• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current-Induced Magnetic Switching in an L10 FePt Single Layer with Large Perpendicular Anisotropy Through Spin-Orbit Torque

    2022-08-17 07:18:26KaifengDongChaoSunLaizheZhuYiyiJiaoYingTaoXinHuRuofanLiShuaiZhangZheGuoShijiangLuoXiaofeiYangShaopingLiLongYou
    Engineering 2022年5期

    Kaifeng Dong, Chao Sun, Laizhe Zhu, Yiyi Jiao, Ying Tao, Xin Hu, Ruofan Li, Shuai Zhang,Zhe Guo, Shijiang Luo, Xiaofei Yang, Shaoping Li, Long You,e,f,*

    a School of Automation, China University of Geosciences, Wuhan 430074, China

    b Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan 430074, China

    c School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

    d China Resources Microelectronics Limited, Shanghai 200072, China

    e Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China

    f Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

    Keywords:L10 FePt SOT Inversion asymmetry Magnetic switching Perpendicular anisotropy

    ABSTRACT In this study,current-induced partial magnetization-based switching was realized through the spin-orbit torque (SOT) in single-layer L10 FePt with a perpendicular anisotropy (Ku⊥) of 1.19 × 107 erg·cmˉ3 (1 erg·cmˉ3 = 0.1 J·mˉ3), and its corresponding SOT efficiency (βDL) was 8 × 10ˉ6 Oe·(A·cmˉ2)ˉ1 (1 Oe=79.57747 A·mˉ1),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work. The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore, the FePt grown on MgO with a granular structure had a larger effective SOT field and efficiency than that grown on SrTiO3(STO) with a continuous structure. The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure. Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.? 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1. Introduction

    A simple and efficient means of reorienting the magnetization of films with high magnetic anisotropy energy is highly desirable for further advancement of modern information technologies[1,2].Compared with magnetization switching by a magnetic field,current-induced spin torque switching enables higher storage density,faster writing speed,and lower energy consumption[3,4].The electrical manipulation of the magnetization in ferromagnetic(FM)nanostructures through current-induced spin-orbit torque(SOT)is one of the representative phenomena based on spin-orbit coupling(SOC) and has recently attracted considerable attention as a new route for magnetization switching[5-10].In general,SOT is recognized as a spin transfer torque originating from a spin current (Js)converted from a charge current via spin-orbit effects, such as the spin Hall effect (SHE) and Rashba-Edelstein effect [11-13].FePt in the L10phase possesses one of the highest perpendicular magnetocrystalline anisotropies among transition metal compounds, which enables memory cells with sufficient thermal stability to be scaled down to 5 nm [14,15]. However, reversing the magnetization of L10FePt is extremely challenging. Although different strategies,such as energy-assisted magnetic recording,voltage control,and probe-based spin injection,have been proposed to ease the magnetization switching of L10FePt,major issues regarding reliability,compatibility,and efficiency prevent practical applications. If we examine the mechanism of the high magnetic anisotropy of L10FePt, it mainly originates from the strong coupling between the spin and orbital angular momenta and hybridization between Pt 5d and Fe 3d electrons. SOC is also the premise of the recently discovered SOT effect, which opens new avenues for the possible electrical manipulation of the magnetization of L10FePt.A few recent works demonstrated current-induced perpendicular magnetization switching in an L10FePt single layer[16-19]. These findings could become a guide toward a method for highly efficient SOT switching of magnetic materials with high anisotropy energy. However, the effect of the microstructure on the SOT properties has not been systematically investigated.Actually, different microstructures would induce different perpendicular anisotropies and chemical ordering,thus causing discrepancies in the SOT properties.How the microstructure of FePt films affects the SOT properties must be clarified in detail. For this purpose, in this work,current-induced SOT switching of magnetization is realized in a FePt single layer. The effective fields of patterned FePt films grown on different substrates with different growth temperatures are systematically investigated. With varying growth temperature and substrate, perpendicularly magnetized FePt films with different microstructures are achieved. We find that the SOT efficiency in a FePt single layer dramatically depends on the microstructure of the films.

