• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries

    2022-08-10 03:41:30YueYangJiaweiZhuPengyanWangHaimiLiuWeihaoZengLeiChenZhixiangChenShichunMu
    物理化學(xué)學(xué)報(bào) 2022年6期

    Yue Yang , Jiawei Zhu , Pengyan Wang , Haimi Liu , Weihao Zeng , Lei Chen , Zhixiang Chen ,Shichun Mu ,*

    1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology,Wuhan 430070, China.

    2 Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley,Foshan 528200, Guangdong Province, China.

    Abstract: Owing to their advantages such as safe operation, high power density, long cycle life, and low self-discharge rate, lithium-ion batteries (LIBs)have attracted attention for applications ranging from portable electronics to electric vehicles (EVs)/hybrid EVs (HEVs). However, the striking exothermic reaction and growth of lithium dendrites during lithiation-delithiation cycles for commercial graphite anodes are hidden safety risks associated with LIBs.Titanium dioxide (TiO2) is considered as an important material for LIBs because of its high safety and excellent cycling stability. In addition, TiO2 anode used in lithium-ion storage system has a relatively high voltage (~1.5 V vs. Li/Li+), and thus, it meets the strict safety standards of commercial LIBs. However, the unsatisfactory conductivity and ion diffusion rate prevent the further application of TiO2 in LIBs. To date, the combination of graphene, carbon nanotubes (CNTs), carbon quantum dots (QDs) and porous carbon with TiO2 has attracted significant research attention.Nevertheless, it is still challenging to introduce a unique nanostructure design by organically compounding TiO2 with N-doped porous carbon matrix. Herein, N-doped porous carbon incorporating fine TiO2 nanoparticles (NPs) with a flower-like structure (denoted as FL-TiO2/NPC) is successfully prepared using flower-like NH2-MIL-125(Ti) as the hard template. The as-prepared Ti-based framework shows a flower-like structure, which is assembled with two-dimensional (2D) corrugated porous nanosheets. On the one hand, the corrugated carbon nanosheets incorporating fine TiO2 particles can offer a magnifying contact area between electrode matrix and electrolyte. On the other hand, the N-doped porous carbon plays a crucial role in improving the conductivity and structural integrity of the whole matrix. Therefore, the as-prepared FLTiO2/NPC can deliver an excellent reversible lithium storage capacity of 384.2 mAh·g-1 at the current density of 0.5 A·g-1 after 300 cycles and 279.1 mAh·g-1 at 1 A·g-1 after 500 cycles. Furthermore, even when tested at 2 A·g-1, FL-TiO2/NPC can deliver a reversible capacity of 256.5 mAh·g-1 with a coulombic efficiency of 100% after 2000 cycles. The superior electrochemical performance and the structural toughness of LIBs originate from the unique flower-like structure. We believe that the proposed synthesis strategy will provide a new idea for the preparation of metal oxides/N-doped porous carbon composites with high lithium storage performance.

    Key Words: TiO2 nanoparticles; N-doped porous carbon nanosheet; Flower-like structure; NH2-MIL-125 (Ti);Anode; Lithium-ion battery

    1 Introduction

    As non-renewable resources are gradually consumed, trying to find low cost and clean energy conversion is more and more urgent and important. Lithium-ion batteries (LIBs) are important components in applications from portable electronics to electric vehicles (EVs)/hybrid EVs (HEVs)1-6. TiO2has entered the field of vision of researchers due to its abundant reserves on the earth,good safety and environmental friendliness. Moreover, TiO2has relatively stable chemical properties, and its morphology is easy to regulate7,8. However, the application of TiO2still confronts fast capacity decay and sluggish reaction kinetics associated to their inherent poor electrical conductivity (~10-12S·cm-1) and low ion diffusion coefficients during lithiation-delithiation cycles9-12. Various strategies are applied to modify the structure of TiO2or TiO2/C-based composite materials to improve the electrochemical performance of LIBs and Sodium-ion Batteries(SIBs). For example, self-assembled nanocrystalline-rutile/anatase TiO2with graphene hybrid nanostructures13, TiO2hollow nanostructures14, hierarchical anatase TiO2spheres constructed with exposed (001) facet ultrathin nanosheets15mesoporous anatase TiO2beads16nanometer-sized rutile TiO217TiO2-B nanowires18mesoporous TiO2nanocrystals with graphene aerogels composites19and so on, the above mentioned works have achieved superior electrochemical performance of LIBs.

    On the other hand, because of their various morphologies and structures, different kinds of metal cations, Metal-organic frameworks (MOFs) are widely used in the fields of heterogeneous catalysis20, overall water splitting21,22, gas storage and separation23, solar fuels24and so on. Recently, a lot of MOF derivatives with unique structure are used as the anode material for LIBs or SIBs. For instance, the spindle-like porous α-Fe2O325, porous hollow ZnFe2O4/ZnO/Carbon layer octahedral26, MOF-derived core-shell ZnO@ZnO quantum dots(QDs)/C27, porous CuO hollow octahedral28, ultrafine CoS2NPs/N-doped porous carbon29, porous hollow Co9S8NPs/graphitic carbon nanocage composites30, ZnO and Fe2O3coated with three-dimensional graphene31, mesoporous nanostructured Co3O432-46etc. Although the above works are full of novelty and have made some breakthroughs in the field of LIBs and SIBs.However, the design and synthesis of new structure MOFs are still faced with great challenges.

