操 濤,宋建中,范行軍
生物質(zhì)燃燒源類腐殖質(zhì)的臭氧老化特征
操 濤1,2,4,宋建中1,2,范行軍1,3*
(1.中國(guó)科學(xué)院廣州地球化學(xué)研究所有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510640;2.中國(guó)科學(xué)院深地科學(xué)卓越創(chuàng)新中心,廣東 廣州 510640;3.安徽科技學(xué)院資源與環(huán)境學(xué)院,安徽 蚌埠 233100;4.中國(guó)科學(xué)院大學(xué),北京 100049)
針對(duì)生物質(zhì)燃燒排放類腐殖質(zhì)(BC-HULIS)的臭氧(O3)氧化開(kāi)展模擬研究,利用總有機(jī)碳分析儀(TOC)、紫外-可見(jiàn)吸收光譜(UV-vis)、熒光激發(fā)發(fā)射矩陣光譜結(jié)合平行因子分析(EEM-PARAFAC)以及傅里葉變換紅外光譜(FTIR)表征老化前后HULIS的光學(xué)性質(zhì)和化學(xué)結(jié)構(gòu)變化. 研究表明,經(jīng)臭氧氧化后BC-HULIS占相應(yīng)的水溶性有機(jī)碳(WSOC)的比例降低,表明部分HULIS發(fā)生降解生成水溶性小分子化合物. 此外經(jīng)O3老化后,HULIS的質(zhì)量吸收指數(shù)(MAE365)和芳香性指數(shù)(SUVA254)分別從1.8~2.7和4.2~5.0m2/gC下降到1.1~1.3和3.7~4.1m2/gC,表明老化后HULIS的吸光能力和芳香度均呈現(xiàn)降低. EEM-PARAFAC解析結(jié)果顯示,BB-HULIS中熒光發(fā)色團(tuán)主要由類蛋白熒光組分(C2)和類腐殖質(zhì)熒光組分(C1、C3、C4)組成. O3老化后,BB-HULIS的總熒光強(qiáng)度顯著降低,兩種性質(zhì)的熒光組分相對(duì)含量和熒光參數(shù)發(fā)生顯著變化,如老化后HULIS中類腐殖質(zhì)熒光組分的相對(duì)含量和腐質(zhì)化指數(shù)(HIX)均顯著高于老化前樣品,表明老化過(guò)程發(fā)生類蛋白的降解和類腐殖質(zhì)的聚合. 另外,FTIR分析結(jié)果顯示O3老化后含氧官能團(tuán)含量顯著增強(qiáng),表明了O3老化對(duì)HULIS官能團(tuán)的影響.
生物質(zhì)燃燒;類腐殖質(zhì);臭氧氧化;光學(xué)性質(zhì);化學(xué)結(jié)構(gòu)
大氣類腐殖質(zhì)(HULIS)是由一系列具有復(fù)雜性質(zhì)的有機(jī)混合物組成,具有與陸源和水生腐殖酸相似的紫外-可見(jiàn)、熒光和紅外光譜特征[1-2].HULIS普遍存在于大氣氣溶膠、雨、云和霧水中,是水溶性有機(jī)碳(WSOC)的重要吸光組成,占比達(dá)9%~72%[3]. HULIS具有顯著的吸濕性和表面活性,對(duì)云凝結(jié)核的形成和氣溶膠的吸濕生長(zhǎng)有重要作用[4].HULIS能夠吸收太陽(yáng)光,對(duì)輻射強(qiáng)迫以及大氣化學(xué)過(guò)程也有一定的影響[5].毒性研究表明,HULIS是大氣PM2.5中能夠催化產(chǎn)生活性氧化物(ROS)的重要載體,對(duì)人體健康亦產(chǎn)生重要危害[6-7].
HULIS的來(lái)源主要包括一次排放(生物質(zhì)燃燒和化石燃料燃燒等)[8-10]和二次生成(揮發(fā)性有機(jī)物的光化學(xué)反應(yīng)、煙炱顆粒的非均相反應(yīng)等)[11-12].在這些來(lái)源中,生物質(zhì)燃燒(BC)被認(rèn)為是重要來(lái)源之一[5,9,13].已有研究表明,BC產(chǎn)生的HULIS(記為BC-HULIS)占細(xì)顆粒物質(zhì)量的11.2%~23.4%[1],且具有較強(qiáng)的光吸收能力;不同燃燒條件對(duì)BC HULUS的產(chǎn)生有一定影響[14].事實(shí)上,直接排放的BC- HULIS釋放到大氣中后也會(huì)與大氣氧化劑,如O3、NO等,發(fā)生一系列復(fù)雜的大氣化學(xué)過(guò)程[12],改變其含量、光學(xué)和化學(xué)性質(zhì).其中,O3是一種重要的強(qiáng)氧化劑,也是當(dāng)前大氣中重要的污染物.因此開(kāi)展BC-HULIS的O3老化研究具有重要的意義. Pillar等[15-16]研究表明生物質(zhì)燃燒排放煙氣顆粒中鄰苯二酚的O3老化過(guò)程會(huì)促進(jìn)HULIS的生成. Vione等[17]研究發(fā)現(xiàn)O3老化會(huì)導(dǎo)致BC氣溶膠中發(fā)色團(tuán)的漂白和降解.對(duì)BC煙氣顆粒在O3老化過(guò)程中WSOC的演化規(guī)律研究中發(fā)現(xiàn),O3老化過(guò)程中有機(jī)碳呈現(xiàn)先升高再降低的趨勢(shì),而樣品的吸光性則呈現(xiàn)顯著的漂白[18].然而該研究主要是針對(duì)WSOC的研究,對(duì)重要吸光性組分如HULIS的臭氧老化特征尚未有深入認(rèn)識(shí). HULIS是重要的棕色碳組分,因此,需要對(duì)老化過(guò)程中BC煙氣顆粒HULIS的組成和性質(zhì)發(fā)生的變化進(jìn)行系統(tǒng)研究.
