• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于MAVEN 衛(wèi)星的火星逃逸面溫度研究:日變化與太陽活動性變化

    2022-08-19 06:58:00曹雨田李子川付夢昊孫銘陽中山大學大氣科學學院行星環(huán)境與宜居性研究實驗室珠海5908中國科學院國家天文臺北京000中國科學院地質與地球物理研究所地球與行星物理學重點實驗室北京0009
    關鍵詞:活動性宜居中國科學院

    顧 浩,曹雨田,李子川,付夢昊,黃 旭,孫銘陽 中山大學大氣科學學院 行星環(huán)境與宜居性研究實驗室,珠海 5908 中國科學院國家天文臺,北京 000 中國科學院地質與地球物理研究所 地球與行星物理學重點實驗室,北京 0009

    0 Introduction

    Planetary atmospheres are the Rosetta stones of planetary evolution and habitability. The atmosphere of Mars, our sister planet, mainly comprises CO, with small fractions of O, N, CO, O, Ar, and other minor species (e.g., Nier and McElroy, 1976, 1977; Bougher et al., 2015). Over the past several decades, the structure and dynamics of the upper Martian atmosphere have been widely explored using various projects,ranging from the Vikings 1 and 2 spacecraft to the Mars Global Surveyor, Mars Odyssey, and Mars Express (e.g., Nier and McElroy, 1976, 1977; Angelats i Coll et al., 2004; Bertaux et al., 2006; Withers,2006; Forget et al., 2009). Since 2014, extensive measurements performed using the Neutral Gas and Ion Mass Spectrometer (NGIMS) (Mahaffy et al., 2015a)onboard the Mars Atmosphere and Volatile Evolution(MAVEN) (Jakosky et al., 2015) spacecraft have afforded comprehensive and systematic observations of the composition and structure of the upper Martian atmosphere, that is, between 120 and 250 km from the planet's surface (e.g., Mahaffy et al., 2015b; Stone et al., 2018). More recently, the ExoMars Trace Gas Orbiter was established with the aim of exploring atmospheric regions above ~60 km on Mars and addressing several interesting issues (López-Valverde et al., 2018). Throughout these explorations, atmospheric escape has garnered considerable interest among scientists, because it is crucial for controlling the long-term evolution and habitability of Mars (e.g.,Lammer et al., 2013; Lillis et al., 2015; Jakosky et al.,2018).

    The upper boundary of the Martian atmosphere,namely, the exobase (Chamberlain, 1963), is a key concept for understanding the escape process from Mars. The exobase is an imaginary interface above which a neutral particle ejected upward is subjected to,on an average, one collision at a higher altitude. This altitude is equivalent to the location where the mean free path of the particle is equal to the neutral density scale height of the background species, under the assumption of a thin atmosphere (Johnson et al., 2008).In reality, the exobase reflects an extended transition region, from highly collisional to collision-free areas;however, the concept of an ideal exobase has been widely used in previous studies because it represents the boundary above which atmospheric escape occurs(Chaufray, 2021). For Mars, the exobase altitude is typically assumed to remain constant at ~200 km (e.g.,Chaffin et al., 2014; Qin, 2020, 2021). Recently, using NGIMS neutral density data, Fu et al. (2020) studied the exobase altitudes for CO, O, N, and CO on Mars and derived a range of exobase altitudes under different internal and external conditions. However, the temperatures of the Martian exobase have not been studied thoroughly, and previous investigations were limited to ultraviolet spectrum observations (Qin,2020, 2021). To address this shortcoming of existing literature, in this study, with the aid of NGIMS level 2 data, we determined the exobase temperatures for four relatively abundant neutral species: CO, O, N, and CO; these exobase temperatures were then used to systematically investigate the variations in the Martian exobase temperatures with respect to the local time and solar extreme ultraviolet (EUV) flux.

    The remainder of this paper is organized as follows. Section 1 describes the data and method used in this study. In Section 2, the distributions of the exobase temperatures for CO, O, N, and CO are presented. Subsequently, in Section 3, the diurnal and solar cycle variations in the exobase temperature are discussed. Finally, the conclusions of this work are presented in Section 4.