    Take the above-mentioned difficulties and needs into mind.Herein, N-doped porous carbon incorporating fine TiO2particles(FL-TiO2/NPC) with flower-like structure is successfully prepared by using NH2-MIL-125(Ti) as a hard template. In NH2-MIL-125(Ti) crystals, metal and oxygen atoms are arranged at the periodical atom level. Therefore, the Ti-MOF can be converted into N-doped porous carbon incorporating fine TiO2nanoparticles without migrating long-range atomic. Most importantly, our synthesis method can provide new ideas and routes for the preparation of other metal-organic framework with special morphologies (such as Fe, Co, Ni-MOFs).

    2 Experiment section

    2.1 Chemicals

    Titanium tetraisopropanolate (C12H28O4Ti, Aladdin, China,95%, CAS:546-68-9) and 2-aminoterephthalic acid (C8H7NO4,Aladdin, China, 99%, CAS:10312-55-7) were purchased from Aladdin Industrial Corporation. The resistivity of DI H2O used in this work was 18.25 MΩ·cm-1.

    2.2 Synthesis of flower-like NH2-MIL-125 (Ti)

    Typically, 0.28 g of 2-aminoterephthalic acid was dissolved in DMF (20 mL) and ethanol (20 mL) mixed solvent, sonicated for 30 min. When 2-aminoterephthalic acid was completely dissolved into mixed solvent, TTIP (0.3 mL) was added to the above solution and sonicated for 5 min. Then the mixture was transferred into a 100 mL Teflon-lined steel autoclave and placed in an oven at 150 °C for 24 h under static conditions. The product was collected by repeated centrifugation (5000 r·min-1, 5 min)and washed with DMF and ethanol for 3 times respectively, then dried in an oven under vacuum at 60 °C overnight.

    2.3 Synthesis of FL-TiO2/NPC and P-TiO2

    The as-prepared NH2-MIL-125 (Ti) was heated with a rate of 2 °C·min-1by heating up and maintaining at 600 °C for 3 h in a tube furnace under Ar atmosphere. The prepared composite was named as FL-TiO2/NPC. When other calcination conditions remained the same, Ar is replaced by air, and the obtained product was recorded as pure TiO2(P-TiO2).

    3 Results and discussion

    3.1 Synthesis and structure of FL-TiO2/NPC and Pure TiO2 (P-TiO2)

    Fig. 1 illustrates the detailed synthesis route of FL-TiO2/NPC.Firstly, flower-like NH2-MIL-125 (Ti) was synthesized by using tetraisopropyl titanate (TTIP) and 2-aminoterephithalic acid(NH2-PTA) as titanium source and organic linker. After being hydrothermal at 150 °C for 24 h and calcined at 600 °C in argon atmosphere, the organic linker will be pyrolyzed to N-doped porous carbon nanosheets. As a result, the fine TiO2NPs embedded in N-doped porous carbon matrix with a flower-like structure. Other synthesis conditions remain the same, and the calcined atmosphere is changed from argon to air to pure TiO2(denoted as P-TiO2).

    The morphologies of flower-like NH2-MIL-125 (Ti), FLTiO2/NPC and P-TiO2were characterized by scanning electron microscope (SEM). As shown in Fig. 2a, flower-like NH2-MIL-125 (Ti) show a smooth leaf and flower-like shape, and there was no reunion or collapse. After calcination in inert gas atmosphere,the synthesized FL-TiO2/NPC can perfectly inherit flower-like shape of the NH2-MIL-125 (Ti). (Fig. S1c, d) As shown in Fig.2b, compared with NH2-MIL-125 (Ti), the overall appearance of FL-TiO2/NPC shows more roughness and wrinkles. The thickness of the N-doped porous carbon nanosheets is further verified by atomic force microscopy (AFM) analysis (Fig. 2e).The characterization results show that the thickness is only about 1.5 nm, which is also in good agreement with the characterization results of SEM and TEM. On the contrary, if NH2-MIL-125 (Ti) is calcined directly in the air atmosphere,most of the TiO2particles will be reunited together (Fig. 2c).These agglomerated TiO2particles will form blocks and have no regular morphology. Low magnification SEM images of FLTiO2/NPC (Fig. S2a, b) and P-TiO2(Fig. S2c, d) are showed in Supporting Information. There is no doubt that the carbon matrix plays an important role in the maintenance of the whole flowerlike structure in the process of calcination. In the process of calcination in the air atmosphere, the carbon matrix will be burned gradually, which leads to the collapse and agglomeration of the whole structure due to severe shrinkage.

    Fig. 1 Schematic exhibiting the synthetic process of flower-like TiO2/N-doped porous carbon nanosheets (FL-TiO2/NPC).

    Fig. 2 SEM images of NH2-MIL-125 (Ti) (a), FL-TiO2/NPC (b), P-TiO2 (c). XRD patterns (d) of FL-TiO2/NPC and P-TiO2. AFM image of FL-TiO2/NPC and the height profile of the corresponding line (e). Raman spectra (f) and TGA curve (g) of FL-TiO2/NPC.N2 adsorption/desorption isotherms (h) and pore size distribution curves (i) of FL-TiO2/NPC and P-TiO2.