    2. Experiments

    Four types of samples with different film growth temperatures and substrates were used: FePt 10 nm (300 °C)/MgO substrate(Sample I), FePt 10 nm (400 °C)/MgO substrate (Sample II), FePt 10 nm (500 °C)/MgO substrate (Sample III), and FePt 10 nm(400°C)/SrTiO3(STO)substrate(Sample IV).The films were deposited using an ultrahigh vacuum magnetron sputtering system,and their stack is shown in Fig. 1(a). They were then patterned into a Hall bar microstructure of a 20-45 μm length, with a 15 μm wide path for the flow of current and a 6 μm wide path for voltage detection,using ultraviolet lithography followed by argon ion etching.Pt electrodes were deposited at the four ends of the Hall bar to facilitate electrical measurement. We assigned the same serial number to the device as the corresponding sample from which it had been fabricated.Fig.1(b)illustrates a schematic of the devices showing the schematic of the Hall bar structure with the definition of the coordinate system,and Fig.1(c)shows an optical image of a device.Anomalous Hall effect(AHE)and current-induced magnetization switching measurements were performed using a homemade setup with a Keithley 2602B (USA) as a current-source meter and a Keithley 2182 as a nanovoltage meter.The pulse duration was set as 12 ms. A small current (100 μA) was applied after each pulse current to measure the anomalous Hall resistance(RH). The effective SOT fields of the devices were measured by a harmonic voltage analysis system. During measurement, a lowfrequency alternating current(AC)was applied to the current path of the Hall bar. The AC frequency was 317.3 Hz. The external trigger function of the phase generator of the current source was used to lock the input channel and reference channel of the lockin amplifier. The voltage path of the Hall bar was connected to two lock-in amplifiers to measure the first and second components of the harmonic Hall voltage. Microstructure characterization of the films and energy-dispersive X-ray (EDX, Bruker super-X EDS,Germany) composition mapping were performed by using a transmission electron microscope (TEM, FEI Titan Themis 200 TEM, USA).

    3. Results and discussion

    Fig.1. (a)Film stack structure;(b)schematic of a Hall bar with the coordinate system;(c)optical microscope image of a device;(d)AHE loops of FePt 10 nm/MgO and FePt 10 nm/STO films;(e,f)MˉH loops of(e)FePt 10 nm/MgO and(f)FePt 10 nm/STO films.All the films were grown at the temperature of 400°C.The inserts in(e)and(f)show the corresponding low-magnification cross-sectional TEM images. 1 Oe = 79.57747 A·mˉ1; 1 emu·cmˉ3 = 1 × 103 A·mˉ1.

    Fig.1(d)shows the AHE measurements of patterned 400°C FePt 10 nm/MgO and FePt 10 nm/STO films.Both patterned films exhibited excellent perpendicular anisotropy.The MˉH loops(Figs.1(e)and(f))of the films were consistent with the AHE results.The lowmagnification cross-sectional TEM image revealed that the FePt films grown on MgO had an island structure (insert in Fig. 1(e)),while the FePt films grown on STO had a continuous structure(insert in Fig.1(f)). Moreover, the perpendicular anisotropy(Ku⊥)can be calculated from Ku⊥= MsHk/2 + 2πMs2, where Msis saturated magnetization, Hkis the magnetic anisotropy field (estimated by extrapolating the hard axis loop). The calculated Ku⊥values were 9.8 × 106erg·cmˉ3(1 erg·cmˉ3= 0.1 J·mˉ3) (MgO) and 9.4 × 106erg·cmˉ3(STO),as shown in Table 1,which were much larger than those reported for SOT devices using other materials,such as CoFeB[6,7],Co[8-10],CoNi[11],and CoFe[12].FePt films grown on MgO had better chemical ordering and perpendicular anisotropy than those grown on STO, which can be attributed to lattice mismatch-induced microstructural evolution [20].