    1 Data and method

    1.1 Data description

    The analysis presented herein relies mainly on the neutral density data collected by the MAVEN NGIMS.The NGIMS is a quadrupole mass spectrometer capable of measuring the densities of reactive and nonreactive neutral species in the open- and closed-source modes, respectively (Mahaffy et al., 2015a). It can also measure the densities of various species in an ambient atmosphere over a mass range of 2~150 Da, with a resolution of 1 Da (Mahaffy et al., 2015a). In this study, we used the NGIMS level 2 data product, which provides information pertaining to the densities of neutral species in the closed-source mode. As a metric for the solar EUV flux, the level 3 solar spectral model of Mars, constructed via the Flare Irradiance Spectral Model–Mars and calibrated with MAVEN Extreme Ultraviolet Monitor (EUVM) band irradiance data(Thiemann et al., 2017), was utilized and integrated over the wavelength range of 0.5~90 nm.

    We used more than four years of in situ data measured using the MAVEN NGIMS, that is, from October 18, 2014 to November 15, 2018, spanning three Martian years (32~34). Only measurements performed at altitudes below 300 km were included, from a total of approximately 6 000 MAVEN orbits. It should be noted that only the inbound portion of each MAVEN orbit was analyzed to avoid possible contamination by the adsorption or heterogeneous chemistry occurring at the NGIMS antechamber walls(e.g., Mahaffy et al., 2015a; Stone et al., 2018). Fig. 1 presents the distribution of the MAVEN observations used in this study in terms of the Martian local time and integrated solar EUV flux (left panel) and also in terms of the longitude and latitude (right panel). The aforementioned parameters refer to the COexobase altitude for each orbit, as obtained from the work of Fu et al. (2020). Furthermore, as indicated in Fig. 1, the sample covers a wide time range and a large solar EUV flux range, and is distributed nearly uniformly on a significant portion of the Martian surface. This enables the exploration of the variations in the exobase temperature with respect to both the local time and solar EUV flux.

    Fig. 1 (a) Sample distribution with respect to Martian local time and integrated solar flux at 0.5~90 nm, referred to as the CO2 exobase altitude, both as a function of the MAVEN orbit number. The observations used in this study spanned three Marian years, from MY32 to MY34, as indicated in the figure legend; (b) Global distribution of the MAVEN observations used in this study with respect to the longitude and latitude, also referred to as the CO2 exobase altitude

    1.2 Calculation of exobase temperature

    where

    z

    is the altitude,

    n

    is the number density of species

    j

    , and σis the cross-section for binary collisions between species

    i

    and

    j

    , as adapted from Lillis et al. (2017). Below the highest altitude at which NGIMS data are available, the measured NGIMS densities are directly input into equation 1; by contrast, above this altitude, an isothermal, thin atmosphere is assumed with a constant density scale height, obtained via barometric fitting to the data gathered within the highest 50 km altitude interval at which these data are available.

    After determining the exobase altitude, we further calculated the temperature profile via downward integration of the diffusive equilibrium equation in the form of:

    2 Results

    In this study, we calculated the exobase temperatures of CO, O, N, and CO on Mars during the inbound portion of each MAVEN orbit. In Fig. 2, we present the exobase temperatures of the four species as a function of the exobase altitude; the black dashed lines indicate the respective median trends along with the standard deviations within the predefined altitude bins. Further, the red solid stars represent the respective median exobase altitudes and temperatures, combining all the measurements involved in this study.Fig. 2 also highlights several interesting features of the exobase temperatures of various species.

    Fig. 2 Exobase temperatures of CO2, O, N2, and CO as a function of the exobase altitude on Mars. The black dashed lines indicate the median trends along with the standard deviations within the predefined altitude bins, whereas the red solid stars correspond to the median exobase altitude and temperature of all MAVEN measurements considered in this study

    First, the figure suggests a large range of exobase altitudes from 150 to 300 km, which is in good agreement with previous results (Fu et al., 2020). Moreover,the figure reveals an even larger range of exobase temperatures from 100 to 400 K, as compared with the range of 130~350 K derived from ultraviolet spectrum observations (e.g., Forbes et al., 2008; Qin,2021). This is likely associated with the omnipresence of gravity waves in the upper Martian atmosphere(England et al., 2017) because the altitude range over which the exobase temperature was extracted in this study is comparable to typical vertical wavelengths(Siddle et al., 2019).

