• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Associations of gut microbiota with dyslipidemia based on sex differences in subjects from Northwestern China

    2022-08-11 02:36:56LeiGuoYangYangWangJiHanWangHePingZhaoYanYuGuoDongWangKunDaiYuZhuYanYanJieYangJingLv
    World Journal of Gastroenterology 2022年27期

    Lei Guo, Yang-Yang Wang, Ji-Han Wang, He-Ping Zhao, Yan Yu, Guo-Dong Wang, Kun Dai, Yu-Zhu Yan,Yan-Jie Yang, Jing Lv

    Abstract BACKGROUND The gut microbiota (GM) has been proven to play a role in the regulation of host lipid metabolism, which provides a new theory about the pathogenesis of dyslipidemia. However, the associations of GM with dyslipidemia based on sex differences remain unclear and warrant elucidation.AIM To investigate the associations of GM features with serum lipid profiles based on sex differences in a Chinese population.METHODS This study ultimately recruited 142 participants (73 females and 69 males) at Honghui Hospital, Xi’an Jiaotong University. The anthropometric and blood metabolic parameters of all participants were measured. According to their serum lipid levels, female and male participants were classified into a high triglyceride (H_TG) group, a high total cholesterol(H_CHO) group, a low high-density lipoprotein cholesterol (L_HDL-C) group, and a control(CON) group with normal serum lipid levels. Fresh fecal samples were collected for 16S rRNA gene sequencing. UPARSE software, QIIME software, the RDP classifier and the FAPROTAX database were used for sequencing analyses.RESULTS The GM composition at the phylum level included Firmicutes and Bacteroidetes as the core GM.Different GM features were identified between females and males, and the associations between GM and serum lipid profiles were different in females and males. The GM features in different dyslipidemia subgroups changed in both female patients and male patients. Proteobacteria,Lactobacillaceae, Lactobacillus and Lactobacillus_salivarius were enriched in H_CHO females compared with CON females, while Coriobacteriia were enriched in L_HDL-C females. In the comparison among the three dyslipidemia subgroups in females, Lactobacillus_salivarius were enriched in H_CHO females, and Prevotellaceae were enriched in L_HDL-C females. Compared with CON or H_TG males, Prevotellaceae, unidentified_Ruminococcaceae, Roseburia and Roseburia_inulinivorans were decreased in L_HDL-C males (P value < 0.05), and linear discriminant analysis effect size analysis indicated an enrichment of the above GM taxa in H_TG males compared with other male subgroups. Additionally, Roseburia_inulinivorans abundance was positively correlated with serum TG and total cholesterol levels, and Roseburia were positively correlated with serum TG level. Furthermore, Proteobacteria (0.724, 95%CI: 0.567-0.849), Lactobacillaceae (0.703, 95%CI: 0.544-0.832), Lactobacillus (0.705, 95%CI: 0.547-0.834) and Lactobacillus_salivarius (0.706, 95%CI: 0.548-0.835) could distinguish H_CHO females from CON females, while Coriobacteriia (0.710, 95%CI: 0.547-0.841), Coriobacteriales (0.710, 95%CI: 0.547-0.841), Prevotellaceae (0.697, 95%CI: 0.534-0.830), Roseburia (0.697, 95%CI: 0.534-0.830) and Roseburia_inulinivorans (0.684, 95%CI: 0.520-0.820) could discriminate H_TG males from CON males. Based on the predictions of GM metabolic capabilities with the FAPROTAX database, a total of 51 functional assignments were obtained in females, while 38 were obtained in males. This functional prediction suggested that cellulolysis increased in L_HDL-C females compared with CON females, but decreased in L_HDL-C males compared with CON males.CONCLUSION This study indicates associations of GM with serum lipid profiles, supporting the notion that GM dysbiosis may participate in the pathogenesis of dyslipidemia, and sex differences should be considered.

    Key Words: Dyslipidemia; Gut microbiota; 16S rRNA; Sequencing; Sex differences; Northwestern China

    INTRODUCTION

    Obesity has become a worldwide public health challenge, with its prevalence nearly tripled since 1975[1]. Obesity is defined as a chronic accumulation of excessive lipids in tissues[2], which is related to the disruption of lipid metabolism[3]. As a defect in lipid metabolism, dyslipidemia is defined as any abnormality in blood lipid levels, and is characterized by an elevation of circulating triglyceride (TG),total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C), or a decrease in high-density lipoprotein cholesterol (HDL-C). Since observational studies have shown that 60%-70% of adults have lipid levels outside the recommended range[4,5], it is essential to reveal the underlying mechanism of dyslipidemia. Circulating lipid levels are known to have an important genetic contribution from over 500 single-nucleotide polymorphisms in more than 150 Loci, explaining approximately 40% of the total individual variation[6]. However, the unexplained 60% variation has been attributed to undiscovered elements and unquantified environmental factors, such as dietary intake and physical activity[7,8]. In recent years, considerable progress has been made in elucidating the mechanism responsible for dyslipidemia, and accumulated evidence has shown that the gut microbiota (GM) may play a potential role in obesity and related metabolic diseases, such as dyslipidemia[9-12].

    The human gastrointestinal tract harbors over 100 trillion microorganisms[13], and the gut bacteria having effects on human health are the most prevalent and well-studied. In humans, GM profiles vary among different ethnicities (host genetics) and between different sexes[14,15], and are mainly shaped by early life events and stabilize in adolescence[16]. However, its composition and activity can be dynamic,and may be altered dramatically by multiple factors, such as medications, chronic dietary patterns and other environmental exposures[15,17,18]. This “microbial organ” has been recognized to perform various physiological functions[19-21], and is often called “a new virtual metabolic organ”[22,23]. The first indication of associations between GM and disorder statuses were for inflammation[24], and altered GM community (dysbiosis) has now been established in the development of cardiometabolic phenotypes[25]. These lines of evidence have raised an interest in GM as an important candidate in accounting for the unexplained variation in serum lipid levels in humans, and as a target for the therapeutic benefit of dyslipidemia[26]. Recent studies have convincingly linked GM to dyslipidemia,and GM was reported to explain substantial variation in TG and HDL-C levels independent of genetic factors in a Dutch study[26]. In addition, accumulating data from animal studies demonstrate that GM can affect host lipid metabolism through multiple direct and indirect biological mechanisms[27,28].Nevertheless, determining associations between GM and host lipid metabolism remains a challenge in humans. Furthermore, sex is an important factor that may influence GM profiles, and sex differences can be observed in serum lipid profiles[29-31]. However, the relationship between GM and dyslipidemia based on sex differences remains unclear.

    Collectively, ethnicity, geography and sex are potent factors that could influence the GM community[14,15,32]. Thus, this study focused on the associations of GM features with dyslipidemia based on sex differences in a northwestern Chinese population. We first reveal sex differences regarding GM features and then introduce dyslipidemia, highlighting its intricate relationships with GM, and discuss possible altered GM functions.

    MATERIALS AND METHODS

    Study design

    From July 2018 to January 2020, this study recruited 206 adult individuals (107 females and 99 males)from the outpatient clinics at Honghui Hospital, Xi’an Jiaotong University, China. Individuals were excluded if one of the following conditions existed: (1) With any gastrointestinal diseases, infectious or chronic diseases, serious systematic dysfunctions, or surgery histories of the gastrointestinal tract; (2)Taking any medications that could disrupt the original GM community, such as probiotics or prebiotics,antimicrobial therapies, anti-inflammatory drugs, acid-suppressing drugs, immunosuppressants, or anti-dyslipidemia/anti-dysglycemia/anti-hypertension drugs within the past month prior to sampling[33]; and (3) Females who were pregnant or lactating. The individuals who met the above conditions were included as participants in this study, and informed consent was obtained. Finally, 142 participants (73 females and 69 males) were recruited, including 81 dyslipidemia patients and 61 controls (CON) with normal serum lipid levels. Data privacy was ensured by using anonymized identifiers, and the study flow is shown in Figure 1. This study was approved by the Ethical Committee of Honghui Hospital, Xi’an Jiaotong University (Protocol Number: 201801022, approved January 8,2018).

