• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybridization of activated carbon fiber cloth with electrospun nanofibers for particle filtration

    2022-08-14 07:07:28YANGYunlongLIMingzheHOUShiyuLURuitaoKANGFeiyuHUANGZhenghong
    新型炭材料 2022年4期

    YANG Yun-long, LI Ming-zhe, HOU Shi-yu, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong,*

    (1. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;2. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

    Abstract:Activated carbon fibers (ACFs) have high adsorption capacities and can be used in the treatment of benzene, while electrospun nanofibers are expected to be used as a filtration material. In this work, two hybrids of electrospun nanofibers and ACF cloth were prepared by electrospinning polyvinyl alcohol and polyacrylonitrile nanofibers into a phenolic resin-based ACF cloth. The filtration performance of the two hybrids was evaluated. Results indicate that there is a positive correlation between the filtration efficiency and the amount of electrospun nanofibers in the hybrid. The filtration efficiency increases with increasing air velocity, which is attributed to a piezoelectric effect introduced by the electrospun nanofibers. The hybrids have a good adsorption capacity for benzene, which suggests that the materials are promising for treating air pollution.

    Key words: Electrospun nanofibers;Activated carbon cloths;Air particles filtration;Benzene;Adsorption

    1 Introduction

    Nowadays, haze and inhalable particulate matters have become severe air problems which further result in huge air pollution and a great threat to the public health. As the cause of haze and inhalable particulate matters, the air particles have been one of the major air pollutants, which leads to the increased risk of respiratory disease, cardiopulmonary disease and lung cancer[1-3]. Thus the removal of air particles is regarded as a necessary protection technique to human health up to now. Meanwhile, as the emission of volatile organic compounds (VOCs) increased with the developing of industry[4], benzene, one of major VOCs, leads to indoor air pollution and great cancer risk to human health. Therefore the removal technique for benzene is necessary to public health as well.

    In order to remove the air particles, several physical techniques for air particles removal have been researched and applied so far, such as filtration, electrostatic precipitator. The filtration by fibrous filter is considered as a common and effective method to remove the air particles because of the low cost and the low-pressure drop[5-8]. Early in 1936, the enhancement of materials’ filtration performance by using electrospun nanofiber has been paid attention[9]. Up to date, various studies show that it is effective to load electrospinning nanofibers onto the glass fiber[10], organic and cellulose substrates base filter materials to enhance filtration performance[11]. Several factors influenced the filtration performance of electrospun nanofibers have been reported as well[12,13]. Currently,the electrospun nanofibers are considered as promising filtration materials[14], even towards the fine air particles removal[15,16]. Furthermore, as electret filter materials[17,18], electrospun nanofibers have flexible piezoelectric, which could improve the filtration efficiency of filters[19]. Thus, the electrospun nanofibers could be widely used for face mask, medical filter and protective clothing[20-22].

    On the other hands, for benzene removal, different methods have been researched, such as adsorption,thermal oxidation, catalytic oxidation[23]. The adsorption by using porous carbon materials as the adsorbent, such as activated carbon (AC), activated carbon fiber (ACF), is seen as an effective method to remove the benzene, because of the high benzene adsorption velocity and large benzene adsorption capacity[24-28].

    However, there are few studies focused on the materials which both have a high air particle filtration performance and an excellent benzene adsorption abil-ity. In this work, two hybrids of electrospun nanofibers and activated carbon cloths were prepared by electrospinning polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) nanofibers on phenolic resin based activated carbon fiber (PRACFC). The filtration efficiency of two series of hybrids was evaluated through the filtration test under various air velocities. Benzene dynamic adsorption was also performed to evaluate adsorption performance. The hybrids of electrospun nanofibers and activated carbon cloth were proved to both have a high filtration performance and an excellent adsorption capacity, which is promising in the field of air pollution treatment.

    2 Experimental

    2.1 Raw materials

    The raw materials include d phenolic resin based activated carbon fiber clothes (PR-ACFC, kynol Inc,Japan), polyvinyl alcohol (PVA, Sigma-Aldrich, molecular weight of 13 000-23 000), polyacrylonitrile(PAN, Sigma-Aldrich, average molecular weight of 150 000), dimethyl formamide (DMF, Sigma-Aldrich,anhydrous, 99.8%), hexadecyl trimethyl ammonium bromide (CTAB, Sigma-Aldrich, BioXtra, ≥99%),polypropylene melt-blown nonwoven filter (TM-F9 ,average diameter of 0.5 μm, Jinhai group, Zhuji,China), and glass fiber nonwoven filter (FR90N-H13,average diameter of 0.35 μm, Jinhai group, zhuji, and China). The PR-ACFC (PR20) has a specific surface of 2 179 m2·g?1, pore volume of 0.862 cm3·g?1, pore width of 1.07 nm.