    As shown in Fig. 2d, the XRD patterns of FL-TiO2/NPC and P-TiO2are well consistent with the standard card of anatase TiO2(JCPDS card NO. 21-1272). Moreover, the N-doped porous carbon nanosheets can suppress the growth of the TiO2nanoparticles, FL-TiO2/NPC has weaker and wider peak shapes,which is in accordance with previous reports47. There are no characteristic diffraction peaks of carbon for the FL-TiO2/NPC,which is probably because carbon is amorphous and the peak intensity is weak. Moreover, the XRD pattern and FTIR spectrum of NH2-MIL-125 (Ti) are also exhibited in Fig. S1a and Fig. S1b. The Raman spectra of FL-TiO2/NPC is exhibited as Fig. 2f, the two peaks of FL-TiO2/NPC are indexed as D band(~1358.6 cm-1) and G band (~1581.8 cm-1), in addition, the calculated ID/IGratio is 0.84, suggesting that a partially graphitic structure existing in the porous carbon nanosheets of FLTiO2/NPC. Thermogravimetric analysis is used to detect the carbon content in FL-TiO2/NPC. As shown in Fig. 2g, a mass weight loss of 4.52% below 250 °C is caused by the absorbed water of composites. When it continues to be calcined from 250 to 800 °C in the air, the mass weight loss of 25.38% can be thought of as the percentage of carbon in the whole sample.

    The N2adsorption/desorption isotherms were performed to measure the SSA and pore size of FL-TiO2/NPC and P-TiO2. As shown in Fig. 2h, i, The SSA of FL-TiO2/NPC (238.3 m2·g-1) is a little more than three times larger than that of P-TiO2(71.2 m2·g-1). The N2adsorption/desorption isotherms of FLTiO2/NPC and P-TiO2can be identified as Type IV isotherms with a typically mesoporous hysteresis loop. Besides, the pore sizes distribution of FL-TiO2/NPC and P-TiO2are all in the range of micropores, mesopores and macropores. We can find the answer to explain this result from the SEM images of FLTiO2/NPC and P-TiO2. Almost all TiO2particles agglomerate in large scale to form blocks for P-TiO2, which will reduce the specific surface area of the whole material and produce more stacked pore structures.

    To achieve further insight into the distinctive shape of FLTiO2/NPC, transmission electron microscopy (TEM) is used. It can be seen very clearly from Fig. 3a that the individual FLTiO2/NPC morphology is assembled from the ultrathin 2D porous carbon nanosheets. This observation is in good agreement with the SEM images of FL-TiO2/NPC. The higher magnification TEM image (Fig. 3b) of the edge of FL-TiO2/NPC can be seen that a large number of fine TiO2NPs with a diameter less than 10 nm are uniformly dispersed in the porous carbon nanosheets. The corresponding selected-area diffraction patterns image is shown as Fig. 3c, the concentric rings corresponding to the (101), (103), and (200) planes of the anatase TiO2phase.Moreover, the high-resolution TEM (HRTEM) image (Fig. 3d)reveals the clear crystalline lattice fringes with d-spacing values of 0.353 nm, corresponding to the (101) planes of anatase TiO2.In order to further explore the composition of various elements of FL-TiO2/NPC, HAADF-STEM and EDX analysis were carried out. As shown in Fig. 3e-i, the homogeneous distribution of C (f), N (g), O (h), and Ti (i) of FL-TiO2/NPC can be clearly distinguished. The EDX results further proved the existence and structural dispersion of TiO2and N-doped carbon. Whether it is ultrathin N-doped porous nanosheets structure, or fine uniformly dispersed TiO2particles. This unique structure ensures that the electrolyte can fully contact the active sites and the effective transport of lithium ions/electrons during the charge and discharge of LIBs. More importantly, carbon matrix materials can not only ensure the integrity of the overall structure, but also effectively restrain volume expansion in the process of charge and discharge, providing reliable cycle stability for electrode materials.

    Fig. 3 TEM image (a) and HRTEM images (b, d) of FL-TiO2/NPC. The corresponding SAED pattern (c) and EDS mapping images of FL-TiO2/NPC (h) with C (green), N (yellow), O (cyan) and Ti (red) elements from a selected area.

    The element chemical states of FL-TiO2/NPC was further investigated by XPS. As shown in Fig. S3, the C, N, O, and Ti elements of FL-TiO2/NPC are verified. The full XPS spectrum of P-TiO2is also shown as Fig. S4. The high-resolution XPS spectrum of Ti (Fig. 4a) represents the peaks at 458.7 and 464.4 eV, which are in accordance with Ti 2p3/2and Ti 2p1/2,respectively. The overlapped high-resolution C 1s peak was fitted by three components centered at 284.7, 285.4, and 288.7 eV, which corresponding to the C―C or C=C, C―N and C=O bonds, respectively (Fig. 4c). In the highly deconvoluted O 1s spectrum of FL-TiO2/NPC (Fig. 4b), the three fitted peaks at binding energies of 529.7, 530.3, and 531.6 eV are assigned to the bonds of Ti―O, C―O, and Ti―O―H bond, respectively48.As to the high-resolution N 1s XPS spectra (Fig. 4d), the three peaks located at around 398.5, 400.3, and 401.5 eV could be assigned to the Pyridinic-N, Pyrrolic-N, and Quaternary-N bonds, respectively49. The above XPS results further prove the existence of N-doped carbon and TiO2.