    Measurement of anthropometric parameters

    Figure 1 Flow chart of this study. WC: Waist circumference; BMI: Body mass index; WHR: Waist circumference/height ratio; BP: Blood pressure; FPG: Fasting plasma glucose; TG: Triglyceride; TC: Total cholesterol; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; CVAI: Chinese visceral adiposity index; GM: Gut microbiota; H_TG: High triglyceride group; H_CHO: High cholesterol group; L_HDL-C: Low high-density lipoprotein cholesterol group.

    On their first visit, related medical information was documented for all participants. Body weight (W)and height (H) were measured without shoes and heavy clothing to the nearest 0.1 cm and 0.1 kg,respectively. Waist circumference (WC) was measured in the middle of the lower rib margin and the iliac crest with a nonexpandable tape to the nearest 0.1 cm in the standing position. Body mass index(BMI) and WC/height ratio (WHR) were calculated accordingly. Blood pressure (BP) was assessed using a medical electronic sphygmomanometer (HEM-7130 professional, OMRON, Dalian, China) on the left arm positioned at the heart level with palm face up in a sitting position. The participants were required to rest in a seated position for at least 5 min before BP assessment, with triplicate measurements at 1-min intervals. All equipment was calibrated at the beginning of the study.

    Detection and computation of metabolic indicators

    Venous blood samples were drawn from an antecubital vein in the morning following an overnight (at least 8 h) fast. Levels of fasting plasma glucose, TG, TC, LDL-C and HDL-C were detected by an automatic biochemical analyzer (Cobas c701, Roche, Mannheim, Germany). This instrument system was calibrated regularly. Moreover, the Chinese visceral adiposity index (CVAI) was calculated using the formula[34]: CVAI for females = -187.32 + 1.71 × age + 4.23 × BMI + 1.12 × WC (cm) + 39.76 × Log10TG(mmol/L) - 11.66 × HDL-C (mmol/L), and CVAI for males = -267.93 + 0.68 × age + 0.03 × BMI + 4.00 ×WC + 22.00 × Log10TG - 16.32 × HDL-C.

    Diagnostic criteria and grouping

    In accordance with the “Guidelines for prevention and treatment of dyslipidemia in Chinese adults”(revised in 2016)[35] and the stratification standard of dyslipidemia in the primary prevention population of arteriosclerotic cardiovascular disease in China[36], dyslipidemia was defined as the presence of one or more abnormal serum lipid levels without any lipid-lowering medication: TG ≥ 1.7 mmol/L, TC ≥ 5.2 mmol/L, LDL-C ≥ 3.4 mmol/L, and/or HDL-C < 1.0 mmol/L. Subsequently,participants were divided into subgroups according to their serum lipid profiles. Specifically, patients were classified into the high TG (H_TG) group if only high TG level existed. Patients with increased serum TC and/or LDL-C levels and without HDL-C or TG abnormalities were classified into the high cholesterol (H_CHO) group. Patients were classified into the low HDL-C (L_HDL-C) group if only low serum HDL-C level existed. Participants with normal serum lipid profiles served as CON.

    Fecal sample collection, DNA extraction, and 16S rRNA gene sequencing

    Fresh fecal samples were collected from each participant at home, and stored in foam boxes with frozen cold packs[37]. Within 6 h after defecation, all fecal samples were transported to the Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, and immediately stored at -80 °C until further processing. Genomic DNA was extracted from all samples using the QIAamp Fast DNA Stool Mini Kit(Qiagen, Hilden, Germany) following the manufacturer’s instructions. After quality evaluation and concentration determination, DNA samples, greater than 1 μg and with an OD value between 1.8-2.0,were considered to be qualified for subsequent sequencing. Then, the V3-V4 regions of the 16S rRNA gene were amplified by universal primers (338F: 5’-ACT CCT ACG GGA GGC AGC AG-3’; 806R: 5’-GGA CTA CHV GGG TWT CTA AT-3’) with barcodes, and all PCRs were performed using Phusion?High Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, United States). Next, the PCR products were mixed and purified using a GeneJETTMGel Extraction Kit (Thermo Scientific, Waltham,MA, United States). The sequencing library for each sample was constructed with the NEB Next?UltraTMDNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, United States), and library quality was assessed on a Qubit?2.0 Fluorometer (Thermo Scientific, Waltham, MA, United States).Finally, the generated libraries were pair-end (2 × 250 bp) sequenced on the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, United States).

    16S rRNA gene sequencing analyses

    UPARSE (v7.0.1001) and QIIME software (v1.7.0) were introduced for sequencing analyses. According to a similarity threshold of 97%, acquired clean reads with high quality were de novo clustered into the same operational taxonomic unit (OTU), and the representative sequence of each OTU was screened and used to annotate taxonomic information based on the RDP classifier (v2.2). The GM diversity and composition were assessed based on the annotated OTUs. The alpha diversity (α-diversity) of GM was estimated by four indices, including Chao1, abundance coverage-based estimator (Ace), Shannon and Simpson. The comparisons of these indices between groups were conducted by the Wilcoxon rank-sum test, using functionwilcox.testfrom the R package stats. To investigate the significance of differences in the GM community, beta diversity (β-diversity) was estimated using the unweighted UniFrac method to calculate the distances between samples, and visualized by the principal coordinates analysis (PCoA)model. The “WGCNA”, “stats” and “ggplot2” packages in R were utilized. The top ten GM taxa sorted by higher relative abundances at the six taxonomic levels, including phylum, class, order, family, genus and species, were identified and visualized in each group. The linear discriminant analysis (LDA) effect size (LEfSe) algorithm was applied to identify the enriched significant taxa in each group. The LDA score threshold was set to 2 on a log10 scale. The FAPROTAX (v1.2.2) database, containing 90 different types of metabolic assignments, was introduced to obtain the functional information of the GM community[38], and the differences between groups were assessed by the Wilcoxon rank-sum test, with aPvalue < 0.05 considered significant.

    Statistical analysis

    SPSS (v23.0.0.0, IBM SPSS Inc., Chicago, IL), R platform (v4.0.2, R Foundation, Vienna, Austria),GraphPad Prism (v8.4.3, GraphPad Software Inc., San Diego, CA, United States) and MedCalc (v19.0.4,MedCalc Software Bvba, Ostend, Belgium) were employed for statistical analysis and figure construction. The normal distribution of quantitative variables was assessed by the Shapiro-Wilk test.Clinical parameters are presented as the mean ± SD, and were analyzed among groups by the variance analysis (ANOVA) or Welch’s ANOVA depending on the homogeneity of variance. In addition, the Games-Howell test was used for multiple comparisons if aPvalue < 0.05 existed. The “ggcorrplot”package in R was utilized for Spearman correlation analysis between clinical parameters. Moreover,Spearman correlation analysis was also applied to evaluate the potential associations between GM features and clinical parameters, using the functioncor.test (method=spearman)in R. Receiver operating characteristic (ROC) curve analysis, with areas under the curve, was applied to evaluate the diagnostic performance of specific GM taxa. All statistical tests with aPvalue < 0.05 were considered significant.