    2.2 Preparation of hybrid materials

    The PVA precursor solution for electrospinning was prepared by dissolving 8% PVA in water with 0.05 g of CTAB, and stirred until complete dissolution under water bath of 80 °C. The precursor solution of PAN was prepared by dissolving 10% PAN in DMF, and stirred until complete dissolution under water bath of 80 °C.The PAN and PVA are consider as two stable precursors and easy to be electrospun. The average diameter of PAN and PVA electrospun nanofibers are about hundreds of nanometers. In this scale, nanofibers cannot cover the microporous structure of ACFC, which give ACFC a good adsorption performance. At the same time, the PAN and PVA electrospun nanofiber will offer a filtration performance. The hybrid samples were prepared by electrospinning the PVA or PAN nanofibers onto the square ACFC (8×8 cm2, 0.552 g), with the electrospinningc voltage of 20 kV, the distance between the nozzle and the ACFC of 20 cm, the speed of precursor solution injection of 1 mL·h?1under room temperature. 0.002-0.015 g nanofibers were electrospun onto ACFC. The two hybrid species, prepared by PVA and PAN precursor solutions, were named PRPVA and PRPAN,respectively.

    2.3 Filtration efficiency tests

    To verify the atmospheric particles filtration performance of the hybrid fiber samples, a test system was set up (Fig. 1). The system consists of an airflow generation system, an airtight metal filtration tube and an atmospheric particles detection system. The airflow generation system consists of an air velocity controller and a vacuum pump to generate stable air flow.The air velocity was detected by anemograph (KANOMAX 6006) and manometer (Shanghai Linsheng DP1000-1F). Sample was mounted in the middle of filtration tube. The atmospheric particles detection system consists of two CSJ-EⅡ laser particle counters, which could detect atmospheric particles amounts before and after filtration.

    To compare the filtration efficiency of PRPAN,PRPVA and PR20, a filtration efficiency experiment under the same air velocity of 0.1 m·s?1was carried out. Two kinds of commercial filtration materials(TM-F9, with the filtration efficiency between 90%and 99% and particle size larger than 1.0 μm; FR90NH13) the filtration efficiency higher than 99.99% for particle size larger than 0.5 μm, were also tested for comparison. Filtration tests were carried out under different air velocity in the range of 0.1-2 m·s?1. The sampling period was 1 min, and the sampling volume was 2.83 L·min?1, which means that the sampling air volume was 2.83 L.

    2.4 Benzene dynamic adsorption tests

    The benzene dynamic adsorption of the composites was measured by using a dynamic adsorption system in Fig. 2. Dynamic adsorption system consists of a controller, a thermostat (SPX-150AB), a rectangle reactor (2×2×4 cm3) coupled to a gas chromatography(SHIMADZU, GC-14c) and controlling computer.The hybrid fiber cloth was cut into square samples(2×2 cm2), which was supported by two square honeycomb ceramics (2×2×2 cm3). The benzene dynamic adsorption tests were carried out under 298 K. The concentration of mixture gas was controlled by adjusting the flow rates of nitrogen and benzene, and the flow rate of mixture gas was 200 mL·min?1. The mixture gas with 30×10?6benzene fed in the adsorption test system continuously until the benzene concentration of exhaust stream reached the set breakthrough concentration. The adsorption capacity of samples could be calculated through the following equations

    Mprepresents the total benzene adsorption amount (mol),tprepresents breakthrough time (min),c0represents the initial benzene concentration,c(t)represents the benzene concentration of exhaust stream (×10?6),vrepresents the flow rate of mixture gas (200 mL·min?1),Qprepresents the adsorption capacity of sample (mg·g?1),Mbenrepresents the molar mass of benzene (78.11 g·mol?1),mprepresents the m ass of sample (g).