    3.2 Electrochemical performance of FL-TiO2/NPC and P-TiO2 electrodes for LIBs

    As shown in Fig. 5a, the cyclic voltammograms (CV) curves of FL-TiO2/NPC and P-TiO2(Fig. S4a) were measured during the initial three cycles in the voltage range of 0.1-3.0 V at a scan rate of 0.1 mV·s-1. For the initial CV cycle, a distinct reduction peak at 1.72 V and an oxidation peak at 2.03 V can be found, this pair of oxidation/reduction peaks in the first cycle are related to lithiation-delithiation for anatase TiO2. Moreover, in the initial discharging process, another pair of small reduction humps at around 1.47 and 0.75 V can be attributed to the pseudocapacitive Li+storage and the formation of solid electrolyte interphase(SEI) film, respectively50. In the following two cycles, the major reduction peak at 1.75 V and the oxidation peak at 2.03 V remain unchanged, indicating well cycling stability of FL-TiO2/NPC anode composites. The EIS spectra of FL-TiO2/NPC and P-TiO2were measured before cycling. Fig. 5b shows the Nyquist curves of FL-TiO2/NPC and P-TiO2. After fitting, the Rctof FLTiO2/NPC and P-TiO2composites are 29.7 and 701.7 Ω. The figure in Fig. 5b corresponds to the enlarged Nyquist curve diagram of FL-TiO2/NPC. The AC impedance results of FLTiO2/NPC and P-TiO2further prove that the introduction of N-doped porous carbon nanosheets can greatly enhance the conductivity of the whole complex, which is undoubtedly conducive to the transport of lithium ions and electrons in the process of lithiation-delithiation.

    Fig. 5c shows the first five GDC curves of FL-TiO2/NPC at 0.2 A·g-1. In accordance with the CV curves, a small platform appeared around 1.7 V during first discharge and a small voltage platform emerged around 2.0 V during first charge, respectively.The first discharge and charge capacity of 773.5/468.1 and 373.1/179.7 mAh·g-1is delivered by FL-TiO2/NPC and P-TiO2electrodes (Fig. S4b), with the coulombic efficiency of 60.52%and 48.16%. The initial irreversible capacity loss which is usually associated with the side reactions with the electrolyte and formation of SEI films.

    Fig. 4 High-resolution XPS spectra of Ti 2p (a), O 1s (b), C 1s (c), and N 1s (d) from FL-TiO2/NPC.

    Fig. 5 CV plots (a) of FL-TiO2/NPC for the first three cycles at a scan rate of 0.1 mV·S-1 in the voltage range of 0.01-3 V. Nyquist plots (b) of FL-TiO2/NPC and P-TiO2 electrodes before cycling. Discharge/charge curves of voltage range at a current density of 0.2 A·g-1 for the first five cycles(c) of FL-TiO2/NPC. Long-term cycling performance (d, e) of FL-TiO2/NPC. Rate capability (f) of FL-TiO2/NPC and P-TiO2 electrodes.Long-term cycling performance at high current (g) of FL-TiO2/NPC.

    The long-term cycling performances of FL-TiO2/NPC and PTiO2at 0.5 A·g-1are present in Fig. 5d. The first two cycles for FL-TiO2/NPC and P-TiO2is electrode activation process at 0.1 A·g-1. As shown in Fig. 5d, the initial discharge capacity of FLTiO2/NPC is 725.6 mAh·g-1, much higher than that of P-TiO2(421.7 mAh·g-1). After 300 cycles, the capacity of FL-TiO2can still remain 384.2 mAh·g-1, the same phenomenon can be further verified in Fig. 5e. When tested at 1 A·g-1, after 500 cycles, the capacity of FL-TiO2/NPC can still remain 279.1 mAh·g-1. On the contrary, the capacity of P-TiO2can only remain 171.4 mAh·g-1after 500 cycles. Obviously, discharge capacities of FLTiO2/NPC are much larger than that of P-TiO2at 0.5 and 1 A·g-1.Additionally, the capacity of FL-TiO2/NPC and P-TiO2increase gradually for long-term cycling at 0.5 and 1 A·g-1. This phenomenon is commonly found for anode materials like Co3O4,TiO2and NiO, etc. With the continuous infiltration of electrolyte,more and more active sites participate in the reaction of lithiation-delithiation.

