• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of New Allele of FLOURY ENDOSPERM2 in White-Core Endosperm Mutant of Rice

    2022-08-08 10:53:16BaoJinsongZhangYuZhaoJiajiaChenYalingWuWeixunCaoLiyongXuFeifei
    Rice Science 2022年5期

    Bao Jinsong, Zhang Yu, Zhao Jiajia, Chen Yaling, Wu Weixun, Cao Liyong, Xu Feifei

    Letter

    Identification of New Allele ofin White-Core Endosperm Mutant of Rice

    Bao Jinsong1, 2, Zhang Yu1, Zhao Jiajia1, Chen Yaling3, Wu Weixun4, Cao Liyong4, Xu Feifei1

    (Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province / Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China; Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330000, China; State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China)

    Identification of regulatory genes from chalky/floury endosperm mutants is an important approach to understand the mechanism of starch biosynthesis to accelerate rice grain quality improvement. A mutant, identified from60Co γ-irradiation of anrice Guanglu’ai 4 (GLA4), exhibited white-core endosperm and altered starch physicochemical properties. However, the causal gene responsible for the white-core endosperm inhas not been identified. Here, we developed a recombined inbred line (RIL, F7) population derived from a cross betweenand arice Tainong 67 (TN67) with translucent endosperm. Bulked- segregant analysis combined with next generation sequencing revealed five single nucleotide polymorphisms (SNPs) in four candidate genes that were highly associated with the white-core endosperm. Among them, one base pair deletion inresulted in a frame shift mutation after the 983th amino acid (aa), and a premature stop codon occurred after the other 11 aa. Moreover, functional annotation revealed thatwas previously characterized as the() gene. Full-length coding sequence fromdriven by the maize ubiquitin promoter was transformed into, and seeds from these transgenic plants expressingwere largely rescued to translucent, indicating thatwas responsible for the white- core endosperm in.

    The most abundant substance stored in rice grain is starch, which offers a primary source of energy for human beings (You et al, 2019; Zhang et al, 2021) and affects rice cooking and eating quality (Bao, 2012). Starch biosynthesis in rice seed endosperm is regulated by many genes involved in various pathways. Loss-of-function of mutants related to starch biosynthesis are usually accompanied by white-core or floury endosperm, where is filled with loosely packed, small and spherical starch granules with large air spaces, while normal grains have translucent endosperm which consists of tightly packed, large and irregularly polyhedral starch granules. In recent years, a lot of genes have been functionally characterized from floury endosperm mutants. Among them, the causal genes for() (Zhou et al, 2016),() (Nishi et al, 2001),() and() (Kawagoe et al, 2005) are starch synthesis-related genes.() (Kang et al, 2005),(Cai et al, 2018),(Lei et al, 2022) and(Long et al, 2018) are involved in lipid biosynthesis.(Wu et al, 2019),(Xue et al, 2019),(Yu et al, 2021) and(Hao et al, 2019), encoding pentatricopeptide repeat (PPR) proteins, play important roles in mitochondrial function and endosperm development.(Matsushima et al, 2010) and(Wang et al, 2021) are involved in compound starch granule (SG) division.encodes a protein with a carbohydrate-binding module 48 (CBM48) domain that binds to SG. FLO6 interacts with ISA1, and recruits ISA1 to SGs during endosperm development (Peng et al, 2014).encodes a NAD-dependent cytosolic malate dehydrogenase, and plays a crucial role in redox homeostasis that is important for compound SG formation and subsequent starch biosynthesis in rice endosperm (Teng et al, 2019). RSR1 and bZIP58 are transcription factors that bind to the promoters of starch synthesis related genes (SSRGs). RSR1 represses the expression of SSRGs (Fu and Xue, 2010), while bZIP58 activates the expression of SSRGs (Wang et al, 2013).encodes a tetratricopeptide repeat motif containing protein, and loss of functions inresults in decreased expression of genes involved in production of storage starch and storage proteins in the endosperm (She et al, 2010). Aspositively regulates the degradation of the nucellus and the nucellar projection during seed development, suppressedexpression causes defective programmed cell death of the nucellus and nucellar projection, resulting in shrunken floury endosperm (Yin and Xue, 2012). NF-YB1, NF-YC12 and bHLH144 can form a heterotrimer complex of NF-YB1- YC12-bHLH144, in which NF-YB1 binds to the G-box motif ingene promoter to regulate amylose synthesis (Bello et al, 2019). Besides, NF-YC12 and bHLH144 enhance the stability of NF-YB1 from 26S proteasome degradation (Bello et al, 2019), and NF-YC12 binds to the promoters ofand(glutamine synthetase1) in developing endosperm (Xiong et al, 2019). Knock-out mutants of,andwere obtained from the CRISPR/Cas9 system,and each mutant exhibits increased percentage of grain with chalkiness (Bello et al, 2019; Xiong et al, 2019). In a previous study, we isolated a white-core endosperm mutant, which has altered amylopectin structure with increased degrees of polymerization of 6 to 9 (DP6–9) and DP22–35, decreased DP10–21, as well as displayed decreased gelatinization temperature, and increased total protein content (Kong et al, 2014). However, the causal gene for the white-core endosperm inhas not been identified.