    The bioinformatics analyses and statistical methods/techniques mentioned in this study were conducted, verified and reviewed by our expert Ji-Han Wang, PhD, from Institute of Medical Research,Northwestern Polytechnical University, and Guo-Dong Wang, Master Degree, from Department of Quality Control, Xi’an Mental Health Center.

    RESULTS

    Basic information of the study population

    The present study finally included 142 participants (73 females and 69 males), as shown in Figure 1.Table 1 shows the clinical characteristics of all the participants grouped by sex and serum lipid profiles.Serum lipid levels and CVAI showed differences among female subgroups as did height, WC and WHR(Pvalue < 0.05). Serum lipid levels and CVAI showed differences among male subgroups as well (Pvalue < 0.05). Please refer to Supplementary Table 1 for detailed information and differences between females and males. The correlation analysis between the clinical characteristics of females and males is shown in Figure 2, and indicates positive correlations between the serum lipid indicators.

    Table 1 Clinical characteristics of the study population

    Diversity analysis of GM in the study population

    To identify the associations of GM features with serum lipid profiles, we performed 16S rRNA gene sequencing analyses of GM from fecal samples. After quality CON, sequencing reads from 142 fecal samples were processed to determine the OTUs. Our data indicated that females had more unique OTUs, and the number of common OTUs shared by the female subgroups was larger than that shared by the male subgroups (data not shown).

    We evaluated the diversity of the GM community to assess the richness and evenness for females and males, and Shannon and Simpson indices suggested a higher α-diversity in females (Pvalue < 0.05,Figure 3A). In addition, a dissimilarity between females and males was observed according to the visualized PCoA model for β-diversity analysis (Figure 3B). Since sex is an important determinant of GM and serum lipids[30,32,39], the study population was divided into a female group and a male group for the subsequent analyses.

    To reveal the associations of GM diversity with serum lipid profiles based on sex differences, we conducted analogous analyses in the enrolled females and males. Our results showed that the αdiversity of GM was different in different dyslipidemia subgroups in females and males (Figure 3C and D). Of note, the α-diversity in L_HDL-C females was higher than that in CON females (Pvalue < 0.05),while it was lower in L_HDL-C males than that in CON males (Pvalue < 0.05). Additionally, the αdiversity of GM in H_TG males was higher than that in L_HDL-C males (Pvalue < 0.05). The PCoA results suggested that the GM community in different dyslipidemia subgroups varied from that in the CON group in females and males, respectively, but could not be separated accurately and clearly (data not shown). Furthermore, the α-diversity of GM was found to be correlated with the serum lipid profiles and CVAI in males (Figure 3E). Specifically, the Chao1, Ace and Shannon indices were positively correlated with the serum HDL-C levels, while the Chao1 and Ace indices were negatively correlated with CVAI. However, similar results could not be observed in females. The bioinformatics analyses above revealed the associations between the general state of GM and the human serum lipid profiles.

    Figure 2 Correlations between the clinical characteristics in the study population. A: Correlations between the clinical characteristics of the enrolled females; B: Correlations between the clinical characteristics of the enrolled males. The circle represents the correlation coefficient of each two parameters (P value <0.05). The number presented in the circle is the correlation coefficient. The larger the absolute value is, the stronger the correlation is. Blue indicates a negative correlation and orange indicates a positive correlation. The depth of the color represents the strength of the correlation. The deeper the color is, the stronger the correlation is. The “ggcorrplot” package in R was utilized for Spearman’s correlation analysis. WC: Waist circumference; BMI: Body mass index; WHR: Waist circumference/height ratio; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; TG: Triglyceride; TC: Total cholesterol; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; CVAI: Chinese visceral adiposity index.

    Figure 3 Diversity analysis of gut microbiota in the study population. A: Violin plots of α-diversity analysis of gut microbiota (GM) in females and males of the study population. Each plot represents one index of the α-diversity distribution of GM, including Chao1, Ace, Shannon and Simpson indices, for each group.The Wilcoxon rank-sum test was used to evaluate the differences between groups; B: Plots of principal coordinate analysis (PCoA) based on the operational taxonomic unit level in females and males of the study population. Each square represents the GM community in one sample, and the axis title represents the percentage change of interpretation. The distance between squares represents the similarity or dissimilarity of the GM community in the study population, and PCoA analysis was conducted by unweighted UniFrac method; C: Violin plots of α-diversity analysis of GM in females of the study population; D: Violin plots of α-diversity analysis of GM in males of the study population; E: Correlations between GM diversity and serum lipid profiles in males of the study population. Spearman’s correlation analysis was conducted. The number presented in each cell is the correlation coefficient. The larger the absolute value is, the stronger the correlation is.Blue indicates a negative correlation and red indicates a positive correlation. The depth of the color represents the strength of the correlation. The deeper the color is,the stronger the correlation is. aP < 0.05, bP < 0.01, cP < 0.001, dP < 0.1. TG: Triglyceride; TC: Total cholesterol; LDL-C: Low-density lipoprotein cholesterol; HDL-C:High-density lipoprotein cholesterol; CVAI: Chinese visceral adiposity index; H_CHO: High total cholesterol; H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    Taxonomic composition of GM in the study population

    After diversity analysis, we focused on the relative abundances of GM taxa at six different taxonomic levels in different groups, and the top ten taxa with higher relative abundances at each level are shown in Supplementary Figure 1 for females and males. Similarly, the top ten taxa at each level were identified in the female subgroups (Figure 4). Consistent with previous data, the GM composition at the phylum level included Firmicutes and Bacteroidetes as the core GM, with lower relative abundances of Actinobacteria, Proteobacteria and others. The most abundant GM taxa were Clostridia, Bacteroidia,Clostridiales, Bacteroides, Ruminococcaceae, Lachnospiraceae, Bacteroidaceae,FaecalibacteriumandBacteroides. GM taxa with relative abundances of no less than 0.0001 at each level were included in the following analyses. The relative abundances of Proteobacteria, Lactobacillaceae andLactobacilluswere no less than 0.010 in H_CHO females, and were greater than those in CON females (Pvalue < 0.05);while the relative abundance of Coriobacteriia was higher in L_HDL-C females than that in CON females (Pvalue < 0.05). In the comparison of H_CHO and L_HDL-C females, Prevotellaceae abundance was greater in L_HDL-C females (Pvalue < 0.05), andLactobacillus_salivariusabundance was greater in H_CHO females (Pvalue < 0.05). In the comparison of H_CHO and H_TG females,Agathobacterabundance was higher in H_TG females (Pvalue < 0.05), while the relative abundances ofRuminococcus_bromiiandLactobacillus_salivariuswere higher in H_CHO females (Pvalue < 0.05).Additionally, Prevotellaceae abundance was greater in L_HDL-C females than that in H_TG females (Pvalue < 0.05). Subsequently, analogous comparison analysis was conducted in the male subgroups(Figure 5). The most abundant taxa were Clostridia, Bacteroidia, Clostridiales, Bacteroidales, Ruminococcaceae, Lachnospiraceae,Faecalibacterium,Bifidobacterium,Bifidobacterium_pseudocatenulatumandClostridium_disporicum. In the comparison of L_HDL-C and CON males, the relative abundances of Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae,unidentified_Ruminococcaceae,RoseburiaandRoseburia_inulinivoranswere lower in L_HDL-C males (Pvalue < 0.05). Meanwhile, Coriobacteriia,Coriobacteriales, Prevotellaceae,unidentified_Ruminococcaceae,RoseburiaandRoseburia_inulinivoranswere lower in L_HDL-C males than those in H_TG males (Pvalue < 0.05). Interestingly, no differences were observed in the comparison between the H_TG group and CON group (Pvalue > 0.05) in females or males.