    To further explore the electrochemical properties of FLTiO2/NPC and P-TiO2, the rate performance was investigated(Fig. 5f). The average specific capacities of FL-TiO2/NPC are 405.5, 351.1, 307.6, 269.7, 210.7 mAh·g-1at 0.2, 0.5, 1, 2, 5 A·g-1, respectively. When the current density is switched back to 0.2 A·g-1, the average capacity of FL-TiO2/NPC can still reach 341.2 mAh·g-1. On the contrary, when tested at 5 A·g-1, the capacity of P-TiO2is only 69.4 mAh·g-1. When the mass loading of active material electrodes is 1.6 mg·cm-2, the long-term cycling performance of FL-TiO2/NPC can reach 335.8 mAh·g-1at 0.1 A·g-1for 50 cycles and 276.9 mAh·g-1at 0.5 A·g-1for 200 cycles (Figs. S5 and S6). Fig. 5g exhibits the long-term cycling performance at high current density. When tested at high current densities of 2 A·g-1with 2000 cycles, FL-TiO2/NPC still could achieve 256.5 mAh·g-1after 2000 cycles with nearly 100%coulombic efficiency, which indicated that FL-TiO2/NPC owns an excellent cyclic stability and good electrochemical activity.The long-term cycling performance of FL-TiO2/NPC is further compared with some TiO2/N-doped carbon anodes for LIBs(Table S1). Obviously, FL-TiO2/NPC is superior to the previously reported materials. This demonstrates that FLTiO2/NPC with a unique flower-like structure, can enhance the conductivity and contact area between electrolyte and electrode,and shorten the transmission path of Li ions and electrons,leading to excellent electrochemical performance.

    3.3 Pseudocapacitive contribution of FL-TiO2/NPC electrodes for LIBs

    In order to better explore the excellent performances of FLTiO2/NPC composites, electrochemical kinetics under different scan rates were investigated by CV measurements. Fig. 6a and Fig. S5a show the CV plots of FL-TiO2/NPC and P-TiO2electrode at different scan rates from 0.2 to 10 mV·S-1. In general, the pseudocapacitance of lithium ions behavior could be calculate based on the relative equations:

    Fig. 6 CV curves of the FL-TiO2/NPC at different scan rate of 0.2-10 mV·s-1 (a). Calculation of the b values by plotting lgi versus lgv (b).The contribution of diffusion (cyan) and pseudocapacitive-controlled capacity (purple) at the scan rate of 1 mV·s-1 (c). Contribution percentage of pseudocapacitive-controlled capacity at different scan rates of 0.2-1 mV·s-1 (d). (The cyan correspond to diffusion capacity and the purple correspond to pseudocapacitive-controlled capacity.)

    When the value of b approaches 0.5, the leading factor of diffusion-controlled lithium ions storage is the internal lithiation-delithiation reaction. On the contrary, when the value of b approaches 1, the capacity contribution is dominated by charge storage process. In general, the intensity and width of major peaks increase along with the higher scanning rate.However, there is no relative high polarization phenomenon for FL-TiO2/NPC. After calculation and fitting, the values of b1and b2are 0.618 and 0.698 (Fig. 6b). By contrast, the b1and b2values of P-TiO2are 0.518 and 0.522. (Fig. S5b), this shows that FLTiO2/NPC has higher pseudocapacitive lithium storage51. As shown in Fig. 6c, the yellow shadow area is related to the pseudocapacitive contribution (63.6%) when the scan rate of the CV graphics of FL-TiO2/NPC reach 1 mV·s-1.

    From the equation, we can see that the capacity of FLTiO2/NPC is composed of pseudocapacitive contribution and diffusion-controlled contribution. Moreover, we can calculate the two parts as the following equation:

    where k1·v corresponds the capacitive-controlled reactions,while k2·v0.5is related to the diffusion-controlled reactions. By sorting out the equations, we can obtain the value of k1and k2at the same time (k1refers to the slope, k2refers to the intercept).When the CV scanning rate increases gradually, the proportion of capacitive-controlled reactions also increased at the same time(Fig. 6d). As a result, a pseudocapacitive contribution (63.6%)can be achieved when the scan rate of the CV graphics reach 1 mV·s-1. This result undoubtedly shows that when the current at high current density, the pseudocapacitive contribution plays an important role in the contribution of capacity.