    Second, despite the large scattering among different orbits, the figure indicates an apparent trend in which the exobase temperatures of each of the four species increased systematically with the exobase altitude. This trend can be reasonably interpreted based on the fact that the Martian exobase increases when the upper atmosphere is heated by enhanced solar radiation (Forbes et al., 2008; Fu et al., 2020), which would also elevate the exobase temperature. Such a scenario may also be supported by the exobase temperature variations with respect to solar flux, which are discussed in Section 4.

    Third, the exobase temperatures varied among the different species. The median exobase temperatures of CO, O, N, and CO were 173, 152, 195, and 194 K,respectively. For a comparison, the corresponding exobase altitudes were 221, 202, 217, and 217 km for these four species, respectively (Fu et al., 2020). The lowest exobase temperature was noted for O, which also had the lowest exobase altitude; this possibly indicates that the temperature increases with the altitude,as noted above. However, this does not fully account for the comparison between the remaining three species with similar exobase altitudes but considerably different exobase temperatures. In particular, the highest exobase altitude was noted for CO, with an exobase temperature that is approximately 50 K lower than those of Nand CO. It remains to be investigated whether this is an actual effect or related to instrumental influences such as the underestimation of COdensities at high altitudes owing to the inappropriate subtraction of residual signals in mass channel 44.

    Based on equation 1, it is evident that the exobase altitude corresponds to the location where the vertical column density of a given species remains constant(Johnson et al., 2008). This also implies that the exobase pressure, which counterbalances the vertical column weight at higher altitudes, remains constant, or equivalently, the exobase temperature varies inversely with the exobase density, according to the ideal gas law. Such an inverse relation is presented in Fig. 3 as a reference, which fully supports our expectations.

    3 Variations in exobase temperature

    This section focuses on the exobase temperature variations of CO, O, N, and CO on Mars. Previous studies have reported clear solar zenith angle variations and dawn-dusk asymmetry in the upper Martian atmosphere in terms of both density and temperature structures (e.g., Bougher et al., 2009, 2017; Stone et al., 2018; Gupta et al., 2019; Cui et al., 2020). Motivated by these findings, we aimed to examine the diurnal variations in the exobase temperature. Furthermore,as mentioned in Section 3, the exobase temperature may vary extensively with solar radiation (e.g., Forbes et al., 2008; Bougher et al., 2009; Qin, 2021), as discussed below.

    Fig. 3 Similar to Fig. 2 but for exobase temperatures of CO2, O, N2, and CO as a function of the exobase density on Mars

    The exobase temperatures of CO, O, N, and CO on Mars are displayed in Fig. 4 as a function of the Martian local time. In this figure, the black dashed lines represent the respective median trends along with the standard deviations within the predefined local time bins. The exobase temperatures of the various species exhibited similar variations. Despite the large scattering among the different MAVEN orbits, the median trends for the four species clearly indicated that the exobase temperatures varied systematically with the solar illumination conditions. Specifically, a maximum COexobase temperature of 184 K was observed near the local time of 15 h, whereas a minimum exobase temperature of 144 K was observed near the local time of 2 h. Such a trend is analogous to the diurnal variations in the neutral temperature in the upper Martian atmosphere, as predicted by the Mars Global Ionosphere-Thermosphere Model (M-GITM)(e.g., Bougher et al., 2015). A similar trend was also suggested by MAVEN NGIMS measurements in terms of the exobase altitude or density in the upper Martian atmosphere (e.g., Gupta et al., 2019; Fu et al., 2020).