    3 Results and discussion

    3.1 Morphologies of hybrid materials

    Fig. 3 shows the scanning electron microscopy(SEM) images of PRPVA and PRPAN. Both in PRPVA and PRPAN, a thin layer of smooth, continuous and dispersive electrospun nanofibers were formed on the surface of ACFC. It is difficult to find cross-linking between PVA nanofibers (Fig. 3a),however, it is easy to find some tubercle structure in PAN nanofibers layer (Fig. 3b).

    The SEM with high magnification in Fig. 3 shows that both the PAN nanofibers and PVA nanofibers have smooth surface, and the nanofibers of PAN and PVA are well dispersive. The average diameter of PVA electrospun nanofiber is about 500 nm(Fig. 3 (c)), while the average diameter of PAN electrospun nanofiber is about 300 nm (Fig. 3 (d)). The PAN nanofibers are thiner than the PVA nanofibers,which means PRPAN may have more electrospun nanofibers than PRPVA when the electrospinning nanofibers have the same mass. The difference between the PAN nanofibers and PVA nanofibers may affect the filtration and adsorption of materials.In order to discuss two series of electrospun nanofibers/ACFC hybrid, different amounts of nanofibers were electrospun on the ACFC, as listed in Table 1.

    Table 1 Features of electrospun nanofibers/phenolic resin based carbon fibers hybrid cloths.

    3.2 Filtration efficiency

    All filtration efficiencies of hybrid materials towards airborne particles were tested, as shown in Fig. 4. PR20 has the lowest filtration efficiency.However, PRPVA and PRPAN have high filtration performances. It indicates that the substrate material PR20 has little filtration against airborne particles,while the electrospun nanofibers endow the substrate material PR20 with air particle filtration ability. The filtration efficiency of PRPAN nanofiber is higher than PRPVA nanofibers when the electrospun nanofibers with the same mass are loaded, which may be due to the diameter difference between PAN nanofibers and PVA nanofibers, according to the Table 1.The PRPAN-1 and PRPVA-1 have loaded the same mass of electrospun nanofibers, as shown in Fig. 4.The PRPAN-1 has a higher filtration efficiency than PRPVA-1, and the PRPAN-2 and PRPVA-2 show the same trend. From Fig. 3(c, d), the average diameter of PAN and PVA nanofibers were obtained, and the PAN electrospun nanofibers is thinner than PVA electrospun nanofibers obviously. This difference makes the PRPAN have more nanofibers than PRPVA when the same mass nanofibers are loaded, leading to an advantage of PRPAN. The curves also illustrate a positive correlation between the filtration efficiency and electrospun nanofibers amount. The filtration efficiency of PRPAN-3 is close to the commercial filtration materials.

    The presented curves were obtained under a low air flow velocity of 0.1 m·s?1. The filtration experiments under different air velocities in the range of 0.1-2 m·s?1were carried out to obtain the filtration efficiency of PRPVA, PRPAN and commercial filter materials. The filtration efficiency increased with the increasing of electrospun nanofibers mass of hybrids(Fig. 4). Therefore, PRPVA-2 and PRPAN-3 were selected as typical samples for comparison with the commercial filtration material (FN90-H13). The filtration efficiency of three samples under different air flow velocity are shown in Fig. 5. The different color curves stand for different particle diameters (0.3, 0.5,1, 3 μm).

    Generally, the filtration efficiency of commercial filtration materials decreased with the increasing of air flow velocity[29]. Fig. 5 shows that the filtration efficiencies of PRPVA (Fig. 5a) and PRPAN (Fig. 5b)increased with the increasing of air velocity, which is contrary to the commercial high efficiency particulate air filter materials of FN90-H13 (Fig. 5c). It suggests that the PRPVA and PRPAN have an excellent filtration performance under a high air velocity. The electrostatic force between filter and particle could significantly improve the filtration performances of filter[22,30,31]. As the substrate of hybrid materials, the distance among activated carbon fibers is much lager than the particles diameter, indicating that the ACFC substrate will not affect the filtration. Therefore, the difference of hybrids with the commercial filter material could be attributed to the piezoelectric effect of electrospun nanofibers[32,33]. During the preparation of hybrid, a high voltage applied to the nanofibers makes electrospun nanofiber catch a lot of electrostatic charges, which play an important promoting role in the air particle filtration of electrospun nanofiber. In the process of filtration, a high air velocity will result in the deformation of hybrid, and the piezoelectric effect will become much stronger than that under low air velocity. Consequently, the generated charges will enhance the Coulombic force between the filter and air particles[7,30]. Therefore, the filtration efficiencies of PRPVA and PRPAN are positively correlated with air velocity, compared with the commercial filter media relied on mechanical filtration. The PRPVA and PRPAN prepared by electrospinning PVA and PAN nanofibers on ACFC cloths possess excellent filtration performance especially under high air velocity. It is promising for the hybrid materials to be used for air particles filtration under high air velocity.