    The current-induced magnetization switching in samples(Samples II and IV)made from 400°C FePt 10 nm/MgO and FePt 10 nm/STO films with different external in-plane fields(Hx),ranging fromˉ1000 to 1000 Oe (1 Oe = 79.57747 A·mˉ1), is shown in Fig. 2.Here, Hxis used to break the torque symmetry. To clarify the switching evolution, we use the red eight-pointed star symbols to denote the initial states of magnetization and arrows to show the switching direction in Fig. 2. Partial magnetization switching was achieved by sweeping the pulsed current in both devices.These results show that current-induced partial magnetization switching can be realized in materials with high anisotropy energy(high perpendicular anisotropy and thick magnetic films). Moreover, the polarity of the switching loop reversed once the external magnetic field was reversed, and switching did not occur without an external magnetic field. This phenomenon is a typical SOTinduced switching behavior similar to that found in heavy-metal(HM)/FM bilayers, which agrees with the results of previous work[16]. The switching ratio ρswwas 2.5% and 3.2% under Hoptabout 500 Oe on the MgO substrate (Sample II, Fig. 2(a)) and about 1000 Oe on the STO substrate (Sample IV, Fig. 2(b)), respectively.Here, ρswis defined as the ratio of ΔRI/ΔRH(ΔRIrepresents the AHE resistance variation during current-induced switching, ΔRHrepresents the AHE resistance variation during out-of-plane field sweeping), Hoptis the optimum applied in-plane field. For films grown on the STO substrate, a larger Hx(above 200 Oe) was required for magnetization switching compared to those grown on the MgO substrate.The switching ratio ρswis smaller than those reported in previous works [16,18,19]. In the work of Tang et al.[19], the maximal switching ratio was approximately 24% for 4 nm thick FePt films. Moreover, the switching ratio was found to be affected by the FePt film thickness (4-220 nm). The thinner the FePt film was, the larger the switching ratio. However, in the work of Liu et al.[16],FePt 6 nm and FePt 20 nm appeared to have similar switching ratios of 20%, which were not dependent on the FePt thickness. Furthermore, Zheng et al. [18] found that theswitching ratio was strongly dependent on the chemical ordering,and a larger switching ratio could be obtained from a 3 nm thick FePt film with more disorder. The maximal switching ratio was approximately 88%.Based on the above works,the switching ratio,broadly speaking, is affected by several factors, namely the microstructure, magnetic properties, thickness, and so on,although some conclusions are not consistent. In addition, the imperfections in the Hall bar structure can also affect the switching ratio [21]. The reduced current density in the center of the Hall cross and the additional pinning from the magnetic Hall arms will also decrease the switching ratio.In addition,the critical switching current density (JC), defined as the value of the electrical current density at which RHbegins to change (for up-to-down and downto-up switching), of FePt films grown on the STO substrate was smaller than that of FePt films grown on the MgO substrate under the same applied in-plane field.

    Table 1 Summary of the I(001)/I(002),out-of-plane coercivity Hc⊥,magnetic anisotropy field Hk,saturated magnetization Ms,perpendicular anisotropy Ku⊥,and SOT efficiency βDL of the four FePt films.

    Fig.2. Current-induced magnetization switching of FePt films with different external fields Hx for(a)FePt 10 nm/MgO and(b)FePt 10 nm/STO with a growth temperature of 400 °C.

    The harmonic Hall voltage was measured to quantitatively analyze the SOT efficiency of the samples (Fig. 3). Fig. 3(a) shows the measurement setup. As a representative example, Figs. 3(c)-(f)show the results of typical measurements of the first(Vω)and second (V2ω) harmonic signals of the single-layer FePt/MgO prepared at 400°C, where the applied magnetic field was swept along the x and y directions. The SOT was thought to feature a damping-like torque and a field-like torque, and the corresponding effective fields,ΔHDLand ΔHFL, were calculated by

    Fig. 3. (a) Schematic illustration of the spin-orbit effective field (ΔHDL and ΔHFL) in FePt films. (b) Summary of the SOT effective field at different current densities in FePt films.(c-f) In addition to typical harmonic Hall voltage measurement results for FePt 10 nm/MgO films with a growth temperature of 400 °C,magnetic field dependence of the (c, e) first and (d, f) second harmonic signals. The external magnetic fields Hx and Hy were swept along the (c, e) x direction and (d, f) y direction.

    To systematically investigate the effect of chemical ordering on the SOT properties, FePt films grown on the MgO substrate with different sputtering temperatures were prepared. The AHE and MˉH loops for samples grown at 300 °C (Sample I) and 500 °C(Sample III)are shown in Figs.4(a)-(c).Reexamining the magnetic properties of samples grown at 400°C(Sample II),we can see that films on the MgO substrate exhibited excellent perpendicular anisotropy when the sputtering temperature exceeded 400 °C. The FePt films with enormous disorder (300 °C, Sample I) had a larger Hall resistance RHthan the more ordered FePt films (400 °C, Sample II; 500 °C, Sample III) due to different coherent band mixing effects [17]. With increasing sputtering temperature, the intensities of the FePt(001), (002), and (003) peaks increased, and the intensity ratio I(001)/I(002)increased (I(001)/I(002)is about 0.85 for Sample II with a growth temperature of 400°C,I(001)/I(002)is about 1.18 for Sample III with a growth temperature of 500°C),suggesting that the (001) texture and thereby the chemical ordering improved (see Fig. S2 in Appendix A for details). The calculated Ku⊥also increased from 4.5 × 106to 1.19 × 107erg·cmˉ3when the sputtering temperature increased from 300 to 500 °C. The improvement in the chemical ordering and the perpendicular anisotropy originated from the improved (001) texture with increasing sputtering temperature. Partial magnetization switching was also achieved by sweeping the pulsed current in Sample I and III,as shown in Figs. 4(d) and (e). The switching ratio ρswwas 0.8%,2.5%,and 6.6%for Sample I,II,and III,respectively,under the optimum applied in-plane fields of Hoptabout 500 Oe(Sample I and II)and about 1000 Oe (Sample III). In addition, the critical switching current densities JCof the samples exhibited significant differences but were not monotonically related to the film growth temperature.