    LEfSe analysis was conducted in different dyslipidemia subgroups and the CON group in females and males. Compared with CON females (Figure 6), LEfSe analysis revealed the enrichment of Proteobacteria, Lactobacillaceae,LactobacillusandLactobacillus_salivariusin H_CHO females, and the enrichment of Coriobacteriia in L_HDL-C females. In the comparison among the three dyslipidemia subgroups in females,Lactobacillus_salivariuswere enriched in H_CHO females, and Prevotellaceae were enriched in L_HDL-C females. Simultaneously, LEfSe analysis revealed that Prevotellaceae,unidentified_Ruminococcaceae,Roseburia,Roseburia_inulinivorans, Coriobacteriia, Coriobacteriales and Verrucomicrobiae were enriched in H_TG males compared with other males (Figure 7).

    Associations of GM taxa with serum lipid profiles in the study population

    To further explore the clinical implications of GM in dyslipidemia, Spearman correlation analysis was introduced to assess the associations between differential GM taxa and the serum lipid profiles/CVAI,and a number of reliable correlations were revealed. In females, a positive correlation ofBacteroides_coprocolawith serum TG level was observed, while negative correlations of Bacteroidetes,Bacteroidia and Bacteroidales with CVAI were noted (Pvalue < 0.05, Figure 8A). Moreover, more correlations were identified in males (Pvalue < 0.05, Figure 8B). Specifically, the relative abundances of Actinobacteria, unidentified_Actinobacteria, Bifidobacteriales, Bifidobacteriaceae andBifidobacteriumwere negatively correlated with the serum TG and TC levels, the relative abundance ofRoseburia_inulinivoranswas positively correlated with the serum TG and TC levels, and the relative abundance ofRoseburiawas positively correlated with the serum TG level. In addition, the relative abundances of Leuconostocaceae,WeissellaandWeissella_cibariawere correlated with increased serum TC and LDL-C levels, and the relative abundance ofBacteroides_vulgatuswas correlated with decreased serum LDL-C level. Furthermore, we found that the relative abundances of Bacteroidetes, Bacteroidia,Bacteroidales, Coriobacteriales, Prevotellaceae,unidentified_RuminococcaceaeandRoseburia_inulinivoranswere positively correlated with serum HDL-C level, and the relative abundances of Bacteroidetes,Bacteroidia, Bacteroidales andBacteroides_vulgatuswere negatively correlated with CVAI in males.

    To search for the specific GM taxa that may facilitate the differentiation of lipid profiles in dyslipidemia patients from CON, ROC curve analysis was conducted in the female and male subgroups (Pvalue < 0.05, Figure 9). The GM taxa, that effectively distinguished H_CHO females from CON females,were Proteobacteria (0.724, 95%CI: 0.567-0.849), Lactobacillaceae (0.703, 95%CI: 0.544-0.832),Lactobacillus(0.705, 95%CI: 0.547-0.834) andLactobacillus_salivarius(0.706, 95%CI: 0.548-0.835). In addition, Coriobacteriia (0.697, 95%CI: 0.546-0.822) may help discriminate L_HDL-C females from CON females.Moreover, the GM taxa in favor of the differentiation of H_TG males from CON males were Coriobacteriia (0.710, 95%CI: 0.547-0.841), Coriobacteriales (0.710, 95%CI: 0.547-0.841), Prevotellaceae (0.697,95%CI: 0.534-0.830),Roseburia(0.697, 95%CI: 0.534-0.830) andRoseburia_inulinivorans(0.684, 95%CI:0.520-0.820). Additionally, seven GM taxa may play a role in distinguishing L_HDL-C males from CON males: Bacteroidetes (0.676, 95%CI: 0.539-0.794), Bacteroidia (0.676, 95%CI: 0.539-0.794), Bacteroidales(0.676, 95%CI: 0.538-0.793), Prevotellaceae (0.685, 95%CI: 0.548-0.802),unidentified_Ruminococcaceae(0.687, 95%CI: 0.551-0.804),Roseburia(0.662, 95%CI: 0.524-0.782) andRoseburia_inulinivorans(0.682,95%CI: 0.545-0.799).

    Figure 4 The taxonomic composition of gut microbiota in females of the study population. Bar plots show the relative abundances of the top ten taxa at the six taxonomic levels, including phyla, class, orders, family, genus and species, in females. Each component of the cumulative bar chart indicates a phylum, a class, an order, a family, a genus or a species. A: Relative abundance at phylum level; B: Relative abundance at class level; C: Relative abundance at order level; D: Relative abundance at family level; E: Relative abundance at genus level; F: Relative abundance at species level. H_CHO: High total cholesterol;H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    Functional analysis of GM in the study population

    Figure 5 The taxonomic composition of gut microbiota in males of the study population. Bar plots show the relative abundances of the top ten taxa at the six taxonomic levels, including phyla, class, orders, family, genus and species, in males. Each component of the cumulative bar chart indicates a phylum, a class, an order, a family, a genus or a species. A: Relative abundance at phylum level; B: Relative abundance at class level; C: Relative abundance at order level; D:Relative abundance at family level; E: Relative abundance at genus level; F: Relative abundance at species level. H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    Finally, we evaluated the functions of the GM community using the FAPROTAX database, and obtained the main metabolic processes of microorganisms associated with different biogeochemical cycles. A total of 51 functional assignments, with relative abundances larger than 0.0001 of the average level, were obtained in females, and 38 assignments were obtained in males. Apparently, GM functions showed different patterns between females and males, further supporting our strategy of separation and independent analysis in females and males. The top twenty annotated functions with higher relative abundances in females and males are shown in Figure 10. Furthermore, comparison analysis between the different subgroups was conducted. Compared with CON females, the relative abundance of aerobic chemoheterotrophy was increased in H_CHO females (Pvalue < 0.05), while cellulolysis abundance was increased in L_HDL-C females (Pvalue < 0.05). Additionally, cellulolysis abundance was increased in L_HDL-C females when compared with that in H_CHO females (Pvalue < 0.05).Compared with CON males, the relative abundances of sulfate respiration, respiration of sulfur compounds and cellulolysis were decreased in L_HDL-C males (Pvalue < 0.05), while the relative abundance of nitrate respiration was increased in L_HDL-C males (Pvalue < 0.05).

    Figure 6 Linear discriminant analysis effect size analysis in females of the study population. Linear discriminant analysis (LDA) scores indicate differentially represented gut microbiota taxa (biomarkers) in each female subgroups. The length of each bar represents the LDA score format with log 10, and the logarithmic threshold for discriminative features was set to 2.0. H_CHO: High total cholesterol; H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    Figure 7 Linear discriminant analysis effect size analysis in males of the study population. Linear discriminant analysis (LDA) scores indicate differentially represented gut microbiota taxa (biomarkers) in each male subgroups. The length of each bar represents the LDA score format with log 10, and the logarithmic threshold for discriminative features was set to 2.0. H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    DISCUSSION

    Figure 8 Associations of gut microbiota taxa with serum lipid indicators in the study population. A: Correlations of gut microbiota (GM) taxa with serum lipid indicators in females. Spearman’s correlation analysis was conducted. The number presented in each cell is the correlation coefficient. The larger the absolute value is, the stronger the correlation is. Blue indicates a negative correlation and red indicates a positive correlation. The depth of the color represents the strength of the correlation. The deeper the color is, the stronger the correlation is; B: Correlations of GM taxa with serum lipid indicators in males. aP < 0.05, bP < 0.01,dP < 0.1. TG: Triglyceride; TC: Total cholesterol; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; CVAI: Chinese visceral adiposity index.