    3.3 Dynamic adsorption

    Benzene dynamic adsorption experiment was carried out to verify benzene adsorption performance.The benzene breakthrough curves of PRPAN and PRPVA are shown in Fig. 6. For the same series of samples, the adsorption capacities of hybrid decreased with the increasing of electrospun nanofibers.Comparing two series of PRPVA and PRPAN samples, PRPAN series have better adsorption performances than PRPVA for the same electrospun nanofibers amount. The breakthrough adsorption capacities of the PRPAN and PRPVA samples were obtained by integration, as listed in Table 2. The benzene dynamic adsorption of PR20 was carried out to determine the adsorption capacity of the substrate material as 202 mg·g?1.

    Hybridizing with electrospun nanofibers, ACFC cloths are endowed with filtration ability against particles. However, their adsorption capacities towards VOC decreased. It can be seen from Table 2 that PRPAN-1 has a similar adsorption capacity to PR20, and the adsorption capacity of PRPVA-1 is 188.00 mg·g?1, which is lower than PR20. Thus, the adsorption performances were slightly affected by hybridizing tiny amount of electrospun nanofibers(0.36%). However, the adsorption capacity of hybrid materials decreased with the increasing of electrospun nanofibers. SEM image shows that the nanofibers are dense and spread randomly on the ACFC surface. Obvious pore coverage did not appear on sample surface, and the spreading of benzene molecule on the activated carbon cloth was somewhat blocked by the loaded electrospun nanofibers, leading to the decrease of adsorption capacity. When the nanofibers mass ratios reached at 2.47% (PRPAN-3) the adsorption capacity decreased by half (101 mg·g?1).The porous structure of activated carbon fiber plays an important role in the adsorption of VOC, and the surface coverage of nanofibers inevitably affected the porous structures of ACFC[26,34,35]. Because PAN nanofibers have thinner diameter, the PRPAN-series have less surface coverage and lower resistance to benzene molecular diffusion in comparison with PRPVAseries. Thus, the adsorption performances of PRPANseries are better than PRPVA-series. For the PRPAN-1 and PRPVA-1, tiny amount of electrospun nanofibers have little influence on the adsorption performances. The hybrid materials have a promising application in the simultaneous treatment of air particles and VOC.

    Table 2 Calculate adsorption capacity of samples.

    4 Conclusion

    In this work, 2 series of hybrids of electrospun nanofibers and activated carbon hybrid materials cloths (PRPVA and PRPAN) were prepared by electrospinning PVA and PAN nanofibers onto phenolic resin based ACFC. The air particles filtration efficiency of hybrid cloths increases with the increasing of air velocity, which are different from the commercial filter materials. This unique performance of hybrids of electrospun nanofibers and activated carbon cloths could be attributed to the piezoelectric effect introduced by electrospun nanofibers. Moreover, distinct from the traditional commercial filter materials,the hybridization of activated carbon cloths with electrospun nanofibers gives a high air particle filtration efficiency. In addition, the hybrids also have an excellent benzene adsorption performance. The advantages allow such hybrids of electrospun nanofibers and activated carbon cloths have a promising application in urban air purification, industrial waste gas treatment,and air pollution prevention and control.