    To clarify the effect of Hxon JC,the JCas a function of Hxfor Sample I (300 °C on the MgO substrate) is summarized in Fig. 5(a). JCclearly decreased with increasing Hx, similar to the results from Lee et al.[23].The SOT effective fields at different current densities in 500 °C FePt 10 nm/MgO films were measured (see Fig. S3 in Appendix A for details)and are summarized in Fig.5(b).The effective field of Sample I(300°C)was not measured due to the imperfect perpendicular magnetic anisotropy. ΔHDL, ΔHFL, and βDL(8 × 10ˉ6Oe·(A·cmˉ2)ˉ1) increased with increasing sputtering temperature. Note that the value of βDLof 8 × 10ˉ6Oe·(A·cmˉ2)ˉ1in the single-layer FePt on the MgO substrate prepared at 500 °C was also larger than that reported in previous work on FePt(6.5 × 10ˉ6Oe·(A·cmˉ2)ˉ1) [16]. Combining this result with the results in Table 1, the effective SOT can be seen to be strongly affected by the chemical ordering and perpendicular anisotropy,and FePt films with higher chemical ordering and perpendicular anisotropy had a larger SOT effective field and a highly efficient SOT.

    Fig.4. (a)AHE loops of FePt 10 nm/MgO films with growth temperatures of 300 and 500°C.(b,c)MˉH loops of FePt 10 nm/MgO films with sputtering temperatures of(b)300 °C and (c) 500 °C. Current-induced magnetization switching of FePt films with different external fields Hx for FePt 10 nm/MgO films with growth temperatures of (d)300 °C and (e) 500 °C.

    Fig.5. (a)JC as a function of Hx for the FePt 10 nm/MgO film with a growth temperature of 300°C;(b)summary of the SOT effective field at different current densities in the FePt 10 nm/MgO film with a growth temperature of 500 °C.

    Fig. 6. For FePt 10 nm grown on the MgO substrate at a growth temperature of 500 °C: (a) high-resolution TEM cross-sectional image of the FePt and MgO layers; (b)corresponding SAED patterns of the FePt and MgO layers;(c)selected area inverse fast Fourier transform(IFFT)image;(d)low-magnification cross-sectional TEM image;and(e, f) selected area EDX mapping analyses of (e) Fe and (f) Pt and Mg atoms. L, m, and k represent different line series of X-ray.

    To investigate the origin of the SOT in FePt,TEM measurements were carried out. Fig. 6(a) shows a high-magnification crosssectional TEM image of single-layer FePt 10 nm/MgO prepared at 500 °C. (001) FePt grains were clearly epitaxially grown on the(200) textured MgO substrate. By combining these measurements with the corresponding selected area electron diffraction(SAED)patterns of FePt and MgO(Fig.6(b)),the epitaxial relationship between them was confirmed to be FePt(001)<100>||MgO(001)<200>,similar to our previous results [20]. All these results indicate that the FePt films had good(001)texture.Moreover,dislocations at the interface were formed to release the strain energy(Fig.6(c),marked as‘‘⊥”).Furthermore, despite the good (001) texture, some defects were observed in the FePt films (Fig. 6(c), marked by red circles). Moreover, the FePt film grown on MgO had an island structure (Fig. 6(d)),different from that grown on STO[20]. This result was consistent with the results of the slope of the hysteresis loop in Fig. 1.The EDX mapping analyses of selected areas of the Fe, Pt, and Mg atoms are illustrated in Figs. 6(e) and (f). These results show that some Mg atoms diffused into the FePt films,which might have led to the formation of defects, as shown in Fig. 6(c). From recent reports, SOT can only be observed in magnetic materials with noncentrosymmetric space groups (bulk inversion asymmetry) or noncentrosymmetric site point groups (local structural inversion asymmetry) in crystal structures. In this study, L10FePt grown on either a MgO or STO substrate could still be switched by an electric current. In our case, the dislocations and defects were inhomogeneously distributed within the samples (see Fig. S4 in Appendix A for details), which resulted in structural inversion asymmetry in the FePt films. Thus, SOT could be generated in the single-layer FePt.