    Dyslipidemia is considered a defect of lipid metabolism in circulation, characterized by increased or decreased levels of serum lipids. Notably, alterations in the GM community may participate in the pathogenesis of dyslipidemia, and the GM composition could be influenced by sex, host genotype and geographic location. To our knowledge, little evidence is present in the literature on the correlations between GM and serum lipids based on sex differences[39]; hence, the initial objective of this study was to identify the associations of GM features with serum lipid profiles based on sex differences in a Chinese population.

    Considered as a whole, there were significant differences in serum lipid profiles and GM features between females and males. Specifically, females have higher GM diversities, and the GM composition was quite different from that in males, which is consistent with previous data[40]. In addition, the functional analysis of GM also showed an obvious dissimilarity between females and males, further supporting our strategy of respective GM analysis in females and males[14]. Of note, the associations between GM and dyslipidemia in humans have been investigated and demonstrated by various studies,suggesting the alteration of GM in patients with impaired lipid metabolism[28,41]. For instance,Cotillardet al[42] noted that reduced GM richness, commonly observed in obese patients, was linked to increased serum TG and TC levels. Following that study, more studies have demonstrated negative correlations of circulating TG and LDL-C levels with GM diversity, and a positive correlation of HDL-C with GM richness[9,26,43,44]. Moreover, certain GM taxa were found to be correlated with specific lipid profiles, suggesting that different GM taxa may affect distinct classes of lipids[26,42,43]. Although the present data have not clearly defined the GM pattern of patients with dyslipidemia, these observations provide new avenues for validation and follow-up studies. Therefore, dyslipidemia female and male patients in this study were divided into a H_TG group, a H_CHO group and a L_HDL-C group, for a more targeted investigation and interpretation.

    Figure 9 Differential gut microbiota taxa-based classification of dyslipidemia in the study population. Receiver operating characteristic curve analysis for identifying dyslipidemia subgroup from controls by gut microbiota taxa in females and males. A: High total cholesterol vs control (Female); B: Low highdensity lipoprotein cholesterol (L_HDL-C) vs control (Female); C: High triglyceride vs control (Male); D and E: L_HDL-C vs control (Male). H_CHO: High total cholesterol; H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    As an important indicator of the GM community and a general measure of gut health, higher GM diversities have been proposed to be associated with healthy lipid levels, such as increased HDL-C and decreased TG levels[26]. Our results showed a positive correlation between GM diversities and the serum HDL-C level in males, consistent with previous data[26]. Additionally, GM diversities were negatively correlated with CVAI in males. As a valuable indicator of “adipose distribution and function”, CVAI has been suggested to be a reliable and applicable indicator for the evaluation of visceral fat dysfunction in Chinese individuals, which is based on simple and obtainable clinical parameters and the serum lipid levels[34,45]. The CVAI is essentially correlated with lipid metabolism,and its negative correlation with GM diversities could further support the reliability of our data.

    Figure 10 The main functional annotations of gut microbiota in the study population. Bar plots show the relative abundances of top twenty annotated functions with higher relative abundances in female subgroups and male subgroups, respectively, using the FAPROTAX database. H_CHO: High total cholesterol; H_TG: high triglyceride; L_HDL-C: Low high-density lipoprotein cholesterol.

    Butyrate has been suggested to facilitate the prevention and treatment of diet-induced obesity by reducing fat accumulation and insulin resistance[46,47], and the ability to produce butyrate is widely distributed among gram-positive anaerobic bacteria[48]. As members of the butyrate-producing bacteria[48],RoseburiaandRoseburia_inulinivoranshave been investigated in certain diseases. By analyzing the GM composition of patients with symptomatic atherosclerosis, Karlssonet al[49] noted an enrichment ofRoseburiain CVD patients, while a lower abundance ofRoseburiawas be observed in patients with diabetes[44]. In this study, we found thatRoseburia_inulinivoranswere positively correlated with the serum TG, TC and HDL-C levels, andRoseburiawere positively correlated with the serum TG level in males. In addition, decreasedRoseburiaandRoseburia_inulinivoransabundances distinguished L_HDL-C males from CON males, while increasedRoseburiaandRoseburia_inulinivoransabundances distinguished H_TG males from CON males. Furthermore, strains ofBifidobacteriumandLactobacillushave potential therapeutic purposes[50]. Anet al[51] once described a comparable, positive anti-obesity and lipidlowering effect ofBifidobacteriumspp. in obese rats fed a high-fat diet. Consistent with the evidence, our results demonstrated that the relative abundances of Bifidobacteriales, Bifidobacteriaceae andBifidobacteriumwere negatively correlated with the serum TG and TC levels in males. However, certain favorable GM taxa, such as Lactobacillaceae,LactobacillusandLactobacillus_salivarius, were enriched in H_CHO females. As a probiotic supplement,Lactobacilluswere noted to have a negative correlation with serum lipid profiles[52]. An animal study, focused on mice fed a high-fat high-cholesterol diet and supplemented withLactobacillus curvatusand/orLactobacillus plantarum, revealed that these probiotic bacteria play important roles in normalizing lipid metabolism, such as decreasing TC levels in plasma and liver,and reducing the accumulation of hepatic TG[53]. Obviously, certain conflicting findings exist, which should be further investigated. Nevertheless, these observations indicate that different GM taxa associate with certain lipids, and may affect specific aspects of lipid metabolism[26,42,43].

    A recent study on rats[54] demonstrated that a high-fat diet decreased the proportions of Bacteroidetes and its generaBacteroidesandPrevotella, and a study on swine indicated that decreased Bacteroidetes proportions were accompanied by decreases in the circulating TG level[55]; however,whether Bacteroidetes can alter cholesterol or TG levels in humans remains disputed. In humans,decreased Bacteroidetes proportions, includingBacteroides_vulgatusandBacteroides_dorei, were observed in patients with coronary artery disease[56,57]. In addition, some species ofBacteroideswere shown to be decreased in patients with CVDs[49], and may be used as biomarkers for evaluating the alleviation of obesity[54]. Our results showed thatBacteroides_vulgatuswere negatively correlated with the serum LDL-C level but positively correlated with the serum TG level in females, while Bacteroidetes,Bacteroidia and Bacteroidales were negatively correlated with CVAI in females. Moreover,Bacteroidetes, Bacteroidia and Bacteroidales were positively correlated with the serum HDL-C level,differentiated L_HDL-C males from CON males, and were negatively correlated with CVAI in males.These observed associations may further support their roles in the favorable regulation of lipid metabolism. Interestingly, Prevotellaceae were enriched in L_HDL-C group in the comparison among the three dyslipidemia subgroups in females. However, the relative abundance of Prevotellaceae was decreased significantly in L_HDL-C males, and could distinguish L_HDL-C males from CON males.Additionally, increased Prevotellaceae also helped discriminate H_TG males from CON males in our study. Of note, Kellyet al[58] reported that genera within the family Prevotellaceae had different effects;some were associated with an increased and others with a decreased CVD risk profile. Meanwhile,Coriobacteriia were indicated to be enriched in L_HDL-C females, and could differentiate L_HDL-C females from CON females. Moreover, we identified that Coriobacteriales were correlated with the increased serum HDL-C level in males, and increased Coriobacteriia and Coriobacteriales could distinguish H_TG males from CON males. However, these taxa have not been studied thoroughly, and it is difficult to assess their metabolic functions in human lipid metabolism.

    Different GM taxa may have distinct activities and modes of action[50,59], and certain taxa may exert synergistic and cooperative interactions[60], indicating the importance of balance in the GM community. Our results may suggest a complex interaction between GM and distinct lipid metabolisms based on sex differences, and provide new evidence of the involvement of GM in dyslipidemia.Nevertheless, more studies are required to determine which specific taxa have the potential to ameliorate dyslipidemia.