    国产不卡一卡二| 精品久久蜜臀av无| 久久国产精品人妻蜜桃| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 一进一出好大好爽视频| 成人午夜高清在线视频 | 精品少妇一区二区三区视频日本电影| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 在线观看日韩欧美| 国产在线精品亚洲第一网站| 精品一区二区三区视频在线观看免费| 亚洲男人天堂网一区| 亚洲av第一区精品v没综合| 99久久精品国产亚洲精品| 窝窝影院91人妻| 老汉色∧v一级毛片| 免费电影在线观看免费观看| av超薄肉色丝袜交足视频| 国产v大片淫在线免费观看| 欧美乱码精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| av视频在线观看入口| 非洲黑人性xxxx精品又粗又长| 禁无遮挡网站| 91成人精品电影| www.自偷自拍.com| 久久久久九九精品影院| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品久久久久5区| 欧美激情高清一区二区三区| 久久亚洲真实| 男人的好看免费观看在线视频 | av超薄肉色丝袜交足视频| 嫩草影院精品99| 嫩草影院精品99| 在线观看免费日韩欧美大片| 老司机午夜十八禁免费视频| 女人被狂操c到高潮| 欧美大码av| 久久伊人香网站| 级片在线观看| tocl精华| 一个人观看的视频www高清免费观看 | 男人舔女人的私密视频| 精品少妇一区二区三区视频日本电影| 亚洲精品av麻豆狂野| 精品国内亚洲2022精品成人| 黄色毛片三级朝国网站| 国产免费男女视频| 日韩精品中文字幕看吧| 不卡一级毛片| 此物有八面人人有两片| 一a级毛片在线观看| 久久精品影院6| 日本a在线网址| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品在线美女| 波多野结衣巨乳人妻| 女性被躁到高潮视频| 亚洲熟女毛片儿| 亚洲精品中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 最好的美女福利视频网| 黄色视频不卡| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 国产视频内射| 国产在线精品亚洲第一网站| 91麻豆av在线| 男男h啪啪无遮挡| 免费在线观看视频国产中文字幕亚洲| 又黄又爽又免费观看的视频| 日本五十路高清| 久久中文看片网| 19禁男女啪啪无遮挡网站| 国产亚洲欧美在线一区二区| 久久久久九九精品影院| www国产在线视频色| 国产激情欧美一区二区| 成人国产综合亚洲| 亚洲成人免费电影在线观看| 久9热在线精品视频| 99国产精品一区二区蜜桃av| 亚洲精华国产精华精| 欧美日韩一级在线毛片| 日本撒尿小便嘘嘘汇集6| 级片在线观看| 精品久久久久久成人av| aaaaa片日本免费| 又大又爽又粗| 国产成人精品无人区| 久久香蕉激情| 国产单亲对白刺激| 亚洲天堂国产精品一区在线| 国产精品久久电影中文字幕| 热99re8久久精品国产| 在线观看免费日韩欧美大片| cao死你这个sao货| 亚洲九九香蕉| 日韩高清综合在线| 久久婷婷人人爽人人干人人爱| 在线观看舔阴道视频| 麻豆成人午夜福利视频| 国产欧美日韩一区二区三| 国产免费男女视频| 午夜激情福利司机影院| 他把我摸到了高潮在线观看| 日本熟妇午夜| 非洲黑人性xxxx精品又粗又长| 免费在线观看完整版高清| 女性被躁到高潮视频| 国产视频内射| 女生性感内裤真人,穿戴方法视频| 国产黄片美女视频| 成人国语在线视频| 欧美激情极品国产一区二区三区| 一边摸一边做爽爽视频免费| www国产在线视频色| a级毛片a级免费在线| 欧美激情久久久久久爽电影| 十分钟在线观看高清视频www| 国产精品一区二区三区四区久久 | 久久久久久久久中文| 最近在线观看免费完整版| 丰满的人妻完整版| 亚洲最大成人中文| xxxwww97欧美| 亚洲中文av在线| 欧美日韩黄片免| 久久午夜综合久久蜜桃| 99久久无色码亚洲精品果冻| 国产亚洲精品第一综合不卡| 真人做人爱边吃奶动态| 香蕉国产在线看| 一进一出好大好爽视频| 国产精品99久久99久久久不卡| 国产单亲对白刺激| 日韩欧美免费精品| av中文乱码字幕在线| 99国产精品99久久久久| tocl精华| 天堂动漫精品| 成人特级黄色片久久久久久久| 亚洲国产精品久久男人天堂| cao死你这个sao货| 丁香欧美五月| 国产精品亚洲美女久久久| 精品无人区乱码1区二区| videosex国产| 亚洲 国产 在线| 波多野结衣巨乳人妻| 热99re8久久精品国产| 久久久国产精品麻豆| 男人舔女人的私密视频| 国产激情偷乱视频一区二区| 最近在线观看免费完整版| 