本研究采集水稻、玉米秸稈以及松木作為燃料進(jìn)行燃燒,收集煙氣顆粒,在實(shí)驗(yàn)室進(jìn)行O3氧化模擬研究.利用超純水萃取結(jié)合固相萃取方法獲得氧化前后顆粒中的HULIS,采用總有機(jī)碳分析儀(TOC)、紫外-可見(jiàn)光譜(UV-vis)、熒光激發(fā)發(fā)射矩陣光譜(EEM)和傅里葉變換紅外光譜(FTIR)對(duì)HULIS的有機(jī)碳(OC)含量、光學(xué)性質(zhì)和官能團(tuán)進(jìn)行了表征,討論了O3氧化前后HULIS的光吸收能力、發(fā)色團(tuán)的演化和化學(xué)官能團(tuán)的變化,進(jìn)一步加深對(duì)BC-HULIS臭氧氧化機(jī)制的認(rèn)識(shí).
水稻和玉米秸稈取自安徽省蚌埠市周邊,松木樣品取自安徽省六安市.樣品收集后自然晾干并按一定大小分好,便于進(jìn)一步的燃燒實(shí)驗(yàn).燃燒實(shí)驗(yàn)在實(shí)驗(yàn)室自制的燃燒和采樣系統(tǒng)中進(jìn)行,詳細(xì)運(yùn)行過(guò)程見(jiàn)文獻(xiàn)[9].簡(jiǎn)單來(lái)說(shuō)就是將切成小塊的實(shí)驗(yàn)樣品放進(jìn)燃燒爐內(nèi),點(diǎn)火后封閉爐子,打開(kāi)助燃和稀釋氣泵,雖然是封閉燃燒,但是底部供氧充足,生物質(zhì)在燃燒爐內(nèi)處于明火燃燒狀態(tài).使煙氣顆粒順著稀釋冷卻管進(jìn)入混合倉(cāng),經(jīng)細(xì)顆粒物收集器(武漢天虹智能儀表廠,武漢)以80L/min的流速收集在提前焙燒的干凈石英濾膜上(Whatman,90mm).采集好的石英濾膜放冰箱冷凍備用,同時(shí)采集大氣顆粒物空白膜片和操作空白膜片.
利用自制的O3氧化裝置進(jìn)行BC煙氣顆粒的O3氧化模擬研究.該裝置主要由氣瓶、O3產(chǎn)生裝置和加濕裝置、混合罐、主反應(yīng)器、檢測(cè)器和尾氣處理裝置組成,具體構(gòu)造和描述見(jiàn)文獻(xiàn)[18].參照Fan等[18]的方法開(kāi)展O3氧化模擬,具體為:打開(kāi)氣瓶,干燥空氣進(jìn)入O3產(chǎn)生裝置,O3是由干燥空氣在波長(zhǎng)185nm紫外燈下光解產(chǎn)生,形成混合氣體;超純氮?dú)獗灰爰訚衿髦?隨后與氧氣和O3等混合氣體充分混合后進(jìn)入玻璃反應(yīng)器中,主要起稀釋O3濃度和增加濕度作用.O3濃度使用便攜式臭氧檢測(cè)儀測(cè)定,同時(shí)測(cè)定溫度和濕度.在本研究中O3濃度、溫度和濕度控制在(114±6) mg/m3(高O3濃度暴露以達(dá)到短時(shí)間快速反應(yīng)的效果),26℃和(42±1)%.生物質(zhì)燃燒細(xì)顆粒物樣品膜片按所需要的面積切好,反應(yīng)時(shí)放在石英玻璃板上,在反應(yīng)器內(nèi)與混合氣體充分暴露,O3氧化時(shí)間為12h,分別在0和12h從反應(yīng)器中取出樣品使用鋁箔紙包好并存放在冰箱中待分析.
在反應(yīng)過(guò)程中需要使用鋁箔紙將O3產(chǎn)生裝置和O3反應(yīng)裝置密封,避免光參與反應(yīng).另外所有分析和實(shí)驗(yàn)均采用空白校正.
根據(jù)Song等[19]的分離純化方法得到HULIS.流程為:臭氧氧化前后的顆粒物膜片經(jīng)超純水超聲萃取(共60mL,分2次各30min超聲萃取),聚四氟乙烯濾頭過(guò)濾(0.22μm,津騰,天津)后得到WSOC,一半體積的WSOC加鹽酸酸化(pH=2),過(guò)甲醇活化洗凈后的ENVI-18柱(200mg,Supelco,美國(guó)),冷凍干燥后用甲醇洗脫,氮吹干燥后加相同體積超純水超聲定容.
