• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of seven levels of chemical/biostimulator protection on amino acid profile and yield traits in wheat

    2022-08-16 09:26:08PiotrIwniukRflKoneckiPiotrKczynskiAluRysekovBozenLozowick
    The Crop Journal 2022年4期

    Piotr Iwniuk*, Rfl Konecki Piotr Kczynski Alu Rysekov, Bozen Lozowick

    a Instituteof PlantProtection-National Research Institute,Chelmonskiego 22Street,15-195Bialystok,Poland

    b KazakhNationalAgrarian ResearchUniversity, Departmentof Plant Protection,Abai Avenue 8,Almaty050010, Kazakhstan

    Keywords:Amino acids Biostimulators Plant protection products Wheat quality Yield

    A B S T R A C T Biostimulators combined with pesticides can reduce the need for chemical crop protection to yield healthy wheat with high grain quality and nutritional value. The goal of this four-year field study was an assessment of the effects of seven levels of sulfonylurea herbicide,morpholine and triazole fungicides,and humic biostimulator protection on concentrations of 20 amino acids (AAs) and on yield parameters under diverse climatic conditions. Application of pesticides and biostimulators reduced amino acid concentrations.Sulfonylurea applied alone reduced AAs least.Chemical(herbicide+fungicide)protection or its combination with humic biostimulator were the most effective strategies for increasing yield,thousand-kernel weight,spike number,grain surface area,and wet gluten.Reduced dosages of fungicides showed effects on AA content and crop parameter values similar to those of the recommended dosages of fungicides and are in line with the European Commission’s‘‘From Farm to Fork”strategy.Humic biostimulators as agents supporting pesticide protection should be optimized for wheat growth stage to achieve the most desirable wheat parameters and implemented in agricultural practice.

    1. Introduction

    Wheat (Triticum aestivumL.), one of the most commonly cultivated cereals, is used in many products for human consumption or as animal feed. The quality parameters of wheat grain are the components that affect its nutritional value, caloric content, or digestibility: contents of starch, protein, and gluten and of amino acids [1]. Starch makes up about 70% of all grain carbohydrates.Proteins are components of tissues,hormones,and enzymes,while gluten is a mixture of the proteins prolamin and glutelin that as a result of cross-linking forms a spatial structure with water, giving the dough a ductile texture [2].

    Amino acids (AAs) are components of grain. They are organic compounds constituting the building material of proteins [3,4].They function in controlling blood sugar levels, renewing the body’s energy resources, regenerating muscles, maintaining good skin condition, and strengthening bones, and in the immune, hormonal and nervous systems[5-7].Amino acids can be divided into nonessential(manmade and animal-made)and essential(supplied by food). Nonessential AAs include aspartic acid, glutamine,glutamic acid, asparagine, alanine, serine, glycine, tyrosine, cysteine, and proline, and the essential amino acids include tryptophan, lysine, arginine, histidine, phenylalanine, leucine, valine,and methionine [8-9].

    Total protein content and amino acid composition may change depending on plant species,cultivar,habitat,fertilization,chemical protection, or stress factors [10]. Legume plants have the highest concentration of amino acids [11]. Pepo and Zoltan [12] reported differences in AA composition among cultivars ofTriticumspecies.Popko et al. [13] reported differences in AA composition in wheat after biostimulator applications.Variable levels of fertilization contribute to differences in protein and AA composition in winter wheat [14].

    The proper nutritional composition of amino acids in feed varies depending on the animal species and influences the milk yield of cows and the growth and development of cattle, pigs, and poultry[15]. The biological value of cereal proteins in animal nutrition is low, owing to their low content of leucine and isoleucine. Cereal grains are also poor in methionine. For this reason, fodder rich in these amino acids should be added to nutrient mixtures for animals [16,17].

    Herbicidal treatments reduce weed infestation and increase yield by limiting competition by weeds with crop plants for nutrients and water [18]. In agricultural practice, fungicides are used less frequently than herbicides; most often, they are used as an addition to herbicide protection.Their influence on quantitative or qualitative traits of wheat grain is unclear. Byamukama et al.[19] reported higher yield and test weight after prothioconazole and tebuconazole treatments,but Viecelli et al.[20]reported lower yields after propiconazole and azoxystrobin treatments.

    Natural biostimulators mitigate negative effects of agroclimatic conditions and promote plant health [21]. Commonly used agents are based on humic or fulvic acids,which are ingredients of humic biostimulators and promote the development of lateral roots and counter effects of abiotic stress [22]. Few reports have described the influence of herbicidal protection combined with fungicides or biostimulators on grain traits such as protein, starch, gluten,and amino acid concentration [23]. Given that the European Commission’s‘‘From Farm to Fork”strategy assumes a reduction of fertilization and plant protection product use in agriculture, limiting pesticide application and identifying new products that improve plant growth and health properties are challenges in modern agricultural practice [24].

    The aim of this study was to assess the influence of chemical and biostimulator protection on AA composition,nutrient content,and wheat yield. We hypothesized that 1) chemical and biostimulator treatments influence the concentration of different groups of amino acids and 2)grain parameters are influenced by the level of herbicidal, fungicidal and biostimulator protection. We undertook to use multifactorial statistical analysis to identify the most effective wheat protection strategy.