老汉色av国产亚洲站长工具| 在线观看www视频免费| 精品久久久久久久久久免费视频| 国产精华一区二区三区| 精品乱码久久久久久99久播| 国产一区二区三区在线臀色熟女| 操出白浆在线播放| 国内精品久久久久精免费| 动漫黄色视频在线观看| 国产欧美日韩一区二区三| 69av精品久久久久久| 国产亚洲欧美98| 一级毛片精品| 午夜激情av网站| 国产精品永久免费网站| 一边摸一边抽搐一进一小说| 国产精品,欧美在线| 亚洲 欧美 日韩 在线 免费| 精品国产乱子伦一区二区三区| 国产av又大| 国产一区二区在线av高清观看| ponron亚洲| 在线观看舔阴道视频| 欧美中文日本在线观看视频| 满18在线观看网站| 男女做爰动态图高潮gif福利片| 侵犯人妻中文字幕一二三四区| 国产av一区在线观看免费| 一本久久中文字幕| 老汉色av国产亚洲站长工具| 久久精品人妻少妇| 美国免费a级毛片| 色综合欧美亚洲国产小说| 免费人成视频x8x8入口观看| 精品国产美女av久久久久小说| 国产午夜福利久久久久久| 国产精品电影一区二区三区| 美女 人体艺术 gogo| 丝袜美腿诱惑在线| 老司机午夜十八禁免费视频| 日韩大尺度精品在线看网址| 看片在线看免费视频| 久久精品亚洲精品国产色婷小说| 国产精品乱码一区二三区的特点| 国语自产精品视频在线第100页| 亚洲av成人不卡在线观看播放网| 一级a爱视频在线免费观看| 亚洲九九香蕉| www日本黄色视频网| 又紧又爽又黄一区二区| 看免费av毛片| 少妇的丰满在线观看| 丝袜人妻中文字幕| 亚洲中文av在线| 男人舔女人下体高潮全视频| 亚洲电影在线观看av| 在线国产一区二区在线| 亚洲第一电影网av| 亚洲最大成人中文| 国产一级毛片七仙女欲春2 | 免费看十八禁软件| 久9热在线精品视频| 成年免费大片在线观看| 欧美国产日韩亚洲一区| 亚洲国产精品久久男人天堂| 99热6这里只有精品| 久久久久国内视频| 久久久精品欧美日韩精品| 色综合亚洲欧美另类图片| 国产精品影院久久| 午夜两性在线视频| 韩国av一区二区三区四区| 91大片在线观看| 免费在线观看成人毛片| 一级片免费观看大全| videosex国产| 国产av一区二区精品久久| 黄色 视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 日本一本二区三区精品| 首页视频小说图片口味搜索| 大香蕉久久成人网| 国内毛片毛片毛片毛片毛片| 免费电影在线观看免费观看| 国产亚洲精品第一综合不卡| 成人特级黄色片久久久久久久| 亚洲专区字幕在线| 50天的宝宝边吃奶边哭怎么回事| 成年女人毛片免费观看观看9| 成年人黄色毛片网站| 亚洲一码二码三码区别大吗| 国产黄a三级三级三级人| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久亚洲av鲁大| 亚洲五月色婷婷综合| 又黄又粗又硬又大视频| 高潮久久久久久久久久久不卡| 精品午夜福利视频在线观看一区| 制服诱惑二区| 亚洲黑人精品在线| 日韩视频一区二区在线观看| 国产精品免费一区二区三区在线| 丁香欧美五月| 亚洲 国产 在线| 亚洲熟女毛片儿| 岛国在线观看网站| 亚洲国产欧美网| 精品国产乱子伦一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美激情综合另类| 成人手机av| 日日干狠狠操夜夜爽| 成人免费观看视频高清| 香蕉av资源在线| 亚洲国产看品久久| 婷婷精品国产亚洲av在线| 不卡一级毛片| 又紧又爽又黄一区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久国产亚洲av麻豆专区| 欧美国产日韩亚洲一区| 亚洲成国产人片在线观看| 99久久国产精品久久久| 久久午夜亚洲精品久久| 免费看十八禁软件| cao死你这个sao货| 日本免费a在线| 亚洲av电影在线进入| 在线天堂中文资源库| 欧美激情 高清一区二区三区| 国产精品香港三级国产av潘金莲| 午夜免费成人在线视频| 亚洲电影在线观看av| 国产精品免费视频内射| 欧美日韩瑟瑟在线播放| 久久精品亚洲精品国产色婷小说| 波多野结衣巨乳人妻| 成人一区二区视频在线观看| 观看免费一级毛片| 黄色丝袜av网址大全| 成人亚洲精品一区在线观看| 久久久水蜜桃国产精品网| 美女高潮喷水抽搐中文字幕| 婷婷六月久久综合丁香| 久久国产乱子伦精品免费另类| 久久欧美精品欧美久久欧美| 久久久久久九九精品二区国产 | 国产成人精品久久二区二区免费| 啦啦啦观看免费观看视频高清| 久久国产精品人妻蜜桃| 亚洲天堂国产精品一区在线| www.