采用島津總有機(jī)碳分析儀(TOC-VCPN,島津,日本)對(duì)老化前后的WSOC和HULIS的有機(jī)碳含量測(cè)定. UV-vis光譜使用島津UV-2600(UV-2600,島津,日本)測(cè)定.掃描范圍200~700nm,間隔1nm,采用超純水做空白和基線.為了更好地表征HULIS的光學(xué)性質(zhì),對(duì)一些光學(xué)參數(shù)如254和280nm處的特征吸收值(SUVA254和SUVA280),250和365nm處吸光度的比值(2/3),Angstrom指數(shù)(AAE)和質(zhì)量吸收指數(shù)(MAE365)分別進(jìn)行計(jì)算,參數(shù)介紹和計(jì)算過(guò)程參考文獻(xiàn)[9-10,20].
采用F-4600(Hitachi,日立,日本)測(cè)定氧化前后HULIS和WSOC的EEM,光譜激發(fā)范圍為200~ 400nm,發(fā)射范圍為290~520nm,掃描間隔均為5nm,掃描速度為2400nm/min.為了避免濃度效應(yīng)和內(nèi)濾效應(yīng),熒光強(qiáng)度使用TOC濃度和拉曼峰面積較正. PARAFAC分析使用MATLAB R2014a (MathWorks. Inc,美國(guó))和DOMFluor工具包[21-22]. PARAFAC計(jì)算采用非負(fù)性約束的2~7個(gè)組分模型,并通過(guò)殘差分析、分半檢驗(yàn)驗(yàn)證熒光組分的數(shù)量,對(duì)BC-HULIS的36樣本建立了4組分模型,使用最大熒光強(qiáng)度(max)來(lái)估計(jì)單個(gè)熒光團(tuán)的相對(duì)水平[23].從x= 254nm處的熒光發(fā)射光譜中提取腐殖化指數(shù)(HIX),用435~480nm處的熒光強(qiáng)度積分面積除以300~345nm處的熒光強(qiáng)度積分面積計(jì)算得到[24].
采用傅里葉變換紅外光譜儀(FTIR,Thermo,美國(guó))在室溫下測(cè)定HULIS的紅外光譜,測(cè)量前,在所有樣品中加入溴化鉀(KBr)并對(duì)樣品進(jìn)行冷凍干燥,取出干燥后的粉末樣品壓制成片狀,扣除KBr空白.每個(gè)FTIR光譜經(jīng)過(guò)64次掃描,分辨率為4cm-1.
為了探究O3老化前后HULIS相對(duì)含量的變化,以有機(jī)碳含量(TOC)和250nm的吸光度(UV250)進(jìn)行計(jì)算和比較.如圖1所示,以TOC計(jì)算的水稻、玉米和松木燃燒排放物質(zhì)在老化前的HULIS/WSOC比值分別為51%、53%和42%,該值與之前報(bào)道的生物質(zhì)燃燒直接排放的HULIS/WSOC比值接近[1,9].但是,經(jīng)O3老化后,同一樣品的HULIS/WSOC比值下降至50%、49%和39%;以UV250計(jì)算的O3老化前水稻、玉米和松木的HULIS/WSOC比值為72%、64%和53%,O3老化后3種樣品的HULIS/WSOC比值下降至67%、58%和51%.兩種參數(shù)計(jì)算下O3老化后的HULIS的相對(duì)含量均表現(xiàn)為下降,但UV250比值下降幅度更大,表明O3老化導(dǎo)致了HULIS中碳質(zhì)吸光組分的減少,可能是其中的大分子吸光性組成分解成水溶性小分子不吸光物質(zhì).具體來(lái)說(shuō),在O3老化HULIS的過(guò)程中,HULIS可能存在生成與降解兩種反應(yīng)途徑;有研究報(bào)道煙炱顆粒與臭氧的非均相氧化會(huì)產(chǎn)生HULIS[25];而臭氧對(duì)HULIS氧化會(huì)打破HULIS內(nèi)部的C-C鍵,產(chǎn)生低分子量的有機(jī)化合物和氣態(tài)化合物,如一氧化碳和二氧化碳,導(dǎo)致碳含量的減少[26].
圖1 O3老化前后生物質(zhì)燃燒排放顆粒的HULIS/WSOC比值
2.2.1 UV-vis光譜 為了更簡(jiǎn)單地對(duì)UV-vis光譜進(jìn)行比較,所有光譜使用相應(yīng)HULIS的TOC含量進(jìn)行校正.如圖2所示,老化前后的HULIS吸收光譜吸收強(qiáng)度和吸收峰都發(fā)生了明顯變化.首先,老化后HULIS的吸收強(qiáng)度相對(duì)于老化前的樣品明顯降低,表明HULIS的吸光能力顯著降低.老化前HULIS的吸收光譜在250~300nm范圍內(nèi)有一個(gè)明顯的吸收峰,表明雙鍵和芳香族結(jié)構(gòu)(如酚類衍生物和苯甲酸等)中存在π-π*電子躍遷[1,27].吸收峰在O3老化后消失了,這說(shuō)明O3老化后HULIS中這些具有含苯環(huán)芳香類物質(zhì)發(fā)生了降解和轉(zhuǎn)化[28].燃燒狀態(tài)對(duì)產(chǎn)物吸光性影響較大,以往研究指出燜燒狀態(tài)下的有機(jī)氣溶膠吸光性要弱于明火燃燒狀態(tài)排放[29],且明火燃燒狀態(tài)能更好地模擬田間供氧充足的開(kāi)放式燃燒過(guò)程.