    4 Conclusions

    In our synthesis strategy, the unique flower-like structure and the introduction of N-doped porous carbon nanosheets are very important for FL-TiO2/NPC to achieve impressive electrochemical performance. Because of the fine TiO2NPs and the overall flower-like structure, the electrolyte can fully contact and permeate with the electrode material, and can effectively restrain the volume expansion of the electrode composites in the process of lithiation-delithiation. On the other hand, the introduction of N-doped porous carbon nanosheets can improve the conductivity, integrity and specific area of the overall composites, which is beneficial to promote the transport of lithium ions and electrons during the charge and discharge process. As a result, the prepared FL-TiO2/NPC composites can acquire attractive reversible capacity (256.5 mAh·g-1after 2000 cycles, 2 A·g-1) with nearly 100% coulombic efficiency and superior rate capability (210.7 mAh·g-1at 5 A·g-1), the excellent electrochemical performance and unique porous flower-like structure of FL-TiO2/NPC make it a new anode material for secondary LIBs with a strong application potential.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    波多野结衣高清作品| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 性欧美人与动物交配| 中文字幕久久专区| 欧美最新免费一区二区三区 | 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 丰满人妻一区二区三区视频av | 看片在线看免费视频| 亚洲国产高清在线一区二区三| 国产高清激情床上av| а√天堂www在线а√下载| x7x7x7水蜜桃| 亚洲中文日韩欧美视频| 三级国产精品欧美在线观看| 一进一出好大好爽视频| 日本免费a在线| 黄色片一级片一级黄色片| 中文字幕久久专区| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 日本免费a在线| 午夜福利免费观看在线| 国产精品99久久99久久久不卡| 怎么达到女性高潮| 99热这里只有精品一区| 成年人黄色毛片网站| 午夜免费激情av| 噜噜噜噜噜久久久久久91| 九九久久精品国产亚洲av麻豆| 亚洲激情在线av| 长腿黑丝高跟| 免费大片18禁| 成人无遮挡网站| 成人av在线播放网站| 国产亚洲欧美98| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 国产精品三级大全| 久久精品国产清高在天天线| 一a级毛片在线观看| 天堂√8在线中文| 最近最新中文字幕大全免费视频| bbb黄色大片| 国产精品永久免费网站| 最新在线观看一区二区三区| 国产日本99.免费观看| 成人性生交大片免费视频hd| 国产亚洲欧美在线一区二区| 亚洲一级一片aⅴ在线观看| 日本与韩国留学比较| 老司机影院毛片| 欧美三级亚洲精品| 国产高清不卡午夜福利| 久久这里有精品视频免费| 日韩视频在线欧美| 欧美日韩亚洲高清精品| 成年免费大片在线观看| 三级毛片av免费| 免费黄色在线免费观看| 又爽又黄无遮挡网站| 一本久久精品| 国产 一区精品| 欧美精品一区二区大全| 1000部很黄的大片| 久久热精品热| 国产一级毛片七仙女欲春2| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 久久久国产一区二区| 欧美+日韩+精品| 午夜视频国产福利| 国产亚洲av嫩草精品影院| 哪个播放器可以免费观看大片| 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| av在线播放精品| 偷拍熟女少妇极品色| 国产精品女同一区二区软件| 国模一区二区三区四区视频| 午夜激情福利司机影院| av线在线观看网站| a级一级毛片免费在线观看| 一级毛片黄色毛片免费观看视频| av播播在线观看一区| 国产激情偷乱视频一区二区| 亚洲av成人av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产中年淑女户外野战色| 99久国产av精品| 久久久久久久久久成人| 婷婷色综合大香蕉| av国产久精品久网站免费入址| av黄色大香蕉| 肉色欧美久久久久久久蜜桃 | 国产在视频线精品| 观看免费一级毛片| 中文字幕av成人在线电影| 国产精品爽爽va在线观看网站| 久久精品国产亚洲网站| 国产一区二区三区综合在线观看 | 亚洲激情五月婷婷啪啪| av在线天堂中文字幕| 成人二区视频| 国产黄片美女视频| 99久久中文字幕三级久久日本| 99久国产av精品国产电影| 啦啦啦韩国在线观看视频| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 精品久久久久久成人av| 一个人看的www免费观看视频| 国产极品天堂在线| 国产乱人视频| 中文字幕av成人在线电影| 亚洲av日韩在线播放| av福利片在线观看| 久久精品人妻少妇| 久久久久久久久大av| 毛片一级片免费看久久久久| av黄色大香蕉| ponron亚洲| 国产黄a三级三级三级人| 国产精品久久视频播放| 毛片女人毛片| 特级一级黄色大片| 22中文网久久字幕| 国产伦精品一区二区三区视频9| 一级二级三级毛片免费看| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 欧美区成人在线视频| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 能在线免费观看的黄片| 久久久a久久爽久久v久久| av.在线天堂| 亚洲国产欧美在线一区| 精品人妻熟女av久视频| 可以在线观看毛片的网站| 国产午夜福利久久久久久| www.