久久国产精品麻豆| av在线播放免费不卡| 亚洲国产精品sss在线观看 | 18禁裸乳无遮挡动漫免费视频| 久久久水蜜桃国产精品网| 村上凉子中文字幕在线| 国产高清视频在线播放一区| 999精品在线视频| 精品电影一区二区在线| 涩涩av久久男人的天堂| 老司机靠b影院| 黄色 视频免费看| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲一级av第二区| 亚洲国产精品合色在线| 亚洲综合色网址| 操出白浆在线播放| 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩一区二区精品| 欧美乱妇无乱码| 久久香蕉激情| 亚洲色图 男人天堂 中文字幕| 精品福利永久在线观看| 久久中文字幕人妻熟女| 叶爱在线成人免费视频播放| av线在线观看网站| 亚洲中文字幕日韩| 一级黄色大片毛片| 欧美成人午夜精品| 精品久久久精品久久久| 人妻丰满熟妇av一区二区三区 | 国内久久婷婷六月综合欲色啪| 亚洲国产中文字幕在线视频| 老司机福利观看| 三级毛片av免费| 欧美亚洲 丝袜 人妻 在线| 在线观看午夜福利视频| 免费人成视频x8x8入口观看| 视频在线观看一区二区三区| 男人操女人黄网站| 国产xxxxx性猛交| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 捣出白浆h1v1| 一级,二级,三级黄色视频| 久99久视频精品免费| 国产成人av教育| 99热网站在线观看| 婷婷丁香在线五月| 国产精品一区二区免费欧美| 少妇猛男粗大的猛烈进出视频| 日韩欧美在线二视频 | 一边摸一边抽搐一进一出视频| 久久精品亚洲精品国产色婷小说| 欧美日韩瑟瑟在线播放| 亚洲 欧美一区二区三区| 超碰成人久久| 国产亚洲一区二区精品| 国产99白浆流出| 村上凉子中文字幕在线| 亚洲精品久久成人aⅴ小说| 国产一卡二卡三卡精品| 欧美日本中文国产一区发布| videosex国产| 大香蕉久久网| 啦啦啦 在线观看视频| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色 | 一区在线观看完整版| 亚洲第一欧美日韩一区二区三区| 老司机午夜十八禁免费视频| av片东京热男人的天堂| 可以免费在线观看a视频的电影网站| 大片电影免费在线观看免费| 99久久99久久久精品蜜桃| 一本大道久久a久久精品| a级毛片黄视频| 国产精品亚洲一级av第二区| 成人特级黄色片久久久久久久| 99国产精品一区二区三区| 亚洲精品成人av观看孕妇| 国产精品综合久久久久久久免费 | 亚洲va日本ⅴa欧美va伊人久久| av线在线观看网站| 欧美黑人精品巨大| 捣出白浆h1v1| 中文字幕人妻丝袜制服| 午夜亚洲福利在线播放| 日韩人妻精品一区2区三区| 亚洲人成电影观看| 亚洲人成电影免费在线| 在线av久久热| 亚洲国产中文字幕在线视频| 丰满人妻熟妇乱又伦精品不卡| 黄色a级毛片大全视频| 人人妻人人添人人爽欧美一区卜| 亚洲av片天天在线观看| 亚洲视频免费观看视频| 高清毛片免费观看视频网站 | 女人久久www免费人成看片| 99国产精品一区二区蜜桃av | 午夜福利影视在线免费观看| 久热爱精品视频在线9| 九色亚洲精品在线播放| 成人av一区二区三区在线看| 午夜精品国产一区二区电影| videos熟女内射| 国产精品二区激情视频| 日本wwww免费看| 亚洲中文日韩欧美视频| 久久国产精品影院| videos熟女内射| 精品乱码久久久久久99久播| 一夜夜www| 中国美女看黄片| 三级毛片av免费| 大片电影免费在线观看免费| 9色porny在线观看| 好看av亚洲va欧美ⅴa在| 岛国在线观看网站| 日本黄色视频三级网站网址 | 91麻豆av在线| 真人做人爱边吃奶动态| 国产成人av激情在线播放| 看片在线看免费视频| 成人特级黄色片久久久久久久| 午夜影院日韩av| 宅男免费午夜| 欧美黑人欧美精品刺激| 国产欧美亚洲国产| 精品免费久久久久久久清纯 | 国产精品乱码一区二三区的特点 | 精品久久久久久久毛片微露脸| 免费观看人在逋| 99精品久久久久人妻精品| 午夜久久久在线观看| 国产成人免费无遮挡视频| 50天的宝宝边吃奶边哭怎么回事| 成人三级做爰电影| 少妇猛男粗大的猛烈进出视频| 精品国产超薄肉色丝袜足j| 国产淫语在线视频| 另类亚洲欧美激情| 免费高清在线观看日韩| 一级,二级,三级黄色视频| 黄色片一级片一级黄色片| 国产单亲对白刺激| 窝窝影院91人妻| 亚洲成人免费电影在线观看| 日韩精品免费视频一区二区三区| 久久久久久久精品吃奶| 亚洲人成伊人成综合网2020| 黄片播放在线免费| 色老头精品视频在线观看| 亚洲精品在线美女| 国产又爽黄色视频| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 满18在线观看网站| 精品国产一区二区久久| 欧美最黄视频在线播放免费 | 国产精品免费大片| 欧美国产精品一级二级三级| 国产成+人综合+亚洲专区| ponron亚洲| 人妻 亚洲 视频| 国产欧美亚洲国产| 欧美日韩视频精品一区| 亚洲一区高清亚洲精品| 免费在线观看日本一区| 亚洲专区国产一区二区| 精品视频人人做人人爽| 99国产综合亚洲精品| 欧美日韩视频精品一区| 成熟少妇高潮喷水视频| 在线观看免费高清a一片| 99精品在免费线老司机午夜| 999精品在线视频| 捣出白浆h1v1| 久久天躁狠狠躁夜夜2o2o| 黑人猛操日本美女一级片| 免费一级毛片在线播放高清视频 | av网站免费在线观看视频| 欧美日韩福利视频一区二区| 高清av免费在线| 香蕉久久夜色| tube8黄色片| 久久天躁狠狠躁夜夜2o2o| 欧美日韩视频精品一区| 法律面前人人平等表现在哪些方面| 天天躁日日躁夜夜躁夜夜| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 久久久久精品国产欧美久久久| 亚洲av片天天在线观看| ponron亚洲| 国产精品.