    4. Conclusion

    In summary, we observed current-induced magnetic switching through SOT in an L10FePt single layer. FePt films grown on MgO had larger perpendicular anisotropy and a larger SOT effective field than those grown on STO.The SOT efficiency was found to considerably depend on the chemical ordering and lattice mismatchinduced evolution of the microstructure. A high SOT efficiency of 8 × 10ˉ6Oe·(A·cmˉ2)ˉ1was obtained for a 10 nm thick FePt layer with high perpendicular anisotropy,which implies its potential for use in magnetic memory and logic devices with high thermal stability and ultrahigh storage density.The investigation of the mechanism and performance of current-induced magnetization switching reported here should be pursued in future research in the field.

    Acknowledgments

    This work was supported by National Key Research and Development Program of China (2020AAA0109005), the National Natural Science Foundation of China (61674062, 51501168,41574175, and 41204083), the Fundamental Research Funds for the Central Universities of the China University of Geosciences(Wuhan) (CUG150632 and CUGL160414), the Fundamental Research Funds for National Universities of the China University of Geosciences (Wuhan), the Interdisciplinary program of Wuhan National High Magnetic Field Center (WHMFC202119), Huazhong University of Science and Technology, and Fund from Shenzhen Virtual University Park (2021Szvup091).

    Compliance with ethics guidelines

    Kaifeng Dong,Chao Sun,Laizhe Zhu,Yiyi Jiao,Ying Tao,Xin Hu,Ruofan Li, Shuai Zhang, Zhe Guo, Shijiang Luo, Xiaofei Yang,Shaoping Li, and Long You declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.09.018.