色视频.com| 毛片一级片免费看久久久久| 别揉我奶头 嗯啊视频| 一个人看的www免费观看视频| 国产 一区精品| 嫩草影院精品99| 精品久久久精品久久久| 毛片女人毛片| 国产v大片淫在线免费观看| 欧美日韩在线观看h| 欧美不卡视频在线免费观看| 国产有黄有色有爽视频| 肉色欧美久久久久久久蜜桃 | 国产亚洲av片在线观看秒播厂 | 亚洲欧美日韩东京热| 国产精品综合久久久久久久免费| 婷婷六月久久综合丁香| 女人十人毛片免费观看3o分钟| 免费在线观看成人毛片| 女人久久www免费人成看片| 国产 亚洲一区二区三区 | 亚洲四区av| 少妇的逼水好多| 精华霜和精华液先用哪个| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 深夜a级毛片| 欧美日韩国产mv在线观看视频 | 高清在线视频一区二区三区| 中文字幕av成人在线电影| 少妇裸体淫交视频免费看高清| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 嫩草影院新地址| 日日啪夜夜爽| 亚洲av中文av极速乱| 免费电影在线观看免费观看| 97在线视频观看| 免费无遮挡裸体视频| 久久久久国产网址| 亚洲第一区二区三区不卡| 日韩制服骚丝袜av| 嫩草影院新地址| 欧美丝袜亚洲另类| 日韩一区二区视频免费看| av在线蜜桃| www.色视频.com| 水蜜桃什么品种好| 国产黄片美女视频| 综合色av麻豆| 国产亚洲av片在线观看秒播厂 | 亚洲av一区综合| 亚洲精品一区蜜桃| 久久99精品国语久久久| 午夜免费激情av| 在线播放无遮挡| www.色视频.com| 午夜激情福利司机影院| 国产av码专区亚洲av| 99久久中文字幕三级久久日本| 一级毛片电影观看| 黄色一级大片看看| av福利片在线观看| 国产极品天堂在线| 国产成人免费观看mmmm| 男女边吃奶边做爰视频| 国产亚洲精品久久久com| 精品久久久久久久久久久久久| 看免费成人av毛片| 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频| 天堂av国产一区二区熟女人妻| 日韩精品有码人妻一区| 男人和女人高潮做爰伦理| 99re6热这里在线精品视频| 一级毛片 在线播放| 亚洲精品成人av观看孕妇| 亚洲经典国产精华液单| 99九九线精品视频在线观看视频| 国产成人a区在线观看| av播播在线观看一区| 高清欧美精品videossex| 国产成人一区二区在线| 国产精品一区二区三区四区久久| 欧美 日韩 精品 国产| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 成人国产麻豆网| 水蜜桃什么品种好| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 26uuu在线亚洲综合色| 亚洲成人久久爱视频| 成人亚洲精品一区在线观看 | 亚洲欧美日韩东京热| 日韩av免费高清视频| 精品99又大又爽又粗少妇毛片| 边亲边吃奶的免费视频| 一区二区三区免费毛片| 人妻一区二区av| 日韩三级伦理在线观看| 欧美成人午夜免费资源| 自拍偷自拍亚洲精品老妇| 婷婷色综合www| 国产成人freesex在线| 亚洲av成人av| 中文字幕人妻熟人妻熟丝袜美| av播播在线观看一区| 久久久色成人| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 日本色播在线视频| 国产黄色视频一区二区在线观看| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 床上黄色一级片| 亚洲图色成人| 欧美日韩在线观看h| 国产精品久久久久久精品电影小说 | 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件| 国产亚洲91精品色在线| 亚洲综合精品二区| 麻豆精品久久久久久蜜桃| 99久久人妻综合| 最近中文字幕2019免费版| 亚洲自偷自拍三级| 国产美女午夜福利| 欧美高清成人免费视频www| 亚洲精品乱码久久久久久按摩| or卡值多少钱| 国产亚洲精品久久久com| 亚洲成人一二三区av| 日韩成人伦理影院| 国产成人精品久久久久久| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 国产成人精品福利久久| 高清日韩中文字幕在线| 国产精品熟女久久久久浪| 少妇高潮的动态图| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品 | 最后的刺客免费高清国语| 特大巨黑吊av在线直播| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜 | av一本久久久久| 日韩欧美国产在线观看| 亚洲真实伦在线观看| 搡老乐熟女国产| 欧美激情在线99| 久久国内精品自在自线图片| 亚洲精品中文字幕在线视频 | 久久亚洲国产成人精品v| 精品午夜福利在线看| 内地一区二区视频在线| av免费观看日本| 韩国av在线不卡| 亚洲精品aⅴ在线观看| 超碰av人人做人人爽久久| 久久久久性生活片| 国产中年淑女户外野战色| 国产亚洲最大av| 亚洲精品日本国产第一区| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 一级二级三级毛片免费看| 别揉我奶头 嗯啊视频| 亚洲欧美一区二区三区黑人 | 欧美性感艳星| 18+在线观看网站| 少妇的逼好多水| 男女那种视频在线观看| 日韩大片免费观看网站| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 亚洲av电影不卡..在线观看| 26uuu在线亚洲综合色| 女人被狂操c到高潮| 婷婷色麻豆天堂久久| 老司机影院成人| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 精品少妇黑人巨大在线播放| 国产黄色小视频在线观看| 亚洲欧美成人精品一区二区| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 天堂√8在线中文| 国产亚洲av片在线观看秒播厂 | 亚洲精品中文字幕在线视频 | 五月天丁香电影| 免费观看av网站的网址| 亚洲最大成人手机在线| 欧美xxⅹ黑人| 成年人午夜在线观看视频 | 国产av国产精品国产| 99re6热这里在线精品视频| av在线天堂中文字幕| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| videos熟女内射| 免费观看a级毛片全部| 熟女人妻精品中文字幕| 纵有疾风起免费观看全集完整版 | 观看免费一级毛片| 美女国产视频在线观看| 99热这里只有精品一区| 亚洲精品成人久久久久久| 一级黄片播放器| 纵有疾风起免费观看全集完整版 | 成人一区二区视频在线观看| 亚洲自偷自拍三级| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 午夜福利在线在线| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 国产精品一区www在线观看| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 国产亚洲精品av在线| 亚洲精品色激情综合| 老女人水多毛片| 免费播放大片免费观看视频在线观看| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 