圖2 O3老化前后BC-HULIS的UV-vis光譜
2.2.2 光譜學(xué)參數(shù) 如表1所示,老化前BC- HULIS的2/3值在4.4~5.9范圍內(nèi),顯著低于老化后的數(shù)值7.2~7.9.老化前水稻、玉米和松木燃燒直接排放HULIS的SUVA254的數(shù)值分別為(4.4±0.1),(4.2±0.1)和(5.0±0.1)m2/gC,老化后降至(3.7±0.2),(3.9±0.1)和(4.1±0.2)m2/gC.已有研究表明,2/3值與樣品的芳香性和分子量成反比,而SUVA254與有機(jī)質(zhì)的芳香性成正比[8]. O3老化導(dǎo)致2/3數(shù)值增加表明HULIS芳香性和分子量降低,而SUVA254數(shù)值的顯著降低更是直接表明老化后樣品的芳香性下降,因此可以認(rèn)為O3老化反應(yīng)對(duì)BC-HULIS的芳香性和分子量產(chǎn)生明顯影響[9].
表1 O3老化前后BC-HULIS的光學(xué)參數(shù)
注: SUVA254和MAE365的單位是m2/gC.
AAE和MAE365是評(píng)價(jià)HULIS吸光性質(zhì)的重要參數(shù)[1,9,14].如表1所示,水稻、玉米和松木燃燒排放HULIS老化前的AAE值分別為8.3±0.1,6.4±0.1,7.1±0.1,與以往文獻(xiàn)報(bào)道相近[8,18].對(duì)于老化后的樣品,AAE的值增加至8.7±0.1,7.8±0.02,8.1±0.1.表明O3老化后的BC-HULIS具有更強(qiáng)的波長(zhǎng)依賴性,AAE的變化與前人研究結(jié)果一致[30].但是由于實(shí)際煙羽中顆粒物狀態(tài)以及顆粒物粒徑隨大氣氧化時(shí)間變化較大[30-32],HULIS的AAE變化與粒徑的關(guān)系在臭氧氧化中需要進(jìn)一步實(shí)驗(yàn)探究.水稻、玉米和松木燃燒直接排放HULIS的MAE365值分別為(1.8±0.03),(2.3±0.04)和(2.7±0.05)m2/gC;O3老化后,HULIS的MAE365下降至(1.1±0.1),(1.3±0.03)和(1.2±0.1)m2/gC.相較于老化前HULIS的MAE365值,O3老化后MAE365值下降了39%、43%和56%.這表明臭氧氧化會(huì)破壞HULIS中具有強(qiáng)吸光能力的物質(zhì),導(dǎo)致HULIS的吸光能力降低;生物質(zhì)燃燒WSOC大氣光化學(xué)反應(yīng)同樣會(huì)導(dǎo)致其吸光能力減弱[28].
摩爾吸光系數(shù)(280)是指單位物質(zhì)的量碳HULIS在280nm的吸光能力[27],具體計(jì)算式為:
(280) = Abs280×12/(×) (1)
式中: Abs280為280nm處吸收值;12為碳原子的摩爾質(zhì)量(g/mol);為HULIS的有機(jī)碳含量(mg/L);為吸收池寬(cm).
選擇280nm作為光學(xué)參數(shù)是因?yàn)镠ULIS前體物中芳香組分的π-π*電子躍遷發(fā)生在這一波長(zhǎng)范圍內(nèi)[27].如表2所示,老化后HULIS的平均(280)在317~341L/(molC·cm),全部低于老化前425~518L/ (molC·cm),結(jié)果表明O3老化會(huì)降低HULIS的摩爾吸光系數(shù),但是無(wú)論是老化前還是老化后的HULIS摩爾吸光系數(shù),均要高于大氣氣溶膠HULIS的摩爾吸光系數(shù)173L/(molC·cm)((布達(dá)佩斯地區(qū))[27,33],137L/(molC·cm)(廣州地區(qū)).這表明,BC-HULIS具有比環(huán)境氣溶膠HULIS更高的摩爾吸收率,表明BC-HULIS具有更強(qiáng)的吸光能力.
芳香碳豐度(Ar,%)可以根據(jù)摩爾吸光系數(shù)計(jì)算[27,34]:
Ar(%)=6.47+(280)′0.05 (2)
如表2所示,老化前BC-HULIS的芳香碳豐度約為28%~33%,O3老化后下降到23%~25%,表明在臭氧老化過(guò)程中部分芳香性物質(zhì)發(fā)生了分解.
另外摩爾吸光系數(shù)還可以用來(lái)估算平均分子量的大小[27,34]:
=534+1.33′(280) (3)
如表2所示,水稻、玉米和松木燃燒排放HULIS老化前的分子量大約為1133,1100和1222Da,O3老化后下降至987,1024和956Da,表明O3老化使HULIS中大分子物質(zhì)發(fā)生分解,特別是松木樣品HULIS平均分子量下降幅度最大.
綜上,O3老化使HULIS的芳香性降低,吸光能力下降,通過(guò)計(jì)算摩爾吸光系數(shù)、分子量和芳香碳豐度等參數(shù),發(fā)現(xiàn)O3老化后HULIS的摩爾吸光系數(shù)降低,分子量和芳香碳豐度也相應(yīng)降低,這一變化特征和前面用光學(xué)參數(shù)得出來(lái)的HULIS吸光能力和分子量以及芳香性的變化一致.