    Fig. 5 presents the 157 exobase temperatures of CO, O, N, and CO on Mars as a function of the integrated EUV flux over 0.5~90 nm, which is the primary heating source for the upper Martian atmosphere(Gu et al., 2020). To exclude the impact of diurnal variations, we divided the calculated exobase temperatures into day side (red dots) and night side (blue dots)values. In Fig. 4, the median trend along with the standard deviations is marked in each panel. Furthermore,Fig. 5 clearly indicates that the day side exobase temperatures of the four species increased with the solar EUV flux. For instance, the exobase temperature of COincreased by 75 K when the integrated solar flux increased from 0.7 to 1.8 erg/cm/s. This trend is analogous to the solar cycle variations in temperature in the upper Martian atmosphere, as predicted by the MGITM (Bougher et al., 2015) and confirmed via IUVS observations (e.g., Forbes et al., 2008; Qin, 2021).However, this trend is not significant on the night side,according to Fig. 5. The variations in the exobase temperatures with respect to the local time and solar EUV flux, as outlined above, are the natural results of enhanced upper atmospheric heating on Mars in response to the enhanced solar EUV inputs (e.g.,Bougher et al., 2009, 2017; Gu et al., 2020). However,with regard to the night side results, this effect is considerably diminished; this is likely because precipitating solar wind electrons or atmospheric chemistry, at least partly, contribute toward the heating source on the night side of the upper Martian atmosphere (e.g.,Stone et al., 2018; Niu et al., 2021).

    Fig. 4 Similar to Fig. 2 but for exobase temperatures of CO2, O, N2, and CO as a function of the Martian local time

    Fig. 5 Exobase temperatures of CO2, O, N2, and CO on the day side (red dots) and night side (blue dots) as a function of the integrated solar flux at 0.5~90 nm on Mars. The black dashed lines represent the median trend along with the standard deviations within the predefined integrated solar flux bins

    4 Summary

    The exobase, an idealized interface above which atmospheric particles are lost to space, is a key concept for understanding the escape processes from solar system bodies (Johnson et al., 2008). With the aid of neutral density data measured by the MAVEN NGIMS from nearly 6 000 orbits, we calculated the exobase temperatures of the four most abundant species on Mars: CO, O, N, and CO. Our calculations indicate that the exobase temperatures are highly variable, with median temperatures of 175, 152, 195, and 194 K for CO, O, N, and CO, respectively. The exobase temperatures of all the four species increased systematically with an increase in the exobase altitude or a decrease in the exobase density.

    Combining the MAVEN NGIMS and EUVM observations, we further examined the diurnal and solar cycle variations in the exobase temperatures of CO, O, N, and CO. Our analyses showed that the median exobase temperatures of the four species varied systematically with the solar illumination conditions, revealing a maximum temperature of ~184 K near the local time of 14 h and a minimum temperature of ~144 K near the local time of 2 h. Furthermore,we also found that the exobase temperatures of the four species increased with the solar EUV flux, a feature that was restricted to the day side and absent on the night side, where non-solar energy inputs are likely important. These variations in the exobase temperatures with the local time and solar EUV flux are the natural results of enhanced upper atmospheric heating on Mars in response to the enhanced solar EUV inputs(e.g., Bougher et al., 2009, 2017; Gu et al., 2020).Numerous studies have shown that the exobase temperature is crucial for controlling thermal escape from Mars, especially for light species such as H and H(Chaffin et al., 2014; Chaufray, 2021; Qin, 2021). The results reported here clarify the intensity of such a process and, consequently, the long-term evolution of habitability on Mars.

    Data availability

    The dataset used in this study is publicly available at the MAVEN Science Data Center (http://lasp.colorado.edu/maven/sdc/public/).

    Acknowledgements

    Gu H acknowledges the support from the National Natural Science Foundation of China,through grant 42105120.