    2. Materials and methods

    2.1. Field experiment

    The spring wheat cultivar Mandaryna was planted in plots of 4 × 5 m in Dobrzyniewo Duze, Poland (53°11′43.6′′N, 23°01′02.7′′E) in the 2017-2020 growing seasons. Certified seeds were sown on April 6, 2017, April 3, 2018, April 4, 2019, and April 7, 2020.Chemical protection consisted of herbicide (H: Apyros 75WG,active ingredient:sulfosulfuron),fungicides in recommended dose(F1: Artea 330EC, active ingredient: cyproconazole + propicona zole; F2: Falcon 460EC, active ingredient: spiroxamine + tebucona zole+triadimenol),fungicides in half recommended dose(?F1;?F2), and humic biostimulators improving plant growth(S1: liquid,S2: paste) (Table 1). The experiment was conducted in the following combinations with four repetitions each:A,control;B,sulfosulfuron; C, sulfosulfuron; ? cyproconazole + ? propiconazole, ?spiroxamine + ? tebuconazole + ? triadimenol; D, sulfosulfuron,cyproconazole + propiconazole, spiroxamine + tebuconazole + tria dimenol;E,sulfosulfuron,humic biostimulator S1;F,sulfosulfuron,cyproconazole + propiconazole, spiroxamine + tebuconazole + tria dimenol, humic biostimulator S1; G, humic biostimulator S1; and H- sulfosulfuron, cyproconazole + propiconazole, spiroxamine +tebuconazole + triadimenol, humic biostimulator S2.

    Nitrogen(N)/phosphorus(P)/potassium(K)fertilization in each year was applied as follows:54 kg N ha-1,67 kg K ha-1,and 26 kg P ha-1. The physicochemical soil parameters indicated pH 7.4 and microelement content: 1.89 mg kg-1K2O, 1.93 mg kg-1P2O5and 0.76 mg kg-1Mg. Grain was harvested at the 89 stage of Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie(BBCH) scale [25] on July 27, 2017, July 30, 2018, July 25, 2019,and July 23, 2020 and separated from husks. Mean temperature in the vegetative season was 13.25 °C and rainfall 295 mm in 2017, 16.41 °C and 204 mm in 2018, 14.9 °C and 183 mm in 2019, and 13.7 °C and 160 mm in 2020 (Fig. 1). Measurement of AAs was performed in three years of the study (2018-2020), and grain parameter assessments were performed in all four years(2017-2020).

    Fig. 1. Detailed climatic conditions (temperature, °C and precipitation, mm) during the four-year experiment (2017-2020). The numbers 1-3 represent each consecutive 10 days of the month.

    2.2. Amino acid determination

    Standards of the AAs alanine,arginine,asparagine,aspartic acid,cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine,leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were obtained from Sigma-Aldrich(St.Louis,MO,USA).Individual stock solutions were prepared in 1%formic acid in water at concentrations of 1 mg mL-1.Standard mixtures were prepared at concentrations of 0.01-10 μg mL-1and stored at 4 °C.

    Wheat grain was milled in the laboratory mill and flour samples of 1 g were mixed with 10 mL of water:methanol solution(8:2,v/v)with 0.1% formic acid. Samples were vortexed for 5 min and centrifuged at 10,000 r min-1for 10 min.Extracts(1 mL)were filtered through a 0.22 μm hydrophilic PTFE filter, transferred into labeled autosampler vials,and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) followed by validation as described in reference [26].

    An Eksigent Ultra LC-100 (Eksigent Technologies, Dublin, CA,USA) liquid chromatography system was used (flow rate 0.5 mL min-1) with Kinetex HILIC 1.7 μm, 2.1 × 50 mm column(Phenomenex, Torrance, CA, USA) at 40 °C during analysis. The purified extract(2 μL)was injected into the LC-MS/MS.The mobile phases consisted of water+0.2%formic acid+20 mmol L-1ammonium formate(phase A)and acetonitrile(phase B).The experiment started at 5%A/95%B,held for 1 min,ramped linearly to 10%A/90%B in 2 min, then to 95% A/5% B in 3.5 min, and held for 1.5 min.After ramping, the mobile phase composition was restored to the starting condition in 1 min and held for 3 min for reequilibration.An MS/MS 6500 QTRAP(AB Sciex Instruments,Foster City, CA, USA), equipped with an electrospray ionization source,was used for mass spectrometric analysis. The capillary voltage was maintained at 4000 V for positive-ion mode.The temperature of the turbo heaters was set at 400 °C. As the nebulizer gas,auxiliary gas, and curtain gas, nitrogen was used at pressures ofrespectively 50, 60, and 40 psi. All AAs were detected in multiple reaction monitoring mode [27]. The details of LC-MS/MS parameters in AA determination are shown in Tables S1 and S2.

    Table 1Plant protection products and biostimulators applied in this study.