表2 O3老化前后BC-HULIS的摩爾吸光系數(shù)ε(280),平均分子量和芳香碳豐度
2.4.1 三維熒光光譜 如圖3所示,老化前和老化后BC-HULIS的EEM譜圖中均有2個(gè)熒光峰,但熒光峰的位置和強(qiáng)度有明顯的區(qū)別.老化前HULIS的兩個(gè)熒光峰分別位于ex/em=230~240nm/350~ 370nm(A)和ex/em=270~280nm/350~360nm(B);老化后,這2個(gè)熒光峰位置發(fā)生紅移至ex/em=220~ 240nm/400~420nm(C)和ex/em=270~290nm/390~ -410nm (D). A峰通常被劃分為類蛋白或多酚物質(zhì),如多酚化合物和類色氨酸物質(zhì)或類似這些物質(zhì)的分子結(jié)構(gòu)[35];B峰可能屬于激發(fā)波長(zhǎng)較長(zhǎng)的蛋白類化合物,通常被認(rèn)為是類色氨酸化合物,該峰在表層水、大氣氣溶膠以及雨水的研究中也被檢出[23];C和D峰位于典型的Fulvic-like區(qū),可能與DOM中的Fulvic-like具有相似的化學(xué)結(jié)構(gòu). Fulvic-like的官能團(tuán)主要包括含苯羧基、-C=C-和酚OH,以及含有O、S、P原子的官能團(tuán)[35]. O3老化使HULIS的最大熒光峰(峰A和B)位置向長(zhǎng)波產(chǎn)生一定偏移,表明HULIS中主要的熒光發(fā)色團(tuán)物質(zhì)化學(xué)結(jié)構(gòu)發(fā)生變化,而且老化后HULIS的最大熒光峰熒光強(qiáng)度遠(yuǎn)低于老化前,這說(shuō)明O3老化使HULIS中的原有熒光發(fā)色團(tuán)物質(zhì)結(jié)構(gòu)被破壞且新產(chǎn)生的熒光基團(tuán)熒光量子產(chǎn)率低,導(dǎo)致最大熒光峰強(qiáng)度遠(yuǎn)不如老化前.
HIX能反映天然有機(jī)質(zhì)的腐殖化程度,同時(shí)也被廣泛應(yīng)用于對(duì)大氣氣溶膠和雨水中WSOC中類腐殖質(zhì)類熒光發(fā)色團(tuán)性質(zhì)的表征[18,24].總的來(lái)說(shuō),高的HIX值與WSOC的高芳香性和高縮聚程度有關(guān),如表1所示,老化前水稻、玉米和松木HULIS的HIX值分別為1.1、0.8和1.2,老化后分別增加至3.8、2.1和1.7,老化后HULIS的HIX值顯著增加,表明老化后HULIS中類腐殖質(zhì)類熒光組分的相對(duì)含量顯著增加,可能與產(chǎn)生更多的低聚合芳香結(jié)構(gòu)物質(zhì)有關(guān).
圖3 O3老化前后BC-HULIS的EEM譜圖
2.4.2 EEM-PARAFAC分析 EEM-PARAFAC解析出4個(gè)獨(dú)立的熒光組分.如圖4所示,這4個(gè)熒光組分可以歸屬于長(zhǎng)波類腐殖質(zhì)熒光組分(HULIS-1,C1),類蛋白/多酚類熒光組分(PLOM,C2),短波類腐殖質(zhì)熒光組分(HULIS-2,C3)和高氧化腐殖質(zhì)熒光組分(HULIS-3,C4)[21,24,36].在大氣氣溶膠和燃燒源排放煙氣顆粒物WSOC和HULIS的熒光光譜中也有報(bào)道過(guò)相近位置的熒光組分[14,24,36-39].
圖4 EEM-PARAFAC分析得到的BC-HULIS熒光組分
由圖5可知,在老化前BC-HULIS中,類蛋白/多酚類熒光組分(C2)相對(duì)含量最大(34%~47%),而在老化后的HULIS中,類蛋白/多酚類熒光組分(C2)顯著減少至9%~22%,結(jié)果表明,PLOM熒光發(fā)色團(tuán)對(duì)O3老化產(chǎn)生的響應(yīng)最大.此外,腐殖質(zhì)類熒光組分(C1、C3和C4),尤其是長(zhǎng)波類腐殖質(zhì)熒光組分(C1)和高氧化類腐殖質(zhì)熒光組分(C4),其相對(duì)含量在老化后上升,成為老化后HULIS中主要的熒光組分(78%~91%)[16],該結(jié)果與HIX值上升相一致.
圖5 老化前后BC-HULIS中4個(gè)熒光組分含量的相對(duì)分布
如圖6所示,所有樣品的紅外光譜與從雨水和大氣氣溶膠中分離純化出的HULIS具有類似的光譜特征,這些光譜的解釋參考了前人關(guān)于天然有機(jī)質(zhì)、直接排放顆粒物和非均相反應(yīng)生成吸光性物質(zhì)的研究[1,15-16,18,40-41].在3420cm-1附近集中的寬而強(qiáng)的吸收峰一般是由于酚、羧基和羥基的OH伸縮振動(dòng);2930cm-1處的肩峰被認(rèn)為是脂肪族C-H伸縮;1710cm-1左右的被認(rèn)為是C=O伸縮振動(dòng),一般認(rèn)為是羧基、羰基,醛的C=O基團(tuán)也對(duì)該波數(shù)附近的吸收峰有貢獻(xiàn).在1700~1000cm-1范圍內(nèi)也出現(xiàn)了較多的集中峰,例如,1608和1515cm-1可以歸結(jié)為芳香環(huán)和C=C雙鍵的伸縮振動(dòng);1454和1384cm-1可能由脂肪族CH、CH2和CH3貢獻(xiàn);1275和1115cm-1表示芳香族C-O或酚羥基的伸縮和環(huán)型C-O的伸縮振動(dòng)[1,18].這些結(jié)果表明,無(wú)論是老化前還是老化后的BC-HULIS都普遍由羥基、羰基、不飽和芳香環(huán)等多種官能團(tuán)組成.