    There were several limitations in this study, the most marked of which was the small sample size in each subgroup. This was a single-center study, recruiting Chinese participants near Xi’an, a central city in northwestern China. In addition, certain confounders, such as dietary habit, that could have influenced the GM composition[61], must be taken into consideration. However, elucidation of certain associations of GM taxa with host lipid metabolism in this study is still valuable. We hope that our observations will facilitate prospective studies investigating diverse aspects of GM influences on human dyslipidemia based on sex differences. In future studies, it is recommended that the sample size be increased, more confounders be considered, and various research methods be integrated to ascertain potential associations.

    CONCLUSION

    Based on the thorough analyses of GM features with dyslipidemia in females and males, potent associations of GM-host relations based on sex differences were revealed, and the potential of GM for dyslipidemia diagnosis was demonstrated. Although this study could not provide a conclusive association between GM and dyslipidemia, it may provide new insights into the pathogenesis of dyslipidemia.

    ARTICLE HIGHLIGHTS

    Research background

    Dyslipidemia is a common chronic disorder, and is defined as any abnormality in blood lipid levels. In recent years, considerable progress has been made in elucidating the mechanisms of dyslipidemia, and the gut microbiota (GM) has been indicated to play a pivotal role in its pathophysiology. However, the associations between GM and dyslipidemia remain to be elucidated.

    Research motivation

    Although recent studies have convincingly linked GM to dyslipidemia, proving the associations between GM and host lipid metabolism remains a challenge in humans. In addition, ethnicity,geography and sex are potent factors that could influence the GM community. Therefore, it is important to clarify the relationship between GM and dyslipidemia, and to explore the importance of sex differences. In this study, we first revealed sex differences regarding the GM features, and then introduced dyslipidemia, highlighting its intricate relationships with GM and possible altered GM functions.

    Research objectives

    This study focused on the associations of GM features with dyslipidemia based on sex differences in a northwestern Chinese population.

    Research methods

    This study finally recruited 142 participants (73 females and 69 males) at Honghui Hospital, Xi’an Jiaotong University, who fulfilled the criteria for the diagnosis of dyslipidemia according to the“Guidelines for prevention and treatment of dyslipidemia in Chinese adults”. The anthropometric and blood metabolic parameters of all participants were measured. According to their detected serum lipid levels, female and male participants were classified into a high triglyceride (H_TG) group, a high total cholesterol (H_CHO) group, a low high-density lipoprotein cholesterol (L_HDL-C) group, and a control(CON) group with normal serum lipid levels. Fresh fecal samples were collected for 16S rRNA gene sequencing, and UPARSE software, QIIME software, the RDP classifier tool and the FAPROTAX database were used for sequencing analyses.

    Research results

    Different GM features were identified between females and males, and the associations between GM and serum lipid profiles were different between females and males. In the comparison of the three dyslipidemia subgroups in females,Lactobacillus_salivariuswere enriched in H_CHO females, and Prevotellaceae were enriched in L_HDL-C females. Compared with CON or H_TG males, Prevotellaceae,unidentified_Ruminococcaceae,RoseburiaandRoseburia_inulinivoranswere decreased in L_HDL-C males; while linear discriminant analysis effect size analysis indicated an enrichment of these above GM taxa in H_TG males in comparison to other male subgroups. Additionally,Roseburia_inulinivoransabundance was positively correlated with the serum TG and total cholesterol levels, andRoseburiawere positively correlated with the serum TG level. Furthermore, Proteobacteria, Lactobacillaceae,LactobacillusandLactobacillus_salivariusdistinguished H_CHO females from CON females, while Coriobacteriia, Coriobacteriales, Prevotellaceae,RoseburiaandRoseburia_inulinivoransdistinguished H_TG males from CON males. Based on the predictions of GM metabolic capabilities from the FAPROTAX database,cellulolysis was increased in L_HDL-C females compared with CON females, but was decreased in L_HDL-C males compared with CON males.

    Research conclusions

    This study provides evidence of the associations between GM and serum lipid profiles based on sex differences, suggesting a complex interaction between GM and distinct lipid metabolisms, and providing new insights into the pathogenesis of dyslipidemia.

    Research perspectives

    Future studies are needed to determine which specific taxa have the potential to ameliorate dyslipidemia, to investigate the underlying biological functions of the key GM in dyslipidemia, and to explore the differences in diet and other factors between females and males as possible causes for the observed differences in GM and the lipid profiles.

    FOOTNOTES

    Author contributions:All the authors solely contributed to this article; Guo L and Lv J searched and reviewed published articles, interpreted data, constructed tables, drafted the article, and made substantial contributions to the conception and design of this study; Wang YY, Wang JH and Yan YZ conducted the experiments, performed sequencing analysis and constructed the figures; Wang YY, Wang JH and Wang GD performed statistical analysis;Zhao HP, Yu Y and Dai K constructed the figures and tables; Yang YJ contributed to the conception of the study; and all authors critically reviewed the manuscript, and approved the final version to be published.

    Supported byYouth Program of Xi'an Municipal Health Commission of China, No. 2022qn07; General Program of Xi'an Municipal Health Commission of China, No. 2020ms14; and National Natural Science Foundation of China, No.81702067.

    Institutional review board statement:This study was reviewed and approved by the Ethics Committee of Honghui Hospital, Xi’an Jiaotong University, No. 201801022.

    Informed consent statement:All study participants provided informed consent prior to study enrollment.

    Conflict-of-interest statement:All the authors report no relevant conflicts of interest for this article.

    Data sharing statement:The raw data supporting the conclusions of this article available from the corresponding author at lvjing-1219@163.com.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:China

    ORCID number:Lei Guo 0000-0002-5166-5374; Yang-Yang Wang 0000-0002-4259-2804; Ji-Han Wang 0000-0003-1925-330X; He-Ping Zhao 0000-0002-7896-6636; Yan Yu 0000-0003-1587-7748; Guo-Dong Wang 0000-0002-1346-8396; Kun Dai 0000-0001-5091-7800; Yu-Zhu Yan 0000-0003-1355-0266; Yan-Jie Yang 0000-0002-7259-2995; Jing Lv 0000-0003-2801-743X.