    猜你喜歡
    活動性宜居中國科學院
    《中國科學院院刊》新媒體
    中國科學院院士
    ——李振聲
    金屬活動性順序的應用
    相約天然氧吧 感受宜居“金匱”
    華人時刊(2021年17期)2021-12-02 03:25:58
    宜居的海底城市
    T-SPOT.TB在活動性肺結核治療效果的監(jiān)測
    祝賀戴永久編委當選中國科學院院
    金屬活動性應用舉例
    宜居大化
    寶藏(2018年11期)2019-01-15 03:46:08
    活動性與非活動性肺結核血小板參數、D-D檢測的臨床意義
    久久精品aⅴ一区二区三区四区| 99热这里只有精品一区 | 亚洲最大成人中文| 日本三级黄在线观看| 国模一区二区三区四区视频 | 欧美日韩瑟瑟在线播放| 欧美绝顶高潮抽搐喷水| 99久久成人亚洲精品观看| 免费看十八禁软件| 国模一区二区三区四区视频 | 国产精品野战在线观看| 亚洲国产欧洲综合997久久,| 国产av不卡久久| 最好的美女福利视频网| 我的老师免费观看完整版| 日韩免费av在线播放| 日韩 欧美 亚洲 中文字幕| 男人舔奶头视频| 久久久久亚洲av毛片大全| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| 中文字幕人成人乱码亚洲影| 日韩 欧美 亚洲 中文字幕| 黄色女人牲交| 1024香蕉在线观看| av中文乱码字幕在线| av国产免费在线观看| 国产不卡一卡二| 宅男免费午夜| 免费高清视频大片| 免费观看人在逋| 在线看三级毛片| 99国产精品99久久久久| 精品电影一区二区在线| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 亚洲欧美日韩东京热| 最好的美女福利视频网| 欧美成人性av电影在线观看| 99热这里只有精品一区 | 久久亚洲精品不卡| 69av精品久久久久久| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线大香蕉| 国产精品 欧美亚洲| 国产精品国产高清国产av| 成人三级黄色视频| 日韩av在线大香蕉| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 亚洲激情在线av| 欧美成人一区二区免费高清观看 | 亚洲av成人av| 国产成人av教育| 亚洲中文日韩欧美视频| 色在线成人网| 久久亚洲真实| 最新美女视频免费是黄的| 精品不卡国产一区二区三区| 欧美黑人欧美精品刺激| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 美女免费视频网站| 午夜福利在线观看吧| 高清在线国产一区| 久久精品91蜜桃| 欧美黄色片欧美黄色片| 麻豆成人午夜福利视频| 91在线观看av| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 免费看日本二区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 久久中文字幕一级| 国产单亲对白刺激| 国产精品1区2区在线观看.| 国产高清激情床上av| 亚洲国产精品成人综合色| 99热这里只有精品一区 | 国产精品女同一区二区软件 | 色综合亚洲欧美另类图片| 亚洲黑人精品在线| 国产成人啪精品午夜网站| 无限看片的www在线观看| 手机成人av网站| 日本 av在线| 亚洲18禁久久av| 一边摸一边抽搐一进一小说| 国产激情欧美一区二区| 日本与韩国留学比较| 18禁美女被吸乳视频| 国产v大片淫在线免费观看| 曰老女人黄片| 免费av毛片视频| 两性夫妻黄色片| 啦啦啦韩国在线观看视频| 午夜视频精品福利| 国产精品九九99| aaaaa片日本免费| 国产亚洲精品一区二区www| 午夜影院日韩av| 亚洲欧美一区二区三区黑人| 观看免费一级毛片| 97碰自拍视频| 一夜夜www| 校园春色视频在线观看| 国产一区二区三区视频了| 长腿黑丝高跟| 美女高潮的动态| 激情在线观看视频在线高清| 天堂动漫精品| 国产亚洲欧美98| 757午夜福利合集在线观看| avwww免费| 欧美xxxx黑人xx丫x性爽| 午夜久久久久精精品| 久久精品91蜜桃| 国产一区二区在线av高清观看| 在线免费观看不下载黄p国产 | 夜夜爽天天搞| 成人18禁在线播放| 18禁观看日本| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 一区二区三区国产精品乱码| 国产精品1区2区在线观看.