如圖6所示,老化前和老化后在4000~2000cm-1波長(zhǎng)范圍內(nèi)沒(méi)有看到明顯的光譜變化,說(shuō)明該范圍內(nèi)的官能團(tuán)對(duì)O3暴露不敏感[16,18],而在2000~ 1000cm-1之間存在顯著差異. O3老化后,1710cm-1的C=O伸縮振動(dòng)增加,尤其是在水稻秸稈和玉米秸稈燃燒排放HULIS中,說(shuō)明O3老化可以使HULIS中形成更多的C=O伸縮振動(dòng)官能團(tuán),O3老化生物質(zhì)燃燒排放中的酚類化合物使紅外光譜也產(chǎn)生了類似的變化[18].老化后,1515,1454,1275cm-1的峰均減少,說(shuō)明在HULIS內(nèi)存在芳香C=C、C-O的分解. 這些結(jié)果證實(shí)了芳香骨架中的C=C和木質(zhì)素骨架中的C=C (1515cm-1)以及脂肪鏈和芳香環(huán)(1454cm-1)易于降解[16,18].
圖6 O3老化前后BC-HULIS的紅外光譜
本研究聚焦于O3老化前后BC-HULIS的發(fā)色團(tuán)、光吸收能力和官能團(tuán)的變化,有助于進(jìn)一步了解BC顆粒物進(jìn)入大氣的O3老化過(guò)程.研究發(fā)現(xiàn),在O3老化過(guò)程中BC-HULIS的吸光能力有一定的下降,這意味著B(niǎo)C-HULIS的吸光能力可能不像之前報(bào)道的那么高,也就是說(shuō),生物質(zhì)排放顆粒物氣溶膠的輻射強(qiáng)迫效應(yīng)隨其在大氣中的停留時(shí)間而變化,在這里僅考慮的是O3的非均相氧化,大氣化學(xué)過(guò)程中的液相和氣相反應(yīng)同樣可能會(huì)導(dǎo)致源排放棕色碳的吸光性產(chǎn)生變化[42-44],因此基于源排放物質(zhì)的模式估算可能導(dǎo)致結(jié)果過(guò)高,需要更詳細(xì)的工作來(lái)揭示排放到大氣中的顆粒物的氧化過(guò)程.
3.1 O3老化后的HULIS中吸光性物質(zhì)含量顯著降低,導(dǎo)致其吸光能力顯著減弱.
3.2 經(jīng)過(guò)O3氧化反應(yīng)后,HULIS的吸收光譜變得更加平滑,芳香性和吸光能力降低,具體表現(xiàn)在SUVA254和MAE365降低和2/3增加;經(jīng)O3氧化后HULIS的AAE值顯著增大,表明老化的HULIS具有更高的波長(zhǎng)依賴性;O3老化前后BC-HULIS的摩爾吸光系數(shù)、芳香度和平均分子量均顯著降低.
3.3 O3老化改變了生物質(zhì)燃燒排放HULIS中熒光團(tuán)的主導(dǎo)地位,EEM-PARAFAC分離鑒定出的熒光發(fā)色團(tuán)百分比改變明顯,老化后長(zhǎng)波類腐殖質(zhì)熒光組分相對(duì)增多,這與FTIR光譜1710cm-1C=O伸縮振動(dòng)信號(hào)增加相一致.
[1] Fan X J,Wei S Y,Zhu M B,et al. Comprehensive characterization of humic-like substances in smoke PM2.5emitted from the combustion of biomass materials and fossil fuels [J]. Atmospheric Chemistry and Physics,2016,16(20):13321-13340.
[2] Graber E R,Rudich Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review [J]. Atmospheric Chemistry and Physics,2006,6:729-753.
[3] Zheng G,He K,Duan F,et al. Measurement of humic-like substances in aerosols: a review [J]. Environmental Pollution,2013,181:301-14.
[4] Katsumi N,Miyake S,Okochi H,et al. Humic-like substances global levels and extraction methods in aerosols [J]. Environmental Chemistry Letters,2018,17(2):1023-1029.
[5] Laskin A,Laskin J,Nizkorodov S A. Chemistry of Atmospheric Brown Carbon [J]. Chemical Reviews,2015,115:4335-4382.
[6] Xu X Y,Lu X H,Li X,et al. ROS-generation potential of Humic-like substances (HULIS) in ambient PM2.5in urban Shanghai: Association with HULIS concentration and light absorbance [J]. Chemosphere,2020,256:127050.
[7] Lin P,Yu J Z. Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols [J]. Environmental Science & Technology,2011,45(24):10362-10368.
[8] Park S S,Yu J. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments [J]. Atmospheric Environment,2016,136: 114-122.
[9] Fan X J,Li M J,Cao T,et al. Optical properties and oxidative potential of water-and alkaline-soluble brown carbon in smoke particles emitted from laboratory simulated biomass burning [J]. Atmospheric Environment,2018,194:48-57.
[10] Li M J,Fan X J,Zhu M B,et al. Abundances and light absorption properties of brown carbon emitted from residential coal combustion in China [J]. Environmental Science & Technology,2019,53:595-603.