熟女人妻精品国产| 日本三级黄在线观看| 美女扒开内裤让男人捅视频| 女人被狂操c到高潮| 日韩一卡2卡3卡4卡2021年| 久99久视频精品免费| 国产真实乱freesex| 麻豆成人午夜福利视频| 国产欧美日韩一区二区精品| 后天国语完整版免费观看| 久久午夜亚洲精品久久| 男人操女人黄网站| 国产真实乱freesex| 国产精品美女特级片免费视频播放器 | 超碰成人久久| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 99riav亚洲国产免费| 成人三级做爰电影| 亚洲欧洲精品一区二区精品久久久| 久久午夜综合久久蜜桃| 国内精品久久久久精免费| 久久 成人 亚洲| 久久精品国产综合久久久| 女人爽到高潮嗷嗷叫在线视频| 国产伦一二天堂av在线观看| 天天一区二区日本电影三级| 老熟妇乱子伦视频在线观看| 国产精品免费视频内射| 亚洲 欧美 日韩 在线 免费| 99久久久亚洲精品蜜臀av| 日韩欧美国产一区二区入口| av欧美777| 在线观看免费日韩欧美大片| 法律面前人人平等表现在哪些方面| 熟妇人妻久久中文字幕3abv| av中文乱码字幕在线| 久久久久久久午夜电影| 久久久国产成人免费| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 人人妻,人人澡人人爽秒播| 日韩 欧美 亚洲 中文字幕| 亚洲激情在线av| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 一边摸一边抽搐一进一小说| 久久久国产成人免费| 两人在一起打扑克的视频| 亚洲精品国产一区二区精华液| 国产aⅴ精品一区二区三区波| 一级毛片女人18水好多| netflix在线观看网站| 亚洲自偷自拍图片 自拍| 少妇 在线观看| 欧美一区二区精品小视频在线| 免费看a级黄色片| 日韩欧美一区视频在线观看| 岛国视频午夜一区免费看| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情极品国产一区二区三区| 亚洲九九香蕉| a在线观看视频网站| 久久久精品国产亚洲av高清涩受| 色综合欧美亚洲国产小说| xxx96com| 久久久久免费精品人妻一区二区 | 麻豆久久精品国产亚洲av| 亚洲精品一区av在线观看| 国产蜜桃级精品一区二区三区| 黄色视频不卡| 国产成人精品无人区| 久久午夜亚洲精品久久| 久久久久久亚洲精品国产蜜桃av| 国内久久婷婷六月综合欲色啪| 亚洲 欧美一区二区三区| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 人人妻人人澡欧美一区二区| 国产精品久久久久久精品电影 | 欧洲精品卡2卡3卡4卡5卡区| 日日爽夜夜爽网站| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 国产野战对白在线观看| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 日本免费a在线| 真人一进一出gif抽搐免费| 久久久久国产一级毛片高清牌| 精品久久久久久久久久免费视频| 亚洲国产中文字幕在线视频| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 妹子高潮喷水视频| 成人三级黄色视频| 天堂√8在线中文| 69av精品久久久久久| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 91在线观看av| 亚洲中文字幕一区二区三区有码在线看 | 老司机靠b影院| 久久精品夜夜夜夜夜久久蜜豆 | 又黄又粗又硬又大视频| 999精品在线视频| 日本 av在线| 久久中文字幕一级| 制服诱惑二区| 日本三级黄在线观看| 亚洲第一青青草原| 日本免费a在线| 国产极品粉嫩免费观看在线| 国产精品永久免费网站| 久久精品亚洲精品国产色婷小说| 老汉色∧v一级毛片| 久久亚洲精品不卡| 丝袜美腿诱惑在线| 在线观看免费午夜福利视频| 高清在线国产一区| 老司机深夜福利视频在线观看| 国产爱豆传媒在线观看 | 国产精品综合久久久久久久免费| 少妇被粗大的猛进出69影院| 性色av乱码一区二区三区2| 一进一出抽搐动态| xxx96com| 亚洲专区国产一区二区| 成人三级黄色视频| 91成年电影在线观看| 在线观看免费日韩欧美大片| www.精华液| 日本熟妇午夜| 91成人精品电影| 国产精品爽爽va在线观看网站 | 可以免费在线观看a视频的电影网站| 久久 成人 亚洲| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区三| 久久精品国产清高在天天线| 在线观看日韩欧美| 日本成人三级电影网站| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9| 一边摸一边做爽爽视频免费| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 国产一级毛片七仙女欲春2 | 