    S-Editor:Fan JR

    L-Editor:A

    P-Editor:Qi WW

    免费一级毛片在线播放高清视频| 色综合婷婷激情| 两性夫妻黄色片| 国产伦人伦偷精品视频| 亚洲欧美日韩无卡精品| 曰老女人黄片| 欧美绝顶高潮抽搐喷水| 级片在线观看| 无人区码免费观看不卡| 一本久久中文字幕| 女性生殖器流出的白浆| 色综合亚洲欧美另类图片| 久久精品人妻少妇| 精品少妇一区二区三区视频日本电影| 国产1区2区3区精品| 啦啦啦韩国在线观看视频| 观看免费一级毛片| 免费在线观看成人毛片| 国产色视频综合| 夜夜爽天天搞| 99国产精品一区二区蜜桃av| 欧美性猛交黑人性爽| 亚洲熟妇熟女久久| 国产精品一区二区三区四区久久 | 欧美精品啪啪一区二区三区| 精品久久久久久久人妻蜜臀av| 一本精品99久久精品77| 亚洲欧美精品综合久久99| 人人妻人人澡人人看| 在线观看午夜福利视频| 狠狠狠狠99中文字幕| 亚洲性夜色夜夜综合| 欧美黑人欧美精品刺激| 国产主播在线观看一区二区| 婷婷精品国产亚洲av在线| 久久久久久九九精品二区国产 | 免费在线观看视频国产中文字幕亚洲| 欧美一级a爱片免费观看看 | 老司机福利观看| 在线av久久热| 日本撒尿小便嘘嘘汇集6| 十八禁人妻一区二区| 久久亚洲真实| 搡老妇女老女人老熟妇| or卡值多少钱| 久久久久久国产a免费观看| 国产高清激情床上av| 国产高清激情床上av| 久久狼人影院| 午夜福利欧美成人| 久热这里只有精品99| 日韩欧美国产一区二区入口| 麻豆久久精品国产亚洲av| 激情在线观看视频在线高清| 色综合婷婷激情| 九色国产91popny在线| 国产精品 欧美亚洲| 狂野欧美激情性xxxx| 中文字幕精品亚洲无线码一区 | 少妇的丰满在线观看| 99久久精品国产亚洲精品| e午夜精品久久久久久久| 久久天躁狠狠躁夜夜2o2o| 母亲3免费完整高清在线观看| 狠狠狠狠99中文字幕| 欧美成人性av电影在线观看| 成人亚洲精品一区在线观看| 美女高潮到喷水免费观看| 精品国产美女av久久久久小说| 午夜免费观看网址| 欧美午夜高清在线| 一区二区日韩欧美中文字幕| 日韩 欧美 亚洲 中文字幕| 中文字幕人成人乱码亚洲影| 国产一区在线观看成人免费| 婷婷六月久久综合丁香| 午夜福利一区二区在线看| 18禁黄网站禁片免费观看直播| 啦啦啦免费观看视频1| 97人妻精品一区二区三区麻豆 | 成人亚洲精品一区在线观看| 99国产综合亚洲精品| 亚洲人成77777在线视频| 少妇裸体淫交视频免费看高清 | 日韩欧美 国产精品| 俺也久久电影网| 亚洲av成人av| 国产欧美日韩精品亚洲av| 日韩欧美三级三区| 久久精品夜夜夜夜夜久久蜜豆 | 一本大道久久a久久精品| 精品高清国产在线一区| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 搞女人的毛片| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品一区二区www| 成年版毛片免费区| 亚洲精品一卡2卡三卡4卡5卡| 久久国产精品影院| 欧美三级亚洲精品| 亚洲精品在线美女| 91字幕亚洲| 波多野结衣av一区二区av| 婷婷六月久久综合丁香| 亚洲男人天堂网一区| 十八禁网站免费在线| 亚洲av日韩精品久久久久久密| 亚洲狠狠婷婷综合久久图片| 亚洲九九香蕉| 日本a在线网址| a级毛片a级免费在线| 国内揄拍国产精品人妻在线 | 少妇裸体淫交视频免费看高清 | av欧美777| 欧美黑人欧美精品刺激| 国产精品爽爽va在线观看网站 | e午夜精品久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 九色国产91popny在线| 高潮久久久久久久久久久不卡| 中文字幕久久专区| 9191精品国产免费久久| 日本熟妇午夜| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看 | 日韩大码丰满熟妇| 一本久久中文字幕| 国产高清激情床上av| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色av国产亚洲站长工具| 亚洲 国产 在线| 国产精品久久久久久精品电影 | 亚洲国产精品sss在线观看| 91字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区| 国产欧美日韩一区二区精品| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美98| 午夜日韩欧美国产| 人人妻人人澡欧美一区二区| 香蕉丝袜av| 成年女人毛片免费观看观看9| 欧美 亚洲 国产 日韩一| 97碰自拍视频| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 欧美日韩一级在线毛片| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 人妻丰满熟妇av一区二区三区| 国产爱豆传媒在线观看 | 别揉我奶头~嗯~啊~动态视频| 久久国产亚洲av麻豆专区| 亚洲精品在线美女| 99国产综合亚洲精品| www国产在线视频色| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 搞女人的毛片| 久久中文看片网| 午夜精品久久久久久毛片777| 色综合婷婷激情| 在线视频色国产色| 俺也久久电影网| 国内精品久久久久精免费| 国产高清视频在线播放一区| 欧美成人性av电影在线观看| 精品久久久久久久久久免费视频| 国产三级在线视频| 中国美女看黄片| 黄片播放在线免费| 最好的美女福利视频网| 麻豆av在线久日| 国产成人av激情在线播放| 亚洲全国av大片| 久久久精品欧美日韩精品| 国产成人欧美在线观看| netflix在线观看网站| 亚洲专区中文字幕在线| 午夜亚洲福利在线播放| 成年免费大片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲中文av在线| 在线av久久热| 精品一区二区三区视频在线观看免费| 中文字幕另类日韩欧美亚洲嫩草| xxx96com| 亚洲国产精品sss在线观看| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看 | 高潮久久久久久久久久久不卡| 男人舔奶头视频| 性色av乱码一区二区三区2| 国产精品永久免费网站| 日韩精品青青久久久久久| 亚洲精品中文字幕一二三四区| 亚洲第一电影网av| 亚洲精品在线观看二区| 一本久久中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 久久中文字幕一级| 亚洲在线自拍视频| 亚洲国产看品久久| 真人一进一出gif抽搐免费| 女人爽到高潮嗷嗷叫在线视频| 午夜a级毛片| 成年人黄色毛片网站| 色综合婷婷激情| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 日本成人三级电影网站| 丝袜美腿诱惑在线| 欧美一级a爱片免费观看看 | 一级片免费观看大全| 人妻丰满熟妇av一区二区三区| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 亚洲五月婷婷丁香| 欧美国产精品va在线观看不卡| 宅男免费午夜| 婷婷丁香在线五月| 亚洲全国av大片| 亚洲黑人精品在线| 亚洲国产欧美网| 久久婷婷人人爽人人干人人爱| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 免费看日本二区| 国产精品久久久人人做人人爽| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 桃色一区二区三区在线观看| 色av中文字幕| 成人欧美大片| 欧美不卡视频在线免费观看 | 怎么达到女性高潮| 美女免费视频网站| 女警被强在线播放| 亚洲国产高清在线一区二区三 | 啦啦啦观看免费观看视频高清| 亚洲国产毛片av蜜桃av| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 麻豆av在线久日| 久久精品国产综合久久久| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 久久亚洲真实| 亚洲专区字幕在线| 国产一区二区激情短视频| 欧美中文综合在线视频| 波多野结衣av一区二区av| 午夜福利视频1000在线观看| 亚洲午夜精品一区,二区,三区| 变态另类丝袜制服| 中文在线观看免费www的网站 | 国产黄色小视频在线观看| 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆 | 欧美另类亚洲清纯唯美| 精品人妻1区二区| 亚洲成av人片免费观看| 国产精品一区二区精品视频观看| 日本免费a在线| 日韩大尺度精品在线看网址| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 色在线成人网| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 亚洲成人精品中文字幕电影| 三级毛片av免费| 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 欧美乱色亚洲激情| 露出奶头的视频| 成人18禁高潮啪啪吃奶动态图| 18禁黄网站禁片免费观看直播| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| a级毛片在线看网站| 