[11] Tang S S,Li F H,Tsona N T,et al.Aqueous-phase photooxidation of Vanillic acid: A potential source of Humic-Like substances (HULIS) [J]. ACS Earth and Space Chemistry,2020,4(6):862-872.
[12] Tsui W G,McNeill V F. Modeling secondary organic aerosol production from photosensitized Humic-like substances (HULIS) [J]. Environmental Science & Technology Letters,2018,5(5):255-259.
[13] 郭子雍,陽(yáng)宇翔,彭 龍,等.廣州地區(qū)不同粒徑段大氣顆粒物中水溶性有機(jī)碳的吸光貢獻(xiàn) [J]. 中國(guó)環(huán)境科學(xué),2021,41(2):497-504
Guo Z Y,Yang Y X,Peng L,et al. The size-resolved light absorption contribution of water soluble organic carbon in the atmosphere of Guangzhou [J]. China Environmental Science,2021,41(2):497-504.
[14] Huo Y Q,Li M,Jiang M H,et al. Light absorption properties of HULIS in primary particulate matter produced by crop straw combustion under different moisture contents and stacking modes [J]. Atmospheric Environment,2018,191:490-499.
[15] Pillar E A,Camm R C,Guzman M I. Catechol oxidation by ozone and hydroxyl radicals at the air?water interface [J]. Environmental Science & Technology ,2014,48:14352-14360.
[16] Pillar E A,Zhou R X,Guzman M I,Heterogeneous oxidation of catechol [J]. The Journal of Physical Chemistry A,2015,119(41): 10349-59.
[17] Vione D,Albinet A,Barsotti F,et al. Formation of substances with humic-like fluorescence properties,upon photoinduced oligomerization of typical phenolic compounds emitted by biomass burning [J]. Atmospheric Environment,2019,206:197-207.
[18] Fan X J,Cao T,Yu X F,et al. The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning [J]. Atmospheric Chemistry and Physics,2020,20(8): 4593-4605.
[19] Song J Z,Li M J,Jiang B,et alMolecular characterization of water-soluble Humic-like substances in smoke particles emitted from combustion of biomass materials and coal using ultrahigh-resolution electrospray ionization fourier transform ion cyclotron resonance mass spectrometry [J]. Environmental Science & Technology,2018,52(5): 2575-2585.
[20] 范行軍,操 濤,余旭芳,等.薪柴燃燒溶解性棕色碳排放特征及光學(xué)性質(zhì) [J]. 中國(guó)環(huán)境科學(xué),2019,39(8):3215-3224.
Fan X J,Cao T,Yu X F,et al. Emission characteristics and optical properties of extractable brown carbon from residential wood combustion [J]. China Environmental Science,2019,39(8):3215-3224.
[21] Murphy K R,Stedmon C A,Graeber D,et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC [J]. Analytical Methods,2013,5(23):6557.
[22] Stedmon C A,Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial [J]. Limnology and Oceanography-Methods,2008,6:572-579.
[23] Matos J T V,Freire S M S C,Duarte R M B O,et al. Natural organic matter in urban aerosols: Comparison between water and alkaline soluble components using excitation-emission matrix fluorescence spectroscopy and multiway data analysis [J]. Atmospheric Environment,2015,102:1-10.
[24] Qin J J,Zhang L M,Zhou X M,et al. Fluorescence fingerprinting properties for exploring water-soluble organic compounds in PM2.5in an industrial city of northwest China [J]. Atmospheric Environment,2018,184:203-211.
[25] Zhu J L,Chen Y Y,Shang J,et al. Effects of air/fuel ratio and ozone aging on physicochemical properties and oxidative potential of soot particles [J]. Chemosphere,2019,220:883-891.
[26] D'Anna B,Jammoul A,George C,et al. Light-induced ozone depletion by humic acid films and submicron aerosol particles [J]. Journal of Geophysical Research-Atmospheres,2009,114:D12301.
[27] Salma I,Ocskay R,Lang G G. Properties of atmospheric humic-like substances - water system [J]. Atmospheric Chemistry and Physics,2008,8(8):2243-2254.
[28] Wong J P S,Nenes A,Weber R J. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging [J]. Environmental Science & Technology,2017,51(15):8414-8421.
[29] Liu D,Li S,Hu D,et al.Evolution of aerosol optical properties from wood smoke in real atmosphere influenced by burning phase and solar radiation [J]. Environmental Science & Technology,2021,55:5677- 5688.
[30] Saleh R,Hennigan C J,McMeeking G R,et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions [J]. Atmospheric Chemistry and Physics,2013,13(15):7683- 7693.
[31] Wu H,Taylor J W,Langridge J M,et al. Rapid transformation of ambient absorbing aerosols from West African biomass burning [J]. Atmospheric Chemistry and Physics,2021,21:9417-9440.
[32] Forrister H,Liu J,Scheuer E,et al. Evolution of brown carbon in wildfire plumes [J]. Geophysical Research Letter,2015,42:4623-4630.
[33] Dinar E,Taraniuk I,Graber E R,et al. Cloud condensation nuclei properties of model and atmospheric HULIS [J]. Atmospheric Chemistry and Physics,2006,6:2465-2481.
[34] Chin Y P,Aiken G,O’Loughlin E. Molecular-weight,polydispersity,and spectroscopic properties of aquatic Humic-like substances [J]. Environmental Science & Technology,1994,28(11):1853-1858.
[35] Mostofa K M G,Wu F C,Liu C Q,et al. Photochemical,microbial and metal complexation behavior of fluorescent dissolved organic matter in the aquatic environments [J]. Geochemical Journal,2011,45(3): 235-254.