久久久| 老司机午夜十八禁免费视频| 国产精品久久久久成人av| 国产一区在线观看成人免费| 老司机影院毛片| 操出白浆在线播放| 9色porny在线观看| 在线观看免费视频日本深夜| 精品一品国产午夜福利视频| 日本一区二区免费在线视频| 国产成人欧美| 黑丝袜美女国产一区| 一进一出抽搐gif免费好疼 | √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 美女午夜性视频免费| 99香蕉大伊视频| 女性被躁到高潮视频| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 正在播放国产对白刺激| 亚洲五月色婷婷综合| videos熟女内射| 99精国产麻豆久久婷婷| 国产成人av教育| 一区二区三区国产精品乱码| 欧美乱码精品一区二区三区| 国产一区二区三区视频了| 美女高潮喷水抽搐中文字幕| 成人亚洲精品一区在线观看| 成人手机av| 黑人欧美特级aaaaaa片| 在线观看免费视频日本深夜| 日韩欧美一区视频在线观看| 黄频高清免费视频| 在线av久久热| 精品卡一卡二卡四卡免费| av天堂在线播放| 午夜福利在线免费观看网站| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| 99久久人妻综合| 国产精品av久久久久免费| 在线观看免费午夜福利视频| 久久青草综合色| 在线观看www视频免费| 免费在线观看完整版高清| 久久精品成人免费网站| 午夜久久久在线观看| 国产亚洲av高清不卡| 日本精品一区二区三区蜜桃| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 日韩中文字幕欧美一区二区| 欧美日本中文国产一区发布| 最新在线观看一区二区三区| 一级a爱视频在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 精品久久蜜臀av无| 国产精品98久久久久久宅男小说| 国产蜜桃级精品一区二区三区 | 午夜免费鲁丝| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 亚洲av成人一区二区三| 国产精品影院久久| 久久中文字幕人妻熟女| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区mp4| a级片在线免费高清观看视频| 午夜精品久久久久久毛片777| 国产成人免费无遮挡视频| 999久久久国产精品视频| 日本黄色日本黄色录像| 18禁黄网站禁片午夜丰满| 精品第一国产精品| 久久久精品区二区三区| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 人人妻人人添人人爽欧美一区卜| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 18禁黄网站禁片午夜丰满| av国产精品久久久久影院| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 国产成人免费观看mmmm| 欧美日韩精品网址| 国产不卡av网站在线观看| 无人区码免费观看不卡| www日本在线高清视频| 精品乱码久久久久久99久播| 成人黄色视频免费在线看| 中文字幕高清在线视频| tube8黄色片| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 国产免费现黄频在线看| 大码成人一级视频| www日本在线高清视频| 久久久精品免费免费高清| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 国产在线观看jvid| 69av精品久久久久久| 久久影院123| 无遮挡黄片免费观看| 黄片大片在线免费观看| 一级毛片高清免费大全| 国产精品一区二区在线观看99| 久久影院123| 一级a爱片免费观看的视频| 久久性视频一级片| 国精品久久久久久国模美| 91成人精品电影| 交换朋友夫妻互换小说| 午夜免费鲁丝| 天天影视国产精品| 久久精品成人免费网站| 亚洲成人手机| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 在线观看免费高清a一片| 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 热99国产精品久久久久久7| av视频免费观看在线观看| 黄色片一级片一级黄色片| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 黄色丝袜av网址大全| 在线观看www视频免费| 欧美精品人与动牲交sv欧美| 黑人欧美特级aaaaaa片| 亚洲 国产 在线| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 超碰97精品在线观看| 欧美激情高清一区二区三区| 婷婷丁香在线五月| 在线观看免费视频网站a站| 黑人猛操日本美女一级片| 午夜福利乱码中文字幕| 国产亚洲欧美98| 成年版毛片免费区| 国产不卡一卡二| 69精品国产乱码久久久| 国产在视频线精品| 欧美激情 高清一区二区三区| 亚洲一区高清亚洲精品| 手机成人av网站| av有码第一页| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 久久狼人影院| 制服人妻中文乱码| 久久天堂一区二区三区四区| 欧美成人免费av一区二区三区 | 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 成人永久免费在线观看视频| 日本黄色日本黄色录像| 久久久久久亚洲精品国产蜜桃av| 