    2.3. Measurement of yield traits

    Spike number (SN) was recorded as the number of spikes in 1 m2. Wheat grain yield (t ha-1), thousand-kernel weight (TKW,g)and kernel number per spike(KNS)were determined by weighing the grain harvested from 1 m2and counting with a seed counter (Drello, Nuremberg, Germany). Yield traits were measured by near-infrared spectrometer Infratec 1241 (Foss, Hilleroed, Denmark). Evaluated features included grain density (g L-1), protein(%), starch (%), gluten (%), and Zeleny sedimentation index (ZSI,mL). Grain surface area (mm2per kernel) was measured with a Marvin seed analyzer (Marvitech,Wittenburg, Germany). All samples were analyzed in quadruplicate.

    2.4. Statistical analysis

    Statistical significance was performed according to Fisher’s exact test (P<0.05). Mutual correlations between each pair of following parameters: climatic conditions, yield, grain density, TKW,KNS,SN,grain surface area,protein,starch,wet gluten,Zeleny sedimentation index and AA were calculated as Pearson’s correlation coefficient (r) atP<0.05. Principal component analysis (PCA) and agglomerative hierarchical clustering of the influence of chemical and biostimulator treatments on these parameters were performed. All analyses were performed with Statistica 12 software(StatSoft, Tulsa, OK, USA).

    3. Results

    3.1. Effect of biostimulator and chemical protection on amino acid concentration

    Grain collected from control plants had the highest concentration of total amino acids in 2019-2020, but not in 2018 (Tables 2, S3). A chromatogram of representative amino acid standards and wheat samples is shown in Fig. S1. Humic biostimulators and chemical protection contributed to the reduction in amino acid concentration in 2019-2020. Among the experimental plots, the highest concentration of amino acids was determined for sulfosulfuron treatment in 2018-2020. The greatest decrease of total amino acid level was determined for exclusive liquid biostimulator S1 (treatment G) in 2018 or sulfosulfuron combined with morpholine, triazoles, and paste biostimulator S2 (treatment H)in 2019-2020 (11.3%, 50%, and 50.6%, respectively). Similarly, the concentrations of nonessential (NEAA), essential (EAA), aliphatic,aromatic, and sulfur-containing amino acids was lowest in treatment H in 2019-2020 (Fig. 2). Sulfur-containing amino acids(methionine and cysteine) achieved the highest values for control grain (3.2, 2.9, and 2.7 μg kg-1in 2018-2020, respectively). Our study indicated a EAA/NEAA ratio between 0.5 for sulfonylurea application(treatment B)and 0.84 for exclusive humic biostimulator (treatment G) or sulfonylurea combined with a half dosage of morpholine and triazole (treatment C) (Table 2).

    Fig. 2. Amino acid content in wheat grain (μg kg-1 dry mass). A, control; B, sulfosulfuron; C, sulfosulfuron, ? cyproconazole + ? propiconazole, ? spiroxamine + ?tebuconazole + ? triadimenol; D, sulfosulfuron, cyproconazole + propiconazole, spiroxamine + tebuconazole + triadimenol; E, sulfosulfuron, humic biostimulator S1; F,sulfosulfuron, cyproconazole + propiconazole, spiroxamine + tebuconazole + triadimenol, humic biostimulator S1; G, humic biostimulator S1; H, sulfosulfuron,cyproconazole + propiconazole, spiroxamine + tebuconazole + triadimenol, humic biostimulator S2. 1, 2018; 2, 2019; 3, 2020. The same letter shared by treatments in one year indicates not statistically significant difference (P >0.05).

    Chemical treatments showed strong influence on the occurrence of specific amino acids(Table S3).In 2018-2020,the highest concentrations were observed for aspartic acid (327.5, 200.4, and 197.0 in 2018, 2019, and 2020, respectively) (Table 2) The most significant reduction of lysine in 2019 and 2020 was observed for sulfonylurea combined with morpholine,triazoles,and biostimulator S1 (11.4%, compared to the control in 2019) and for sulfonylurea (11%, compared to the control in 2020). In 2018 the accumulation of amino acids showed the highest arginine increase(12.8%, compared to the control) for sulfosulfuron combined with biostimulator S1.

    3.2. Effects of chemical protection and biostimulators on yield traits

    The highest yield in 2017-2020 was recorded for chemical protection enriched by humic biostimulator S1 (up to 6.32 t ha-1,treatment F),sulfonylurea combined with morpholine and triazole treatments (up to 6.59 t ha-1, treatment D), and sulfonylurea enriched by humic biostimulator S1 (up to 6.8 t ha-1, treatment E) (Table 3).

    ?