    亚洲欧美一区二区三区久久| 在线观看国产h片| 久久精品国产亚洲av高清一级| 男人舔女人的私密视频| 午夜老司机福利剧场| 亚洲综合色网址| 成人手机av| a级毛片在线看网站| 亚洲人成77777在线视频| 精品亚洲成a人片在线观看| 九色亚洲精品在线播放| 97在线视频观看| 欧美精品一区二区免费开放| 亚洲精品美女久久久久99蜜臀 | 不卡视频在线观看欧美| 亚洲色图 男人天堂 中文字幕| 亚洲欧美色中文字幕在线| 婷婷色av中文字幕| 毛片一级片免费看久久久久| 国产成人91sexporn| 大香蕉久久成人网| 国产精品av久久久久免费| 男女午夜视频在线观看| 国产片特级美女逼逼视频| 精品久久蜜臀av无| 制服诱惑二区| 九草在线视频观看| 日本91视频免费播放| a级毛片黄视频| 午夜久久久在线观看| 亚洲激情五月婷婷啪啪| 日韩在线高清观看一区二区三区| a级毛片黄视频| 久久久久人妻精品一区果冻| 久久精品国产亚洲av高清一级| 国产淫语在线视频| 国产精品国产三级国产专区5o| 亚洲精品久久午夜乱码| 一区二区av电影网| 黑丝袜美女国产一区| 欧美精品高潮呻吟av久久| 97人妻天天添夜夜摸| 久久影院123| 亚洲综合色惰| 日韩人妻精品一区2区三区| 久久精品国产亚洲av涩爱| 18禁观看日本| 亚洲欧美一区二区三区久久| 夫妻午夜视频| 最新的欧美精品一区二区| 不卡视频在线观看欧美| 老熟女久久久| 国产黄色视频一区二区在线观看| 久久久久久久久免费视频了| 欧美人与性动交α欧美精品济南到 | 国产97色在线日韩免费| 亚洲精品视频女| 五月开心婷婷网| 欧美av亚洲av综合av国产av | 99热网站在线观看| 欧美xxⅹ黑人| 久久亚洲国产成人精品v| 韩国高清视频一区二区三区| 久久 成人 亚洲| 少妇的丰满在线观看| 1024视频免费在线观看| 亚洲精华国产精华液的使用体验| 考比视频在线观看| 少妇人妻 视频| 青草久久国产| 国产黄色免费在线视频| 久久精品亚洲av国产电影网| 免费人妻精品一区二区三区视频| 亚洲人成电影观看| 午夜av观看不卡| 日本vs欧美在线观看视频| 精品午夜福利在线看| 人人澡人人妻人| 午夜老司机福利剧场| 亚洲精品第二区| 丝袜人妻中文字幕| 久久99精品国语久久久| 日韩制服骚丝袜av| 黑人猛操日本美女一级片| 久久青草综合色| 春色校园在线视频观看| 一区二区三区激情视频| av线在线观看网站| 宅男免费午夜| 精品人妻熟女毛片av久久网站| 一级毛片黄色毛片免费观看视频| 日韩av不卡免费在线播放| 亚洲欧美成人综合另类久久久| 欧美中文综合在线视频| 亚洲 欧美一区二区三区| 我要看黄色一级片免费的| 精品国产超薄肉色丝袜足j| 伊人久久国产一区二区| a级片在线免费高清观看视频| videos熟女内射| 国产精品久久久久久精品古装| 亚洲精品日本国产第一区| 我的亚洲天堂| 午夜激情久久久久久久| 中文字幕人妻熟女乱码| 最近最新中文字幕大全免费视频 | 亚洲综合精品二区| 欧美精品av麻豆av| 日韩一卡2卡3卡4卡2021年| 亚洲av中文av极速乱| 肉色欧美久久久久久久蜜桃| 在线天堂中文资源库| 两个人免费观看高清视频| 久久精品国产亚洲av天美| 国产精品久久久久久精品古装| 香蕉精品网在线| 日韩电影二区| 成年人免费黄色播放视频| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲av国产电影网| 国产一区亚洲一区在线观看| 国产精品女同一区二区软件| 一本久久精品| 超碰97精品在线观看| 国产色婷婷99| 国产一区二区三区综合在线观看| 国产成人精品久久久久久| 日韩精品有码人妻一区| 中国国产av一级| 2021少妇久久久久久久久久久| 性色av一级| 国产精品麻豆人妻色哟哟久久| 国产一区二区三区综合在线观看| 亚洲av日韩在线播放| 国产国语露脸激情在线看| 青春草亚洲视频在线观看| 日韩免费高清中文字幕av| 免费看av在线观看网站| 亚洲三级黄色毛片| 老司机影院毛片| 久久精品亚洲av国产电影网| 一级片'在线观看视频| 在线观看免费高清a一片| 久久人人爽人人片av| 日本91视频免费播放| 国产探花极品一区二区| 电影成人av| 日日撸夜夜添| 国产成人av激情在线播放| 色婷婷久久久亚洲欧美| www.自偷自拍.com| 人人妻人人爽人人添夜夜欢视频| 丝袜美腿诱惑在线| 欧美人与性动交α欧美精品济南到 | 熟女电影av网| 日韩精品有码人妻一区| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 丁香六月天网| 在线天堂中文资源库| 久久99精品国语久久久| 熟女少妇亚洲综合色aaa.| 99九九在线精品视频| 另类精品久久| 亚洲精品久久成人aⅴ小说| 在线观看一区二区三区激情| 亚洲国产精品999| 亚洲国产精品一区二区三区在线| 日本av免费视频播放| 日韩av在线免费看完整版不卡| 七月丁香在线播放| 中国三级夫妇交换| 久久热在线av| 欧美日韩av久久| 天天躁狠狠躁夜夜躁狠狠躁| 五月开心婷婷网| 国产黄频视频在线观看| 色哟哟·www| 国产在视频线精品| 欧美成人午夜免费资源| 欧美激情 高清一区二区三区| 大话2 男鬼变身卡| 精品一区二区免费观看| 我的亚洲天堂| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 91午夜精品亚洲一区二区三区| av网站免费在线观看视频| 亚洲av.av天堂| 一二三四中文在线观看免费高清| 麻豆精品久久久久久蜜桃| 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 精品第一国产精品| 侵犯人妻中文字幕一二三四区| 国产日韩欧美在线精品| 叶爱在线成人免费视频播放| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 少妇熟女欧美另类| 欧美变态另类bdsm刘玥| 天天操日日干夜夜撸| 日韩制服骚丝袜av| 久久午夜福利片| av线在线观看网站| 成人免费观看视频高清| 香蕉国产在线看| 9色porny在线观看| 少妇 在线观看| 精品一品国产午夜福利视频| 寂寞人妻少妇视频99o| 国产成人免费观看mmmm| 丰满少妇做爰视频| 