亚洲五月色婷婷综合| 久久精品国产亚洲av高清一级| 成人国语在线视频| 麻豆成人av在线观看| 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 国产深夜福利视频在线观看| 又大又爽又粗| 国产免费男女视频| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| videos熟女内射| 久久精品91无色码中文字幕| 久久 成人 亚洲| 一进一出好大好爽视频| 在线视频色国产色| 久久久久久久国产电影| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 岛国在线观看网站| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 国产精品永久免费网站| 十八禁高潮呻吟视频| 欧美日韩一级在线毛片| 亚洲色图av天堂| 成人免费观看视频高清| 中文字幕最新亚洲高清| 水蜜桃什么品种好| videosex国产| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 国产有黄有色有爽视频| 在线播放国产精品三级| 久久精品国产a三级三级三级| 精品久久久久久久毛片微露脸| xxxhd国产人妻xxx| 亚洲片人在线观看| 久99久视频精品免费| 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 国产精品一区二区在线不卡| videos熟女内射| 国产色视频综合| 女性被躁到高潮视频| 亚洲久久久国产精品| 在线av久久热| 不卡一级毛片| cao死你这个sao货| 欧美精品av麻豆av| 新久久久久国产一级毛片| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 欧美日韩成人在线一区二区| 亚洲午夜理论影院| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 老司机影院毛片| 在线观看免费高清a一片| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 亚洲国产欧美日韩在线播放| 国产精品久久视频播放| 欧美乱色亚洲激情| 国产成人精品在线电影| 丰满迷人的少妇在线观看| 亚洲精品在线观看二区| 老鸭窝网址在线观看| 91精品国产国语对白视频| 美女午夜性视频免费| 免费在线观看亚洲国产| 国产亚洲精品久久久久久毛片 | 欧美最黄视频在线播放免费 | 激情在线观看视频在线高清 | 淫妇啪啪啪对白视频| 在线观看免费视频网站a站| 少妇的丰满在线观看| av线在线观看网站| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 精品视频人人做人人爽| 国产国语露脸激情在线看| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 日本五十路高清| 中文字幕最新亚洲高清| 日韩视频一区二区在线观看| 麻豆乱淫一区二区| 在线观看免费午夜福利视频| 亚洲全国av大片| 国产国语露脸激情在线看| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 精品第一国产精品| 国产主播在线观看一区二区| 性少妇av在线| ponron亚洲| 成人黄色视频免费在线看| 天堂俺去俺来也www色官网| 高清毛片免费观看视频网站 | 久久天躁狠狠躁夜夜2o2o| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 女人被狂操c到高潮| 天天躁夜夜躁狠狠躁躁| 一边摸一边抽搐一进一小说 | 十八禁网站免费在线| 国产在线精品亚洲第一网站| 亚洲国产看品久久| 国产成人欧美在线观看 | 交换朋友夫妻互换小说| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 又黄又粗又硬又大视频| 99国产综合亚洲精品| 精品高清国产在线一区| 国产欧美日韩一区二区三| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 麻豆乱淫一区二区| 精品熟女少妇八av免费久了| 大型黄色视频在线免费观看| 99热国产这里只有精品6| 成人av一区二区三区在线看| 操出白浆在线播放| 亚洲欧美激情在线| 桃红色精品国产亚洲av| 久久香蕉精品热| 男人的好看免费观看在线视频 | 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 日韩视频一区二区在线观看| 国产亚洲精品一区二区www | 欧美最黄视频在线播放免费 | 久久婷婷成人综合色麻豆| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 成人黄色视频免费在线看| 三上悠亚av全集在线观看| 很黄的视频免费| 村上凉子中文字幕在线| 欧美中文综合在线视频| 久久精品国产清高在天天线| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 欧美久久黑人一区二区| 亚洲成av片中文字幕在线观看| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| netflix在线观看网站| 国产一区二区三区在线臀色熟女 | 自拍欧美九色日韩亚洲蝌蚪91| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 国产精品秋霞免费鲁丝片| 午夜影院日韩av| 欧美丝袜亚洲另类 | 嫁个100分男人电影在线观看| 国产精品1区2区在线观看. | 一级毛片精品| 啪啪无遮挡十八禁网站| 免费看a级黄色片| 亚洲欧美日韩高清在线视频|