| 午夜福利在线观看免费完整高清在 | 欧美丝袜亚洲另类 | 免费在线观看视频国产中文字幕亚洲| 少妇熟女aⅴ在线视频| 人妻夜夜爽99麻豆av| 久久久国产欧美日韩av| 亚洲国产中文字幕在线视频| 久久久久久久久免费视频了| 手机成人av网站| 午夜影院日韩av| 在线免费观看的www视频| 国模一区二区三区四区视频 | 天堂√8在线中文| 久久久国产成人免费| 久久人妻av系列| 国产精品国产高清国产av| 国内精品美女久久久久久| 亚洲专区国产一区二区| 婷婷丁香在线五月| 高潮久久久久久久久久久不卡| 一个人看视频在线观看www免费 | 国产久久久一区二区三区| 中文在线观看免费www的网站| 搡老熟女国产l中国老女人| 日韩中文字幕欧美一区二区| 色在线成人网| 亚洲狠狠婷婷综合久久图片| 久久久色成人| 久久午夜综合久久蜜桃| 一级黄色大片毛片| 日韩成人在线观看一区二区三区| 亚洲激情在线av| 最近最新中文字幕大全免费视频| 给我免费播放毛片高清在线观看| 非洲黑人性xxxx精品又粗又长| 日本一本二区三区精品| 757午夜福利合集在线观看| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 精品一区二区三区视频在线 | 日韩欧美国产在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利高清视频| 五月伊人婷婷丁香| 成年女人永久免费观看视频| 亚洲成av人片免费观看| 成人亚洲精品av一区二区| 日本熟妇午夜| 中文字幕人成人乱码亚洲影| cao死你这个sao货| 老司机午夜十八禁免费视频| 中文在线观看免费www的网站| 波多野结衣巨乳人妻| 日本黄大片高清| av国产免费在线观看| 欧美一区二区国产精品久久精品| 午夜福利在线观看吧| 97超级碰碰碰精品色视频在线观看| 欧美最黄视频在线播放免费| 成人高潮视频无遮挡免费网站| 日韩人妻高清精品专区| 亚洲,欧美精品.| 我要搜黄色片| 成人性生交大片免费视频hd| 欧美国产日韩亚洲一区| 亚洲最大成人中文| 91字幕亚洲| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| 9191精品国产免费久久| 国产成年人精品一区二区| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 日本黄大片高清| 国产精品一区二区三区四区久久| 青草久久国产| 亚洲无线观看免费| www.999成人在线观看| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 中文字幕熟女人妻在线| 久久久久久久久免费视频了| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 夜夜看夜夜爽夜夜摸| 久久中文字幕一级| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆 | 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 麻豆av在线久日| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 久久午夜综合久久蜜桃| 在线视频色国产色| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 一级毛片高清免费大全| 国产成年人精品一区二区| 欧美一级毛片孕妇| 午夜免费成人在线视频| 美女cb高潮喷水在线观看 | 又大又爽又粗| 黑人操中国人逼视频| 一进一出好大好爽视频| 最新在线观看一区二区三区| 999精品在线视频| 狠狠狠狠99中文字幕| 美女被艹到高潮喷水动态| 色噜噜av男人的天堂激情| 久久久国产成人免费| 欧美日韩精品网址| 我要搜黄色片| 亚洲av片天天在线观看| 哪里可以看免费的av片| 国产 一区 欧美 日韩| 日韩成人在线观看一区二区三区| 精品一区二区三区视频在线 | 草草在线视频免费看| 久久这里只有精品19| 国产精品亚洲一级av第二区| 一个人观看的视频www高清免费观看 | 999久久久国产精品视频| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 长腿黑丝高跟| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 国产伦在线观看视频一区| 国产激情久久老熟女| 不卡av一区二区三区| 久久久成人免费电影| 操出白浆在线播放| 熟妇人妻久久中文字幕3abv| 无遮挡黄片免费观看| 国产av不卡久久| 女警被强在线播放| 久久久久久久久中文| 美女免费视频网站| 极品教师在线免费播放| 欧美中文日本在线观看视频| 国产欧美日韩精品一区二区| 全区人妻精品视频| 午夜免费观看网址| 久久久久久久精品吃奶| 国产激情久久老熟女| 又黄又爽又免费观看的视频| 午夜福利欧美成人| 在线观看美女被高潮喷水网站 | 999久久久国产精品视频| 在线免费观看的www视频| 在线观看免费午夜福利视频| 