十八禁高潮呻吟视频| 女性生殖器流出的白浆| 观看av在线不卡| 9色porny在线观看| 丰满饥渴人妻一区二区三| 18+在线观看网站| 永久免费av网站大全| 可以免费在线观看a视频的电影网站 | 国产一区亚洲一区在线观看| 春色校园在线视频观看| 一个人免费看片子| 国产有黄有色有爽视频| 国产一区二区在线观看av| 亚洲国产欧美网| 乱人伦中国视频| 欧美最新免费一区二区三区| 又大又黄又爽视频免费| 免费观看无遮挡的男女| 晚上一个人看的免费电影| 91精品三级在线观看| 亚洲精品久久久久久婷婷小说| 国产精品 欧美亚洲| 最近的中文字幕免费完整| 国产精品香港三级国产av潘金莲 | 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放| 国产精品成人在线| 久久热在线av| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 五月伊人婷婷丁香| 午夜免费鲁丝| 美女视频免费永久观看网站| 亚洲成av片中文字幕在线观看 | 久久 成人 亚洲| 亚洲美女搞黄在线观看| 99精国产麻豆久久婷婷| 美女国产视频在线观看| 日韩欧美精品免费久久| 十八禁高潮呻吟视频| 免费女性裸体啪啪无遮挡网站| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 国产成人精品一,二区| 国产免费福利视频在线观看| xxx大片免费视频| 国产老妇伦熟女老妇高清| 久久狼人影院| 人成视频在线观看免费观看| 欧美中文综合在线视频| 最近的中文字幕免费完整| 亚洲欧美成人精品一区二区| 香蕉国产在线看| 最近中文字幕高清免费大全6| 丝袜在线中文字幕| 在线天堂中文资源库| 国产一区二区在线观看av| 亚洲综合精品二区| 天天影视国产精品| 美女大奶头黄色视频| 欧美少妇被猛烈插入视频| 三级国产精品片| 久久av网站| 制服诱惑二区| 男男h啪啪无遮挡| 国产乱人偷精品视频| 香蕉丝袜av| xxx大片免费视频| 亚洲欧美精品综合一区二区三区 | 搡女人真爽免费视频火全软件| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| 成人毛片60女人毛片免费| 欧美中文综合在线视频| 三级国产精品片| 在线天堂中文资源库| 99热网站在线观看| 不卡av一区二区三区| 欧美97在线视频| 超色免费av| 国产1区2区3区精品| 久久精品国产亚洲av天美| 黄频高清免费视频| 国产精品免费大片| 久久久久网色| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 国精品久久久久久国模美| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 亚洲av电影在线观看一区二区三区| 亚洲成人一二三区av| 90打野战视频偷拍视频| av免费在线看不卡| 国产精品嫩草影院av在线观看| 考比视频在线观看| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 91精品三级在线观看| 99香蕉大伊视频| 国产在视频线精品| 少妇的逼水好多| 成人黄色视频免费在线看| 91精品伊人久久大香线蕉| 国产色婷婷99| 制服诱惑二区| 日韩欧美精品免费久久| 人妻 亚洲 视频| 看非洲黑人一级黄片| 我要看黄色一级片免费的| 少妇的逼水好多| 免费播放大片免费观看视频在线观看| 一区二区三区乱码不卡18| 赤兔流量卡办理| 久久99蜜桃精品久久| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 美女主播在线视频| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕| 观看av在线不卡| 在现免费观看毛片| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 91国产中文字幕| 2018国产大陆天天弄谢| 精品国产国语对白av| 婷婷成人精品国产| 久久精品aⅴ一区二区三区四区 | 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 咕卡用的链子| 欧美日韩亚洲高清精品| 欧美+日韩+精品| 视频在线观看一区二区三区| 精品午夜福利在线看| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| 国产探花极品一区二区| freevideosex欧美| 国产精品一区二区在线不卡| 97精品久久久久久久久久精品| 久久精品aⅴ一区二区三区四区 | 国产精品三级大全| 黑人巨大精品欧美一区二区蜜桃| 日产精品乱码卡一卡2卡三| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 国产精品三级大全| 乱人伦中国视频| 黄片无遮挡物在线观看| 丝袜脚勾引网站| 波野结衣二区三区在线| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| 欧美日韩av久久| 国产男女超爽视频在线观看| 我的亚洲天堂| 一区二区日韩欧美中文字幕| 中国三级夫妇交换| 18禁动态无遮挡网站| 2022亚洲国产成人精品| 又黄又粗又硬又大视频| 成年人免费黄色播放视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| 欧美日韩成人在线一区二区| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品久久成人aⅴ小说| 国产成人免费观看mmmm| 国产无遮挡羞羞视频在线观看| 美女大奶头黄色视频| 日韩免费高清中文字幕av| 免费大片黄手机在线观看| 欧美另类一区| 丁香六月天网| 日韩精品有码人妻一区| 性色av一级| 天天躁夜夜躁狠狠久久av| 日韩欧美精品免费久久| 国产欧美亚洲国产| 成人影院久久| 久久婷婷青草| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 亚洲av电影在线观看一区二区三区| 成年女人在线观看亚洲视频| 国产一区亚洲一区在线观看| 