    The type of chemical protection strongly influenced TKW, SN,and grain surface area (Table 3). The highest TKW and SN were realized in combinations with biostimulator (S1 and S2)application (up to 35.4 g and 546 spikes, respectively), compared to treatments without their use and irrespective of the type of crop protection used. Besides plant protection products,supplementation by humic compounds increased TKW, SN, and grain surface area. Higher TKW was also observed under complex sulfonylurea, morpholine, and triazole protection (treatment D,29.5-35.3 g) compared to single herbicidal protection (27.7-33.8 g), which is commonly used in agricultural practice. Surprisingly, in contrast to TKW, SN, and grain surface area, the highest values of kernel number per spike were achieved in treatment without application of humic biostimulator (up to 25.3 kernels in treatment E). Protein concentration and Zeleny sedimentation index (ZSI) were higher under chemical treatments than in the control. The highest protein content reached 11.1% in 2018(Table 3), but the mean concentration for most combinations was 10%-10.8%. ZSI ranged from 23 to 32.5. In the four-year period,the highest (P<0.05) protein content and ZSI were observed for sulfonylurea combined with a half dose of morpholine and triazoles (treatment C), and sulfonylurea (treatment B). Wet gluten content achieved the greatest values in 2018-2019 for complex herbicidal and fungicidal protection enriched by humic biostimulators (treatment H, 21.2% and treatments D and F, 20.9%). Starch level was comparable between treatments and control in the four years of the study indicating no effect of diversified chemical protection.

    Table 3Parameters of wheat grain in the four years of the study.

    3.3. Mutual correlations between examined parameters

    Fig.3 shows a PCA indicating the influence of the type of chemical/biostimulator treatment, temperature and precipitation on amino acid concentration, yield, and quality parameters (grain density,TKW,KNS,SN,protein,starch,wet gluten,and Zeleny sedimentation index). The PCA explained 70.6% of total variation. The total variation in amino acids,protein and climatic conditions as a function of the wheat protection strategy achieved 83.83%(Fig. 3B).

    Sulfonylurea combined with morpholine, triazoles, and humic biostimulators (S1, S2) had the highest influence on amino acid concentration and parameters of wheat grain in 2017-2020(Fig. 3C), while the control and herbicidal protection without fungicides were the most effective in the induction of amino acid biosynthesis (Fig. 3D). Half doses of fungicides showed effects on the traits comparable to those of full doses. Treatments based on humic biostimulators combined with pesticides (treatments F and H) showed similar efficacy on levels of individual amino acids(Fig. 3D).

    There was a correlation of amino acid content with climatic conditions (r= 0.75 for temperature andr= - 0.79 for precipitation) (Figs. 4, S2). Additionally, there were negative correlations between all amino acids and precipitation in the range of - 0.33 to - 0.93, indicating that water content limited their concentration. Individual amino acids were generally positively correlated with each other(up tor=0.99)(Figs.4,S3).Moreover,higher yield was influenced by temperature and contributed to the TKW increase.The highest positive correlations were between grain surface area and TKW(r=0.98).Higher protein concentration resulted in increase of wet gluten content,Zeleny sedimentation index,and decrease of starch level. Reduced concentration of starch influenced on increase of grain density. Lower KNS contributed to an increase of grain density (r= -0.61) (Figs. 4, S2).

    Based on the three years of amino acid analysis, aspartic acid was found in the highest concentration in the control and under exclusive sulfonylurea protection (treatment B), similarly to alanine, asparagine, glutamic acid, lysine, glutamine, tryptophan,and arginine (Fig. 5).

    Fig. 4. Pearson’s correlation coefficient based on PCA. (A) Pairwise correlations between individual amino acids, protein, and climatic conditions. (B) Pairwise correlations between amino acids, parameters of wheat grain, and climatic conditions.

    Fig. 5. Heat map showing differentiation of amino acids in wheat depending on chemical or biostimulator treatment(green names indicate nonessential and violet names essential amino acids).

    4. Discussion

    In contrast to the findings of Solomienko and Nagorniuk [28],our study showed a reduction in amino acids under biostimulator and chemical protection in 2019-2020 but an accumulation in 2018, indicating an influence of climatic conditions on amino acid biosynthesis even under the same protection strategies. Healy-Fried et al. [29] reported an inhibition of aromatic amino acid(AAA) biosynthesis by glyphosate, in contrast to this study, which showed the stimulation of AAA formation by sulfonylurea herbicide,and morpholine and triazole fungicides.It indicates the diversified influence of pesticide chemical group on changes of amino acids profile. Parthasarathy et al. [30] pointed out that the secondary metabolites of AAA are engaged in the biosynthesis of plant pigments,defense compounds(cutin,suberin,lignins,and lignans),and vitamins and hormones(auxins),which increase during stress conditions and can be explained by the lowest AAA concentration used for their synthesis under treatment with compounds including sulfonylurea, morpholine, triazole, and humic biostimulators.This group of amino acids is engaged in the synthesis of intracellular antioxidants(glutathione and N-acetyl cysteine)[31].The lowest level of sulfur-containing amino acids under biostimulator and pesticide treatments is probably associated with their capture for the formation of this group of antioxidants and of metabolic intermediates(coenzyme A)[32].Plant protection products or biostimulators can act like stress factors contributing to the decay of complex proteins to free amino acids, which are then used for defense protein biosynthesis or antioxidant system activation as signal molecules [33,34].

    Fig.3. Diagrams of Principal component analysis(PCA)and agglomerative hierarchical clustering.(A)PCA of chemical and biostimulator treatment influence on wheat grain parameters. (B) PCA of chemical and biostimulator treatment influence on the concentrations of specific amino acids. Green names indicate nonessential amino acids and violet names essential amino acids.(C)Cluster diagram of the efficacy of chemical and biostimulator protection on the sum of amino acids and parameters of wheat grain.(D)Cluster diagram showing the influence of chemical and biostimulator treatment on the levels of individual amino acids.