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| 日本免费a在线| 国产单亲对白刺激| 搞女人的毛片| 美女免费视频网站| 精品免费久久久久久久清纯| 欧美中文日本在线观看视频| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看 | 国产又色又爽无遮挡免费看| 最近最新中文字幕大全免费视频| 精品国产国语对白av| 国产精品,欧美在线| 两人在一起打扑克的视频| 久久香蕉精品热| 叶爱在线成人免费视频播放| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 一本久久中文字幕| 国产伦一二天堂av在线观看| 国产欧美日韩精品亚洲av| 99热6这里只有精品| 国产伦在线观看视频一区| 美女免费视频网站| 亚洲黑人精品在线| 级片在线观看| 丝袜在线中文字幕| 久久久久久久午夜电影| aaaaa片日本免费| 日韩国内少妇激情av| 中文字幕人成人乱码亚洲影| 久久亚洲真实| 国产又黄又爽又无遮挡在线| 国产一级毛片七仙女欲春2 | 亚洲精品国产一区二区精华液| 国产黄片美女视频| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 老司机靠b影院| 国产精品一区二区三区四区久久 | 色综合欧美亚洲国产小说| av免费在线观看网站| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 美女大奶头视频| 1024视频免费在线观看| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| or卡值多少钱| 成人亚洲精品av一区二区| 熟女电影av网| 亚洲精品国产精品久久久不卡| xxxwww97欧美| 婷婷精品国产亚洲av| 十八禁网站免费在线| xxxwww97欧美| 黄色成人免费大全| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 少妇 在线观看| 亚洲精品国产精品久久久不卡| 性欧美人与动物交配| 精品少妇一区二区三区视频日本电影| 长腿黑丝高跟| 国产亚洲欧美98| 精品不卡国产一区二区三区| 亚洲中文av在线| 亚洲第一欧美日韩一区二区三区| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 国产亚洲欧美精品永久| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 免费观看人在逋| 黄片播放在线免费| 亚洲成人精品中文字幕电影| 久久久久国内视频| 色播在线永久视频| 黄色女人牲交| 国产成人av教育| 一级a爱视频在线免费观看| 黄色视频不卡| 欧美中文综合在线视频| 91字幕亚洲| 午夜福利在线观看吧| 在线国产一区二区在线| 国产精品久久久久久精品电影 | 日本成人三级电影网站| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 亚洲精品一区av在线观看| 一区二区三区精品91| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 久久草成人影院| 欧美一区二区精品小视频在线| 人成视频在线观看免费观看| 国产1区2区3区精品| 在线永久观看黄色视频| 精品一区二区三区四区五区乱码| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美激情综合另类| 日本黄色视频三级网站网址| 51午夜福利影视在线观看| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 国产亚洲欧美98| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 搡老熟女国产l中国老女人| 亚洲熟妇中文字幕五十中出| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 日本成人三级电影网站| 黄频高清免费视频| 99国产精品99久久久久| 日韩欧美三级三区| 午夜久久久在线观看| 2021天堂中文幕一二区在线观 | 欧美激情久久久久久爽电影| 久久久国产精品麻豆| 精品国产乱子伦一区二区三区| 久热这里只有精品99| 少妇的丰满在线观看| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 麻豆成人av在线观看| cao死你这个sao货| 中文字幕精品免费在线观看视频| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 国产黄色小视频在线观看| 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线|