精品亚洲乱码少妇综合久久| 91aial.com中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 在线观看国产h片| 日韩欧美一区视频在线观看| 久久久久久伊人网av| 香蕉精品网在线| 国产精品无大码| 欧美成人午夜精品| 久久久亚洲精品成人影院| 欧美人与性动交α欧美软件| 色网站视频免费| 国产成人a∨麻豆精品| 久久久久精品人妻al黑| 精品第一国产精品| 两个人免费观看高清视频| 精品国产一区二区久久| 中文字幕制服av| 两性夫妻黄色片| 少妇 在线观看| 伊人亚洲综合成人网| 久久精品久久精品一区二区三区| 丝瓜视频免费看黄片| 久久99精品国语久久久| 一二三四在线观看免费中文在| 中文字幕另类日韩欧美亚洲嫩草| 在线观看美女被高潮喷水网站| av线在线观看网站| 亚洲精品视频女| 国产在视频线精品| 赤兔流量卡办理| 国产成人91sexporn| 如何舔出高潮| 午夜av观看不卡| 久久久精品区二区三区| 男女啪啪激烈高潮av片| 欧美国产精品va在线观看不卡| 欧美激情高清一区二区三区 | 一级a爱视频在线免费观看| 永久网站在线| 中文字幕精品免费在线观看视频| 午夜福利在线免费观看网站| 看免费av毛片| 久久av网站| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 丰满乱子伦码专区| 日韩电影二区| 啦啦啦在线观看免费高清www| 国产野战对白在线观看| 精品国产国语对白av| 精品视频人人做人人爽| 色吧在线观看| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 久久精品久久久久久久性| 久久99蜜桃精品久久| 亚洲av综合色区一区| 亚洲色图 男人天堂 中文字幕| 少妇人妻精品综合一区二区| 男女边摸边吃奶| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 国产乱来视频区| 国产极品天堂在线| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 最近的中文字幕免费完整| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 永久免费av网站大全| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| 777久久人妻少妇嫩草av网站| a级毛片在线看网站| 97人妻天天添夜夜摸| 母亲3免费完整高清在线观看 | 99国产精品免费福利视频| 国产综合精华液| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 精品酒店卫生间| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| 国产1区2区3区精品| 国产成人精品在线电影| av电影中文网址| 亚洲国产精品一区二区三区在线| 久久久久精品性色| 视频在线观看一区二区三区| 性色av一级| 99香蕉大伊视频| 亚洲伊人色综图| 国产成人免费观看mmmm| 午夜影院在线不卡| 国产精品免费大片| 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 欧美最新免费一区二区三区| 一本大道久久a久久精品| 边亲边吃奶的免费视频| 亚洲精品第二区| 午夜av观看不卡| 欧美成人午夜免费资源| 中国三级夫妇交换| 精品视频人人做人人爽| 成人影院久久| 捣出白浆h1v1| 午夜日韩欧美国产| 大陆偷拍与自拍| 在线 av 中文字幕| 母亲3免费完整高清在线观看 | 色94色欧美一区二区| 亚洲国产最新在线播放| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 男女边摸边吃奶| 国产一级毛片在线| 视频区图区小说| 久久久国产欧美日韩av| 国产精品免费大片| 亚洲,欧美精品.| 卡戴珊不雅视频在线播放| 亚洲av电影在线进入| 国产在视频线精品| 一级片免费观看大全| 麻豆乱淫一区二区| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜免费资源| 久久久久视频综合| 赤兔流量卡办理| 看免费av毛片| 叶爱在线成人免费视频播放| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久| 婷婷色av中文字幕| 免费播放大片免费观看视频在线观看| av在线老鸭窝| 多毛熟女@视频| 不卡视频在线观看欧美| 美女福利国产在线| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 午夜av观看不卡| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 国产在线视频一区二区| 美国免费a级毛片| 亚洲精品aⅴ在线观看| 黄网站色视频无遮挡免费观看| 最新中文字幕久久久久| 国产又爽黄色视频| 国产亚洲最大av| 国产探花极品一区二区| 性色avwww在线观看| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美| 一本色道久久久久久精品综合| 午夜影院在线不卡| 十分钟在线观看高清视频www| 精品亚洲成国产av| 91久久精品国产一区二区三区| 老汉色av国产亚洲站长工具| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 欧美 日韩 精品 国产| 精品久久蜜臀av无| 国产毛片在线视频| 嫩草影院入口| a级毛片在线看网站| 午夜精品国产一区二区电影| 中文精品一卡2卡3卡4更新| 国产精品二区激情视频| 国产在视频线精品| 国产精品国产三级专区第一集| 国产深夜福利视频在线观看| www.精华液| av有码第一页| 国产 精品1| 又大又黄又爽视频免费| 日韩精品免费视频一区二区三区| 久久久久久久精品精品| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 亚洲欧美成人综合另类久久久| 午夜福利乱码中文字幕| 中文字幕av电影在线播放| 永久免费av网站大全|