    The ratio of EAA to NEAA is crucial for correct metabolic balance and cancer cell apoptosis induction in humans and animals [35].The EAA/NEAA ratio increase under the biostimulator and pesticide treatments is a beneficial effect for human and animal diets,which are frequently poor in EAAs. Chemical/biostimulator protection affected the concentration of specific amino acids. Aspartic acid was found to be in the highest concentration in our study; however, the main amino acids synthesized by plants are glutamate,glutamine, and aspartate, which are then used for formation of other amino acids. Glutamate stands out for being the first amino acid into which the nitrogen absorbed by plants is incorporated,and a range of amino acids can be obtained through the activity of aminotransferases[36].A decrease of up to 82.2%of amino acids in response to biostimulator and pesticides may be due to the inhibition of acetohydroxy acid synthase by sulfosulfuron, a key enzyme in the biosynthetic pathways of alanine, leucine, isoleucine, proline, valine, and glycine [37]. Morpholine and triazole fungicides inhibit ergosterol biosynthesis in fungi. Lower concentrations of amino acids in response to application of these fungicides is likely associated with abiotic stress induction and their use in defense protein synthesis [33].

    In contrast to the finding of Gaba et al.[38],a statistically significant yield increase after sulfonylurea combined with morpholine and triazole treatments was observed. Drobek et al. [39] reported a yield increase after humic biostimulator application. It seems that the beneficial effect of different types of biostimulators is dependent on plant species, and their health status and on soil and climatic conditions.

    Karkanis et al.[40]also reported an increase of TKW and wet gluten after florosulam and 2,4-D herbicides combined with trifloxystrobin and prothioconazole fungicides compared to exclusive herbicide application. There was a higher spike number under chemical wheat protection,but in contrast to the findings of the present study,kernel number per spike did not differ from the control[41,42].The effect of biostimulators on spike number and grain surface area has been poorly investigated.Our findings showed a positive influence of humic biostimulators on these yield parameters.

    Starch, wet gluten, and Zeleny sedimentation index are generally independent of pesticide application[43].Their highest values were observed under complex chemical/biostimulator conditions.Kotwica et al. [44] reported that biostimulators based on nitro sodium phenolate contributed to increased wheat grain quality.Wolejko et al.[45]also observed higher grain quality under herbicidal protection combined with fungicides. However, biostimulators based on humic and fulvic acids also contribute to the improvement of wheat nutritional values.

    5. Conclusions

    Efficacy of wheat chemical/biostimulator protection was influenced by weather conditions and despite the same treatments led to quantitative differences in traits among years.Sulfosulfuron applied exclusively (treatment B) was the strategy that lowered amino acid concentrations the least. Lower concentrations of free amino acids in pesticide- and biostimulator-treated wheat probably resulted from their use in defense protein synthesis induced by plant protection products. Chemical protection (treatment D)or its combination with biostimulator S1 (treatment E, F) were the most effective wheat protection strategies for improving yield parameters. They can accordingly be implemented in agricultural practice. Halving dosages of fungicides (treatment C) resulted in values of wheat parameters similar to those under recommended dosages but led to higher amino acid concentrations. Thus, reducing fungicide dosages meets the requirements of the European Commission’s ‘‘From Farm to Fork” strategy.

    CRediT authorship contribution statement

    Piotr Iwaniuk:Conceptualization, Methodology, Investigation,Writing-original draft.Rafal Konecki:Investigation,Formal analysis,Visualization.Piotr Kaczynski:Methodology,Formal analysis,Validation.Alua Rysbekova:Resources, Data curation.Bozena Lozowicka:Conceptualization, Writing - review & editing,Supervision.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was partially funded by the Ministry of Education and Science in Poland in terms of designated subsidy among statutory activities (SIB-01, SIB-03). The authors are thankful to Mr.Wojciech Dragowski and Mrs.Aleksandra Pietraszko for their assistance in part of the analyses.

    Appendix A. Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2021.12.007.