美女高潮的动态| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 插逼视频在线观看| 91精品伊人久久大香线蕉| 日韩国内少妇激情av| 中国国产av一级| 99久久精品一区二区三区| xxx大片免费视频| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 亚洲精品中文字幕在线视频 | av在线观看视频网站免费| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频| 91久久精品国产一区二区成人| 国产成人aa在线观看| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 日本黄色片子视频| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 看十八女毛片水多多多| 精品久久国产蜜桃| 99久国产av精品| 一级毛片黄色毛片免费观看视频| 舔av片在线| 极品少妇高潮喷水抽搐| 亚洲av免费在线观看| 久久精品熟女亚洲av麻豆精品 | 日韩一区二区三区影片| 亚洲精品成人久久久久久| 精品久久久久久成人av| 免费电影在线观看免费观看| 免费人成在线观看视频色| 综合色av麻豆| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 麻豆久久精品国产亚洲av| av免费在线看不卡| 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 岛国毛片在线播放| 亚洲内射少妇av| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| kizo精华| 亚洲内射少妇av| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| kizo精华| 欧美一区二区亚洲| 久久这里有精品视频免费| 亚洲av免费在线观看| 少妇丰满av| 午夜福利在线观看吧| 欧美潮喷喷水| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 成人亚洲精品一区在线观看 | 国产精品一二三区在线看| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 久久精品久久久久久久性| 插逼视频在线观看| 国产成人精品久久久久久| 在线a可以看的网站| 国产av不卡久久| 亚洲不卡免费看| 在线观看av片永久免费下载| 欧美成人一区二区免费高清观看| 国产精品不卡视频一区二区| 国产精品精品国产色婷婷| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 真实男女啪啪啪动态图| 高清av免费在线| 尾随美女入室| 性插视频无遮挡在线免费观看| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 少妇熟女欧美另类| 男女边摸边吃奶| av卡一久久| 国产片特级美女逼逼视频| 亚洲国产日韩欧美精品在线观看| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频 | 免费人成在线观看视频色| 亚洲av.av天堂| 日本三级黄在线观看| 国产三级在线视频| 51国产日韩欧美| 亚洲精品aⅴ在线观看| 亚洲精品日本国产第一区| 九草在线视频观看| 日本一二三区视频观看| 国产极品天堂在线| 丝瓜视频免费看黄片| 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 精品久久久久久久末码| 日韩一本色道免费dvd| 一级av片app| 七月丁香在线播放| 成人午夜精彩视频在线观看| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 日本一本二区三区精品| 久久久成人免费电影| 最近中文字幕高清免费大全6| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 亚洲婷婷狠狠爱综合网| 九草在线视频观看| 免费看美女性在线毛片视频| 在线播放无遮挡| 床上黄色一级片| 丝袜喷水一区| 少妇丰满av| 亚洲av电影不卡..在线观看| 熟女电影av网| 男插女下体视频免费在线播放| 国产精品一二三区在线看| 亚洲精品视频女| 久久久久性生活片| 亚洲熟女精品中文字幕| 亚洲精品456在线播放app| 日本色播在线视频| 国产精品伦人一区二区| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载 | 国产毛片a区久久久久| 免费大片18禁| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 国产精品久久视频播放| 神马国产精品三级电影在线观看| 蜜桃久久精品国产亚洲av| 国产成人精品婷婷| 国产一区二区三区综合在线观看 | 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 日韩av免费高清视频| 九草在线视频观看| 午夜爱爱视频在线播放| 精品国产三级普通话版| 看黄色毛片网站| 六月丁香七月| 日韩av不卡免费在线播放| 高清毛片免费看| 97在线视频观看| 亚洲av二区三区四区| 欧美xxxx性猛交bbbb| 婷婷六月久久综合丁香| 中文字幕av在线有码专区| 精品久久久久久久末码| 2022亚洲国产成人精品| 国产亚洲av片在线观看秒播厂 | 国产激情偷乱视频一区二区| av卡一久久| 亚洲精品日韩在线中文字幕| 直男gayav资源| 狂野欧美激情性xxxx在线观看| 看十八女毛片水多多多| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久久久| 性色avwww在线观看| 日本与韩国留学比较| 观看免费一级毛片| 一个人免费在线观看电影| 欧美xxⅹ黑人| 18禁动态无遮挡网站| 国产亚洲午夜精品一区二区久久 | 色综合亚洲欧美另类图片| 国产精品不卡视频一区二区| 美女cb高潮喷水在线观看| 亚洲欧美日韩无卡精品| 国产免费又黄又爽又色| 亚洲国产精品成人综合色| 日韩av在线免费看完整版不卡| 尤物成人国产欧美一区二区三区| 久久久精品欧美日韩精品| 插逼视频在线观看| 亚洲精品中文字幕在线视频 | 又大又黄又爽视频免费| 精品久久久久久成人av| 精品国产三级普通话版| 亚洲av在线观看美女高潮| 九九久久精品国产亚洲av麻豆| av线在线观看网站| www.色视频.com| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 晚上一个人看的免费电影| 日本与韩国留学比较| 久久精品久久久久久久性| 日韩精品青青久久久久久| 国产精品一二三区在线看| 美女大奶头视频| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 精品久久久噜噜| 久久久久久国产a免费观看| 欧美日本视频| 久久精品久久精品一区二区三区| 老司机影院毛片| 国产片特级美女逼逼视频| 搡女人真爽免费视频火全软件| 国产伦理片在线播放av一区| 国产老妇伦熟女老妇高清| 九九久久精品国产亚洲av麻豆| 高清视频免费观看一区二区 | 国产午夜精品久久久久久一区二区三区| 日韩视频在线欧美| 毛片一级片免费看久久久久| av播播在线观看一区| 秋霞伦理黄片|