[36] Chen Q C,Ikemori F,Mochida M. Light absorption and excitation- emission fluorescence of urban organic aerosol components and their relationship to chemical structure [J]. Environmental Science & Technology,2016,50(20):10859-10868.
[37] Chen Q C,Hua X Y,Dyussenova A. Evolution of the chromophore aerosols and its driving factors in summertime Xi'an,Northwest China [J]. Chemosphere,2021,281:130838.
[38] Mu Z,Chen Q C,Zhang L X,et al. Photodegradation of atmospheric chromophores: changes in oxidation state and photochemical reactivity [J]. Atmospheric Chemistry and Physics,2021,21:11581-11591.
[39] Tang J,Wang J Q,Zhong G C,et al. Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning [J]. Atmospheric Chemistry and Physics,2021,21:11337-11352.
[40] Cottrell B A,Cheng W R,Lam B,et al. An enhanced capillary electrophoresis method for characterizing natural organic matter [J]. Analyst,2013,138(4):1174-1179.
[41] Kumar V,Goel A,Rajput P. Compositional and surface characterization of HULIS by UV-Vis,FTIR,NMR and XPS: Wintertime study in Northern India [J]. Atmospheric Environment,2017,164:468-475.
[42] 葉招蓮,瞿珍秀,馬帥帥,等.氣溶膠水相反應(yīng)生成二次有機(jī)氣溶膠研究進(jìn)展 [J]. 環(huán)境科學(xué),2018,39(8):3954-3964.
Ye Z L,Qu Z X,Ma S S,et al. Secondary organic aerosols from aqueous reaction of aerosol water [J]. Environmental Science,2018,39(8):3954-3964.
[43] 肖 瑤,吳志軍,郭 松,等.大氣氣溶膠液態(tài)水中二次有機(jī)氣溶膠生成機(jī)制研究進(jìn)展 [J]. 科學(xué)通報(bào),2020,32(5):627-641.
Xiao Y,Wu Z J,Guo S,et al. Formation mechanism of secondary organic aerosol in aerosol liquid water: A review [J]. Chinese Science Bulletin,2020,32(5):627-641.
[44] 王玉鈺,胡 敏,李 曉,等.大氣顆粒物中棕色碳的化學(xué)組成、來(lái)源和生成機(jī)制 [J]. 化學(xué)進(jìn)展,2020,32(5):627-641.
Wang Y J,Hu M,Li X,et al. Chemical composition,sources and formation mechanisms of particulate brown carbon in the atmosphere [J]. Progress in Chemistry,2020,32(5):627~641.
Changes in optical properties and chemical functional groups of humic substances emitted from biomass combustion with O3oxidation.
CAO Tao1,2,4,SONG Jian-zhong1,2,FAN Xing-jun1,3*
(1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China;2.CAS Center for Excellence in Deep Earth Science,Guangzhou 510640,China;3.College of Resource and Environment,Anhui Science and Technology University,Bengbu 233100,China;4.University of Chinese Academy of Sciences,Beijing 100049,China).,2022,42(8):3483~3491
Biomass combustion (BC) is an important source of humic-like substances (HULIS) in atmospheric aerosol,and the oxidation process has a significant impact on the optical properties and chemical structures of BC-HULIS. This study focused on the changes in primary BB-HULIS due to ozone (O3) oxidation and the optical properties and chemical structure of HULIS before and after oxidation were characterized with the total organic carbon (TOC) analyzer,UV-Vis spectroscopy,Excitation-Emission Matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform infrared spectroscopy (FTIR). The results showed that the relative contents of HULIS in the corresponding water-soluble organic carbon (WSOC) decreased with O3oxidation,suggesting the transformation of HULIS into water-soluble low molecular weight compounds. Furthermore,mass absorption efficiency (MAE365) and aromatic index (SUVA254) of HULIS decreased from 1.8~2.7m2/gC and 4.2~5.0m2/gC to 1.1~1.3m2/gC and 3.7~4.1m2/gC,respectively,indicating that both the absorption capacity and aromaticity of HULIS declined with O3oxidation. The fluorescent components in BC-HULIS were mainly composed of protein-like compounds (C2) and humic-like substances (C1,C3,C4). After O3oxidation,the total fluorescence intensities of BC-HULIS weakened greatly,and the relative contribution of two types of fluorophores and fluorescence index were all significantly changed. For instances,the relative contents of humic-like components and the humidification index (HIX) of BC-HULIS after O3oxidation were obviously higher than those before O3oxidation,suggesting the degradation of protein-like compounds and the aggregation of humic-like substances during the O3oxidation process. In addition,FTIR results showed that the oxygen-containing functional groups were markedly enhanced after O3oxidation,indicating effects of O3oxidation on the chemical functional groups of BC-HULIS.
biomass burning;HULIS;ozone oxidation;optical properties;chemical structure
X513
A
1000-6923(2022)08-3483-09
2022-01-17
國(guó)家自然科學(xué)基金資助項(xiàng)目(41977188);有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(SKLOG202101);安徽省自然科學(xué)基金資助項(xiàng)目(2108085MD140)
* 責(zé)任作者,副教授,fanxj@ahstu.edu.cn
操 濤(1995-)男,安徽安慶人,中國(guó)科學(xué)院廣州地球化學(xué)研究所博士研究生,主要從事生物質(zhì)和煤燃燒排放棕色碳等吸光性物質(zhì)的研究.發(fā)表論文1篇.