    狠狠狠狠99中文字幕| 卡戴珊不雅视频在线播放| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| 大香蕉久久网| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 最近在线观看免费完整版| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜 | 亚洲最大成人av| 国产片特级美女逼逼视频| 亚洲人成网站在线播| 日韩欧美在线乱码| 日产精品乱码卡一卡2卡三| АⅤ资源中文在线天堂| 好男人在线观看高清免费视频| 亚洲天堂国产精品一区在线| 中文亚洲av片在线观看爽| avwww免费| 午夜亚洲福利在线播放| 99热这里只有是精品在线观看| 国产伦精品一区二区三区四那| 国产成人精品久久久久久| 久久久久久伊人网av| 亚洲精品影视一区二区三区av| 极品教师在线视频| 亚洲,欧美,日韩| 午夜福利在线在线| 九九热线精品视视频播放| 亚洲欧美中文字幕日韩二区| 国产高清三级在线| 亚洲色图av天堂| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频 | 美女黄网站色视频| 一级毛片我不卡| 亚洲图色成人| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 日本成人三级电影网站| 日韩三级伦理在线观看| 99在线视频只有这里精品首页| 久久久a久久爽久久v久久| 免费av不卡在线播放| 日韩精品有码人妻一区| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 国产毛片a区久久久久| 国产av在哪里看| 亚洲最大成人av| 久久精品国产亚洲网站| 亚洲最大成人中文| 日韩欧美精品v在线| 国产精品女同一区二区软件| 美女高潮的动态| 搡老熟女国产l中国老女人| 国产男靠女视频免费网站| 久久精品综合一区二区三区| 久久精品国产亚洲网站| 色综合色国产| 亚洲一级一片aⅴ在线观看| 一本久久中文字幕| av专区在线播放| 成人av一区二区三区在线看| 亚洲精品国产成人久久av| 三级毛片av免费| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 淫秽高清视频在线观看| 亚洲av不卡在线观看| 日韩,欧美,国产一区二区三区 | 成人av一区二区三区在线看| 国产精品日韩av在线免费观看| 51国产日韩欧美| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 少妇高潮的动态图| 日韩中字成人| 男插女下体视频免费在线播放| 日本一本二区三区精品| 成年女人看的毛片在线观看| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 国产乱人视频| 91在线精品国自产拍蜜月| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影| 日韩中字成人| 国产精品嫩草影院av在线观看| 成人综合一区亚洲| 色在线成人网| 俺也久久电影网| 黄色欧美视频在线观看| 此物有八面人人有两片| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 淫秽高清视频在线观看| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 最近在线观看免费完整版| 国产精品野战在线观看| www日本黄色视频网| av卡一久久| 级片在线观看| 日韩av不卡免费在线播放| 舔av片在线| 男人狂女人下面高潮的视频| av天堂中文字幕网| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 欧美区成人在线视频| av免费在线看不卡| 成人性生交大片免费视频hd| 国产69精品久久久久777片| 老司机午夜福利在线观看视频| 中文在线观看免费www的网站| 91狼人影院| 在线国产一区二区在线| 91午夜精品亚洲一区二区三区| 一级毛片久久久久久久久女| 卡戴珊不雅视频在线播放| 最近2019中文字幕mv第一页| 午夜精品国产一区二区电影 | 免费大片18禁| 嫩草影院入口| 免费看日本二区| 亚洲国产日韩欧美精品在线观看| 国产高潮美女av| 波多野结衣高清无吗| 男女啪啪激烈高潮av片| 日韩欧美三级三区| 六月丁香七月| 特大巨黑吊av在线直播| av专区在线播放| 亚洲一区二区三区色噜噜| 日日撸夜夜添| 久久6这里有精品| 成年免费大片在线观看| 成人一区二区视频在线观看| 在线a可以看的网站| 亚洲国产精品sss在线观看| 听说在线观看完整版免费高清| 日本一二三区视频观看| 国产乱人偷精品视频| h日本视频在线播放| 看非洲黑人一级黄片| 亚洲性夜色夜夜综合| 如何舔出高潮| 国产高潮美女av| 观看美女的网站| 欧美成人免费av一区二区三区| 亚洲国产日韩欧美精品在线观看| 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 免费av观看视频| 3wmmmm亚洲av在线观看| 最近2019中文字幕mv第一页| 婷婷精品国产亚洲av| 亚洲av成人av| 国产91av在线免费观看| 日韩一本色道免费dvd| 91在线精品国自产拍蜜月| 国产高清三级在线| 欧美bdsm另类| 欧美xxxx性猛交bbbb| 精品少妇黑人巨大在线播放 | 国产精品久久久久久亚洲av鲁大| av在线播放精品| 久久久久精品国产欧美久久久| 在线观看av片永久免费下载| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 综合色丁香网| 亚洲三级黄色毛片| 日本色播在线视频| 一进一出抽搐动态| 国产熟女欧美一区二区| 欧美一区二区国产精品久久精品| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 日日干狠狠操夜夜爽| 久久久精品大字幕| 国产一区二区三区av在线 | 十八禁国产超污无遮挡网站| 亚洲自拍偷在线| 插阴视频在线观看视频| 亚洲欧美日韩东京热| 亚洲18禁久久av| 国产亚洲欧美98| 一级黄色大片毛片| 我要搜黄色片| 久久人妻av系列| 亚洲真实伦在线观看| 亚洲高清免费不卡视频| 国产伦在线观看视频一区| 久久中文看片网| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡人人爽人人夜夜 | 淫妇啪啪啪对白视频| 自拍偷自拍亚洲精品老妇| 插阴视频在线观看视频| 色综合色国产| 美女xxoo啪啪120秒动态图| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 91狼人影院| 亚州av有码| 免费看日本二区| 人妻夜夜爽99麻豆av| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添av毛片| 国产国拍精品亚洲av在线观看| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 久久午夜福利片| 亚洲国产日韩欧美精品在线观看| 免费高清视频大片| 直男gayav资源| av在线观看视频网站免费| 午夜老司机福利剧场| 久久久久免费精品人妻一区二区| 亚洲熟妇熟女久久| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 美女 人体艺术 gogo| 99视频精品全部免费 在线| 国产精品精品国产色婷婷| 中文在线观看免费www的网站| 村上凉子中文字幕在线| 在现免费观看毛片| 国产高清不卡午夜福利| 亚洲aⅴ乱码一区二区在线播放| 国产精品电影一区二区三区| 在线免费观看的www视频| 91精品国产九色| 日本免费一区二区三区高清不卡| 俺也久久电影网| 不卡视频在线观看欧美| 国产精品三级大全| 日本一本二区三区精品| 久久久久久伊人网av| 久久久国产成人精品二区| 国产精品一区二区性色av| 夜夜爽天天搞| 国产探花极品一区二区| or卡值多少钱| a级一级毛片免费在线观看| 久久这里只有精品中国| 色av中文字幕| 国产午夜精品久久久久久一区二区三区 | 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 亚洲成a人片在线一区二区| av在线蜜桃| 毛片一级片免费看久久久久| 少妇人妻精品综合一区二区 | av中文乱码字幕在线| 国产精华一区二区三区| 欧美日韩综合久久久久久| 日韩欧美免费精品| 国产亚洲精品综合一区在线观看| 在线免费观看的www视频| 亚洲人成网站在线播| 欧美又色又爽又黄视频| 少妇人妻精品综合一区二区 | 国产一区二区三区av在线 | 国产精品不卡视频一区二区| 变态另类丝袜制服| 免费观看精品视频网站| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 香蕉av资源在线| 午夜福利成人在线免费观看| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 国产高清有码在线观看视频| 国产免费男女视频| av在线天堂中文字幕| 99精品在免费线老司机午夜| 99热网站在线观看| 色尼玛亚洲综合影院| 五月伊人婷婷丁香| 特大巨黑吊av在线直播| www日本黄色视频网| 桃色一区二区三区在线观看| 最好的美女福利视频网| 桃色一区二区三区在线观看| 最好的美女福利视频网| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 午夜精品在线福利| 色哟哟哟哟哟哟| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 激情 狠狠 欧美| 日日摸夜夜添夜夜添小说| 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 色尼玛亚洲综合影院| 看非洲黑人一级黄片| 免费看av在线观看网站| 国产精品无大码| 99热6这里只有精品| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看 | 18禁在线无遮挡免费观看视频 | 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 免费观看的影片在线观看| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 精品国产三级普通话版| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 中出人妻视频一区二区| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 久久这里只有精品中国| 又爽又黄a免费视频| 国产伦精品一区二区三区视频9| 老司机午夜福利在线观看视频| 色在线成人网| 国产v大片淫在线免费观看| 国产精品无大码| 成年免费大片在线观看| 91av网一区二区| 啦啦啦啦在线视频资源| 日本色播在线视频| 成熟少妇高潮喷水视频| 一区福利在线观看| 又爽又黄a免费视频| 日韩欧美一区二区三区在线观看| 乱码一卡2卡4卡精品| 日日撸夜夜添| 精品久久久久久久久久免费视频| АⅤ资源中文在线天堂| 麻豆一二三区av精品| 久久人人爽人人爽人人片va| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 人妻丰满熟妇av一区二区三区| 亚洲18禁久久av| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 午夜视频国产福利| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 99九九线精品视频在线观看视频| 久久精品国产亚洲av涩爱 | 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 国产91av在线免费观看| 久久久久久久久大av| 国产 一区 欧美 日韩| 免费不卡的大黄色大毛片视频在线观看 | 国产男靠女视频免费网站| 麻豆精品久久久久久蜜桃| 蜜臀久久99精品久久宅男| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 亚洲精品456在线播放app| 日本色播在线视频| 色尼玛亚洲综合影院| 亚洲av.av天堂| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 青春草视频在线免费观看| 色哟哟·www| 午夜日韩欧美国产| 国产黄色小视频在线观看| 日本熟妇午夜| 欧美成人a在线观看| 亚洲经典国产精华液单| 久久国内精品自在自线图片| 22中文网久久字幕| 国产69精品久久久久777片| 91av网一区二区| 校园春色视频在线观看| 