一本综合久久免费| 亚洲人成77777在线视频| 久久国产精品人妻蜜桃| 国产av一区二区精品久久| 97超级碰碰碰精品色视频在线观看| 老汉色∧v一级毛片| 成人午夜高清在线视频 | 亚洲国产欧美一区二区综合| 国产免费男女视频| 久久久精品欧美日韩精品| 看免费av毛片| 免费高清视频大片| 久久热在线av| 99热只有精品国产| 级片在线观看| 午夜福利一区二区在线看| 在线av久久热| 久久久国产欧美日韩av| x7x7x7水蜜桃| 自线自在国产av| 精品欧美国产一区二区三| 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 一本综合久久免费| 黄频高清免费视频| 757午夜福利合集在线观看| 91av网站免费观看| 欧美 亚洲 国产 日韩一| av在线天堂中文字幕| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 在线观看舔阴道视频| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 久久中文看片网| 级片在线观看| 亚洲精品色激情综合| 亚洲欧洲精品一区二区精品久久久| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 成人三级黄色视频| 成人亚洲精品av一区二区| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 日韩免费av在线播放| av福利片在线| 97碰自拍视频| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久草成人影院| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 少妇的丰满在线观看| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 久久人人精品亚洲av| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线观看二区| 少妇的丰满在线观看| 国产精品久久久av美女十八| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆 | 丁香六月欧美| 欧美黑人欧美精品刺激| 国产成人欧美在线观看| 美女国产高潮福利片在线看| av电影中文网址| 美女免费视频网站| 欧美乱妇无乱码| 男男h啪啪无遮挡| 一级a爱片免费观看的视频| 免费在线观看黄色视频的| 国产黄片美女视频| 99在线人妻在线中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| 国产伦人伦偷精品视频| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 黄色 视频免费看| 日本一区二区免费在线视频| 免费看a级黄色片| 成年免费大片在线观看| 国产精品香港三级国产av潘金莲| 天堂影院成人在线观看| 亚洲成av片中文字幕在线观看| 欧美最黄视频在线播放免费| 露出奶头的视频| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 久久国产精品影院| 给我免费播放毛片高清在线观看| 99久久久亚洲精品蜜臀av| 操出白浆在线播放| 无遮挡黄片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 少妇裸体淫交视频免费看高清 | 在线观看舔阴道视频| 午夜亚洲福利在线播放| 黄色成人免费大全| 真人一进一出gif抽搐免费| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆| 久久国产精品男人的天堂亚洲| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 亚洲人成网站高清观看| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 日本免费a在线| 免费无遮挡裸体视频| 丝袜美腿诱惑在线| 午夜福利一区二区在线看| 国产精品 国内视频| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 91大片在线观看| 国产高清激情床上av| 中出人妻视频一区二区| 97碰自拍视频| av福利片在线| 不卡一级毛片| 1024视频免费在线观看| 亚洲熟女毛片儿| 一级作爱视频免费观看| 午夜影院日韩av| 国产激情久久老熟女| 久久中文看片网| 丁香六月欧美| 久久精品国产亚洲av高清一级| 亚洲色图av天堂| 亚洲成av人片免费观看| 亚洲真实伦在线观看| 婷婷丁香在线五月| 1024香蕉在线观看| 夜夜躁狠狠躁天天躁| 一个人免费在线观看的高清视频| 婷婷亚洲欧美| 亚洲成av人片免费观看| 人人妻人人澡欧美一区二区| 国产精品 欧美亚洲| 亚洲熟妇中文字幕五十中出| 亚洲午夜理论影院| 欧美黑人巨大hd| 欧美亚洲日本最大视频资源| 夜夜夜夜夜久久久久| avwww免费| 日本一本二区三区精品| 欧美性猛交╳xxx乱大交人| 在线十欧美十亚洲十日本专区| 又大又爽又粗| 男人舔奶头视频| 色av中文字幕| www.999成人在线观看| 一级毛片高清免费大全| 欧美日韩乱码在线| 国产视频一区二区在线看| 亚洲av熟女| 中文亚洲av片在线观看爽| 99久久国产精品久久久| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久| 国产午夜精品久久久久久| 老司机深夜福利视频在线观看| 又大又爽又粗| 99国产极品粉嫩在线观看| 精品欧美一区二区三区在线| 男女床上黄色一级片免费看| 成人永久免费在线观看视频| 18禁裸乳无遮挡免费网站照片 | 18美女黄网站色大片免费观看| 日韩欧美 国产精品| 最新在线观看一区二区三区| 宅男免费午夜| 国产熟女xx| 母亲3免费完整高清在线观看| 妹子高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 宅男免费午夜| 国产熟女xx| 一边摸一边抽搐一进一小说| 神马国产精品三级电影在线观看 | 国产乱人伦免费视频| 最近在线观看免费完整版| 日韩成人在线观看一区二区三区| 两个人看的免费小视频| 嫩草影院精品99| 少妇 在线观看| 无人区码免费观看不卡| 美女午夜性视频免费| 精品久久久久久久久久免费视频| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 久久天堂一区二区三区四区| netflix在线观看网站| 1024视频免费在线观看| 欧美+亚洲+日韩+国产| 亚洲国产中文字幕在线视频| 亚洲中文av在线| 亚洲色图av天堂| 久99久视频精品免费| 日韩精品免费视频一区二区三区| 成人欧美大片| 一个人观看的视频www高清免费观看 | 搡老岳熟女国产| 黄色a级毛片大全视频| 精品国产乱码久久久久久男人| 亚洲人成网站在线播放欧美日韩| 桃色一区二区三区在线观看| 久久久久久久久久黄片| 国产伦一二天堂av在线观看| 亚洲成av人片免费观看| 搡老岳熟女国产| 免费观看精品视频网站| 51午夜福利影视在线观看| 国产99白浆流出| 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 欧美国产精品va在线观看不卡| 男人操女人黄网站| 精品国产一区二区三区四区第35| 亚洲精品av麻豆狂野| 99久久无色码亚洲精品果冻| 97碰自拍视频| 一本精品99久久精品77| 欧美激情高清一区二区三区| 欧美日韩黄片免| 国产v大片淫在线免费观看| 88av欧美| 757午夜福利合集在线观看| av福利片在线| 午夜福利一区二区在线看| 精品卡一卡二卡四卡免费| 欧美成人一区二区免费高清观看 | 成人av一区二区三区在线看| 欧美成人免费av一区二区三区| 亚洲熟妇中文字幕五十中出| 曰老女人黄片| 亚洲人成伊人成综合网2020| 精品乱码久久久久久99久播| 国产成+人综合+亚洲专区| 制服诱惑二区| www日本黄色视频网| 中文字幕av电影在线播放| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 中文字幕最新亚洲高清| 免费观看人在逋| 亚洲国产欧美日韩在线播放| 色综合欧美亚洲国产小说| 琪琪午夜伦伦电影理论片6080| 国产精品免费视频内射| aaaaa片日本免费| 国产私拍福利视频在线观看| 国产成+人综合+亚洲专区| 麻豆国产av国片精品| 日本 av在线| 久久精品国产综合久久久| 两性夫妻黄色片| 国产精品香港三级国产av潘金莲| 看黄色毛片网站| 这个男人来自地球电影免费观看| 亚洲欧美日韩无卡精品| 一级毛片精品| 18禁裸乳无遮挡免费网站照片 | 国内精品久久久久久久电影| 香蕉av资源在线| 亚洲自偷自拍图片 自拍| 亚洲人成电影免费在线| 一进一出好大好爽视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三| 免费在线观看视频国产中文字幕亚洲| 久99久视频精品免费| 1024香蕉在线观看| 欧美精品啪啪一区二区三区| 国产成人一区二区三区免费视频网站| 欧美激情 高清一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片午夜丰满| 国产精品,欧美在线| 日本熟妇午夜| 国产极品粉嫩免费观看在线| 亚洲第一青青草原| 美女国产高潮福利片在线看| 国产日本99.免费观看| 欧美黑人欧美精品刺激| 欧美精品亚洲一区二区| 久久久久久亚洲精品国产蜜桃av| 亚洲精品粉嫩美女一区|