九色国产91popny在线| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 美女高潮的动态| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| netflix在线观看网站| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 伦理电影免费视频| 色综合亚洲欧美另类图片| 99久久综合精品五月天人人| 成人三级黄色视频| 久久久国产成人精品二区| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 欧美不卡视频在线免费观看| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 欧美黄色片欧美黄色片| 日本一本二区三区精品| 欧美黑人欧美精品刺激| xxx96com| 色综合亚洲欧美另类图片| 色av中文字幕| 久久国产乱子伦精品免费另类| 一进一出抽搐动态| 国内少妇人妻偷人精品xxx网站 | 少妇人妻一区二区三区视频| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆| aaaaa片日本免费| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 免费看光身美女| 最近视频中文字幕2019在线8| 丁香六月欧美| 亚洲精品美女久久av网站| 日本一本二区三区精品| 国产高清视频在线观看网站| 免费在线观看日本一区| 天堂√8在线中文| 亚洲av成人精品一区久久| 在线永久观看黄色视频| 国内久久婷婷六月综合欲色啪| 色噜噜av男人的天堂激情| 99久久综合精品五月天人人| 亚洲国产精品999在线| xxxwww97欧美| 99国产极品粉嫩在线观看| 99久久国产精品久久久| 日韩精品青青久久久久久| 一进一出抽搐动态| 午夜福利在线在线| 日本黄色片子视频| 精品久久久久久,| 最新在线观看一区二区三区| 美女大奶头视频| 免费看日本二区| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区| 亚洲国产精品999在线| 久久久国产成人精品二区| 久久久国产欧美日韩av| 91麻豆av在线| 亚洲国产精品999在线| 首页视频小说图片口味搜索| 亚洲成人中文字幕在线播放| 欧美中文综合在线视频| 午夜免费观看网址| 国产成人av激情在线播放| 国产成年人精品一区二区| 91老司机精品| 深夜精品福利| 久久人妻av系列| 欧美午夜高清在线| 男女那种视频在线观看| 美女黄网站色视频| 国产探花在线观看一区二区| 久久久国产精品麻豆| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| 中文资源天堂在线| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品乱码一区二三区的特点| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 日韩欧美 国产精品| 日韩有码中文字幕| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片 | 高潮久久久久久久久久久不卡| 十八禁网站免费在线| 免费观看精品视频网站| 久久久久久国产a免费观看| 久久久久久久久中文| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 亚洲精品中文字幕一二三四区| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人 | 欧美三级亚洲精品| 色播亚洲综合网| 亚洲无线观看免费| 哪里可以看免费的av片| 级片在线观看| xxx96com| 又粗又爽又猛毛片免费看| 久9热在线精品视频| 亚洲中文字幕一区二区三区有码在线看 | 狠狠狠狠99中文字幕| 久久久久久久久中文| 欧美黑人欧美精品刺激| 一卡2卡三卡四卡精品乱码亚洲| 国内精品久久久久久久电影| 脱女人内裤的视频| av国产免费在线观看| 禁无遮挡网站| 国产毛片a区久久久久| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| 亚洲av五月六月丁香网| 性色av乱码一区二区三区2| 久久久久久人人人人人| 欧美在线一区亚洲| 久久精品国产综合久久久| 宅男免费午夜| 欧美极品一区二区三区四区| 日本黄大片高清| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲| 变态另类丝袜制服| 欧美极品一区二区三区四区| av中文乱码字幕在线| 亚洲成人久久爱视频| 亚洲精品在线美女| 成人无遮挡网站| 色老头精品视频在线观看| 精品国产乱码久久久久久男人| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 国产三级黄色录像| 国产精品亚洲美女久久久| 日本a在线网址| 一级黄色大片毛片| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区三区四区久久| 9191精品国产免费久久| cao死你这个sao货| 身体一侧抽搐| aaaaa片日本免费| 色噜噜av男人的天堂激情| 观看免费一级毛片| 久久久久久久午夜电影| 亚洲最大成人中文| 久久性视频一级片| 日韩欧美国产一区二区入口| 熟女少妇亚洲综合色aaa.