我的女老师完整版在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 日韩,欧美,国产一区二区三区 | 天美传媒精品一区二区| 婷婷精品国产亚洲av| 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看| 最近在线观看免费完整版| 中文字幕av成人在线电影| 久久久久性生活片| 亚洲国产精品sss在线观看| 精品99又大又爽又粗少妇毛片| 精品国产三级普通话版| 亚洲av成人精品一区久久| 天堂√8在线中文| 看片在线看免费视频| 99九九线精品视频在线观看视频| 国产成人freesex在线 | 97碰自拍视频| 99热这里只有是精品在线观看| 91av网一区二区| 亚洲不卡免费看| 91麻豆精品激情在线观看国产| 精品久久久噜噜| 床上黄色一级片| 国产精品野战在线观看| 一个人免费在线观看电影| 国产精品一区二区三区四区免费观看 | 在线播放无遮挡| 精品免费久久久久久久清纯| 国产老妇女一区| 99在线视频只有这里精品首页| 97碰自拍视频| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 在线国产一区二区在线| 欧美zozozo另类| 欧美日韩综合久久久久久| 黄色欧美视频在线观看| 免费高清视频大片| 亚洲无线观看免费| 99久久无色码亚洲精品果冻| 午夜福利在线观看免费完整高清在 | 色吧在线观看| 看片在线看免费视频| 观看美女的网站| 波野结衣二区三区在线| 简卡轻食公司| 亚洲国产精品sss在线观看| 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 亚洲欧美成人精品一区二区| 国产成人a∨麻豆精品| 全区人妻精品视频| 99热6这里只有精品| 五月伊人婷婷丁香| 欧美国产日韩亚洲一区| 99在线人妻在线中文字幕| av在线亚洲专区| 91久久精品国产一区二区成人| 亚洲电影在线观看av| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 国产探花在线观看一区二区| 一个人免费在线观看电影| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 日韩人妻高清精品专区| 成人亚洲精品av一区二区| 免费不卡的大黄色大毛片视频在线观看 | av免费在线看不卡| 久久久欧美国产精品| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 亚洲av不卡在线观看| 国产精品国产三级国产av玫瑰| 国产在线男女| 丝袜美腿在线中文| 国产高潮美女av| 男人狂女人下面高潮的视频| 97超视频在线观看视频| 搡老熟女国产l中国老女人| 国产精品久久视频播放| 嫩草影视91久久| 国产91av在线免费观看| 国产成人福利小说| 伊人久久精品亚洲午夜| 免费观看的影片在线观看| 国产av在哪里看| 亚洲国产精品国产精品| 综合色av麻豆| 变态另类成人亚洲欧美熟女| 午夜激情欧美在线| 搡女人真爽免费视频火全软件 | av免费在线看不卡| 欧美日本视频| 亚洲精品久久国产高清桃花| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久久丰满| 床上黄色一级片| 黄色配什么色好看| 男人和女人高潮做爰伦理| 国产一区二区三区av在线 | av在线蜜桃| 国产精品伦人一区二区| 精品午夜福利在线看| 亚洲性久久影院| 插阴视频在线观看视频| 日本与韩国留学比较| 国产在视频线在精品| 九九热线精品视视频播放| 国语自产精品视频在线第100页| 成人性生交大片免费视频hd| 午夜a级毛片| 国产精品野战在线观看| 99久久无色码亚洲精品果冻| 日本免费一区二区三区高清不卡| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区久久| 久久久久久久久久成人| 国产亚洲精品久久久com| 国产一区二区三区av在线 | 国产高清视频在线播放一区| 中文字幕免费在线视频6| 亚洲av成人av| 国产毛片a区久久久久| 国产人妻一区二区三区在| 在线观看一区二区三区| 真人做人爱边吃奶动态| 欧美xxxx黑人xx丫x性爽| 久久精品人妻少妇| 国产精品久久电影中文字幕| 欧美性猛交黑人性爽| 亚洲经典国产精华液单| 韩国av在线不卡| 亚洲综合色惰| 国产成人一区二区在线| 一本一本综合久久| 国产不卡一卡二| 欧美潮喷喷水| 美女内射精品一级片tv| 亚洲真实伦在线观看| av在线老鸭窝| 最近中文字幕高清免费大全6| 我的老师免费观看完整版| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美人成| 日本成人三级电影网站| 美女高潮的动态| 波多野结衣高清作品| 日韩精品中文字幕看吧| 三级毛片av免费| 久久精品国产清高在天天线| 国产精品99久久久久久久久| 国产片特级美女逼逼视频| 国内揄拍国产精品人妻在线| 日韩欧美在线乱码| 午夜福利视频1000在线观看| 婷婷色综合大香蕉| 波多野结衣巨乳人妻| 中国美女看黄片| 自拍偷自拍亚洲精品老妇| 精品一区二区三区av网在线观看| 日本爱情动作片www.在线观看 | 成熟少妇高潮喷水视频| 久久久久久久午夜电影| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲网站| 国产成年人精品一区二区| 国产精品乱码一区二三区的特点| 精品欧美国产一区二区三| 黄片wwwwww| 人人妻人人看人人澡| 高清毛片免费观看视频网站| 美女免费视频网站| 青春草视频在线免费观看| 亚洲高清免费不卡视频| 亚洲美女黄片视频| 精品久久久噜噜| 欧美成人a在线观看| 午夜影院日韩av| 联通29元200g的流量卡| 嫩草影院入口| 国产午夜精品久久久久久一区二区三区 | 日本黄大片高清| 免费黄网站久久成人精品| 亚洲性夜色夜夜综合| 国产精品一区二区性色av| 日本三级黄在线观看| 在线观看美女被高潮喷水网站| 一进一出抽搐gif免费好疼| 又爽又黄a免费视频| 亚洲av第一区精品v没综合| 男女啪啪激烈高潮av片| 国产精品一区二区免费欧美| 色播亚洲综合网| 久久久午夜欧美精品| 亚洲人成网站高清观看| 一个人观看的视频www高清免费观看| 久久热精品热| 国产在视频线在精品| 91在线精品国自产拍蜜月| 波多野结衣高清无吗| 人妻丰满熟妇av一区二区三区| 一区二区三区免费毛片|