| 97超视频在线观看视频| 黑人操中国人逼视频| 欧美zozozo另类| 亚洲电影在线观看av| 国产美女午夜福利| 亚洲国产看品久久| 人妻丰满熟妇av一区二区三区| 一个人免费在线观看的高清视频| 白带黄色成豆腐渣| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 在线国产一区二区在线| 欧美黑人巨大hd| 亚洲成人久久性| 女人被狂操c到高潮| 亚洲美女视频黄频| 国产探花在线观看一区二区| 18禁美女被吸乳视频| 亚洲中文字幕日韩| 免费在线观看成人毛片| 99久久精品热视频| 麻豆一二三区av精品| 男女之事视频高清在线观看| 欧美三级亚洲精品| 欧美黄色淫秽网站| 1024香蕉在线观看| 国产成人精品久久二区二区免费| 欧美在线一区亚洲| 国产精品综合久久久久久久免费| 国产单亲对白刺激| 深夜精品福利| 欧美乱色亚洲激情| 久久性视频一级片| 无遮挡黄片免费观看| www.熟女人妻精品国产| 欧美性猛交黑人性爽| 手机成人av网站| 国产淫片久久久久久久久 | 很黄的视频免费| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 成人午夜高清在线视频| 两个人的视频大全免费| 久久久国产成人精品二区| 国产91精品成人一区二区三区| 人人妻人人看人人澡| 老鸭窝网址在线观看| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 国产成人福利小说| 婷婷亚洲欧美| 一本一本综合久久| 美女大奶头视频| 久久久精品大字幕| 亚洲欧美一区二区三区黑人| 人妻夜夜爽99麻豆av| 久久久久国产一级毛片高清牌| 色吧在线观看| 国产精品亚洲美女久久久| 黄片大片在线免费观看| 午夜福利18| 99热这里只有是精品50| 18禁美女被吸乳视频| 亚洲一区二区三区色噜噜| 老司机午夜福利在线观看视频| 日本精品一区二区三区蜜桃| 日本熟妇午夜| 一级作爱视频免费观看| av欧美777| 国产激情偷乱视频一区二区| 男女视频在线观看网站免费| 男人舔女人的私密视频| www.熟女人妻精品国产| 成在线人永久免费视频| 国产精品久久久久久久电影 | 国产成+人综合+亚洲专区| 亚洲五月婷婷丁香| 亚洲美女黄片视频| 天堂网av新在线| 日本a在线网址| 99久久久亚洲精品蜜臀av| 狂野欧美激情性xxxx| 97超视频在线观看视频| 久久精品亚洲精品国产色婷小说| 日韩av在线大香蕉| 成人特级黄色片久久久久久久| bbb黄色大片| 久久这里只有精品中国| 91在线观看av| 给我免费播放毛片高清在线观看| www日本黄色视频网| 日日摸夜夜添夜夜添小说| 亚洲精华国产精华精| 国产精品影院久久| 中文字幕最新亚洲高清| 亚洲九九香蕉| 国产一级毛片七仙女欲春2| 精品日产1卡2卡| 亚洲中文av在线| 小说图片视频综合网站| 又爽又黄无遮挡网站| 亚洲熟妇熟女久久| 网址你懂的国产日韩在线| 久久久久性生活片| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| x7x7x7水蜜桃| 国产成年人精品一区二区| 久久久久国产精品人妻aⅴ院| 一进一出抽搐动态| 色吧在线观看| 少妇熟女aⅴ在线视频| 在线观看免费午夜福利视频| 免费av毛片视频| 搞女人的毛片| 国产淫片久久久久久久久 | 国产视频一区二区在线看| 国产精品亚洲av一区麻豆| 日韩三级视频一区二区三区| av天堂中文字幕网| 97超级碰碰碰精品色视频在线观看| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看| 久久久久性生活片| 亚洲国产欧洲综合997久久,| 国产精品99久久99久久久不卡| 久久这里只有精品19| 88av欧美| h日本视频在线播放| 国内精品久久久久久久电影| 中文字幕人妻丝袜一区二区| 亚洲色图av天堂| 热99re8久久精品国产| 18禁国产床啪视频网站| 日韩国内少妇激情av| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三| 日本熟妇午夜| 精品一区二区三区四区五区乱码| 国产精品免费一区二区三区在线| 亚洲最大成人中文|