    To isolate the causal gene forphenotype, we constructed two F2populations by crossingwith its parent GLA4 and arice variety TN67 (/GLA4 and/TN67), respectively. Thechalky phenotype in the F2seeds was investigated and the separation ratios of translucent-endosperm to white-core-endosperm seeds were nearly to 3:1 in both crosses, indicating that white-core endosperm phenotype is controlled by a nuclear recessive gene (Table S1). Furthermore, seeds from each F2line of/TN67 were self-pollinated for five generationsvia the single seed descent method to construct a RIL-F7population (Fig. 1-A). We selected 26 translucent endosperm (TE) lines and 26 white-core endosperm (WE) lines, of which the endosperm phenotype was stably inherited in three generations (F5, F6and F7). Genomic DNA from each line was equally mixed to construct a bulked TE DNA pool and a bulked WE DNA pool. The two bulked DNA pools,and TN67 were then subjected for next generation sequencing (Novegene, Tianjin, China). A total of 3 032 837 SNPs and 470 038 insertion/ deletions (InDels) were identified between the two parents. Absolute ΔSNP index analysis indicated that a significant peak nearly to 1.0 located on chromosome 4 (Fig. 1-B). In this region, 27 SNPs and 6 InDels were predicted to be candidate sites with 99% possibly responsible for the chalky endosperm. Among them, four SNPs in three genes (,and) contributed to nonsynonymous amino acid changes, and a thymine deletion incaused frame shift mutation (Table S2). To verify whether these SNPs were natural variations, we amplified and sequenced these five sites in GLA4,and TN67. The results showed that GLA4 andhad the same SNPs in,and. However, the thymine deletion inwas only observed in, while GLA4 and TN67 showed the same sequence with the reference sequence (9311) (Fig. 1-C). The 1-bp deletion generated a frame-shift mutation and resulted in another 11 aa before a stop codon occurred in(Fig. 1-D). Furthermore, we developed a derived cleaved amplified polymorphism sequence (dCAPS)marker to recognize the 1-bp deletion in(Table S3), and the amplified PCR products ofwere effectively cut by the restriction enzymeI, while those of GLA4 and TN67 were not cut by?. Then, we checked the genotype of the RIL population using the dCAPS marker, finding that the PCR products from lines with all the white-core endosperm were cut byI, while those from translucent- endosperm lines were not digested byI (Fig. 1-E). Thus, we speculated thatwasthe causal gene for the white-core endosperm in. Functional annotation revealed thatwas the previously reported gene, which encodes a tetratricopeptide repeat (TPR) domain containing protein (She et al, 2010). In the present study, the second and the third TPR domains (975–1 008 aa and 1 017– 1 050 aa) of the full-length protein of 1 720 aa were lost in(Fig. 1-D).

    Fig. 1. One base pair deletioninresults in white-core endosperm mutant.

    A, Schematic of bulked-segregant analysis (BSA) for detection of candidate genes for white-core endosperm (WE) in. Twenty-six translucent endosperm (TE) lines and 26 WE lines selected from a recombinant inbred line (RIL)-F7population were used for germination. Ten-day-old seedlings were used to extract genomic DNA individually, which was equally mixed to make the bulked TE DNA pool and WE DNA pool. Genomic DNA of the two bulked DNA pools,and Tainong 67 (TN67), were subjected for next generation sequencing. B, Absolute ΔSNP index plots for white-core endosperm. Absolute ΔSNP index = |SNP indexWE pool– SNP indexTE pool|. The significant peak (absolute ΔSNP index was around 1.0) was marked in the red cycle. C, Sanger sequencing and comparison of five candidate sites in four genes in Guanglu’ai 4 (GLA4),and TN67. D, Gene structure and mutation site of. A thymine nucleotide deletion incauses premature termination of translation after 983 aa and has an additional 11 aa resulting from the frame shift mutation. The coding sequence for tetratricopeptide repeat domain is located in the red box. E, One base pair deletion inis associated with white-core endosperm in the RIL population. For the different lines, PCR products from WE-RIL are recognized and cut by the restriction enzyme? as, while PCR products from TE-RIL cannot be cut by?as TN67.

    Fig. 2. Complementary tests confirm thatlargely rescues white-core endosperm to translucent in.

    A, FLO2-3×HA-TurboID fusion protein express intransgenic plants (CL#1 to CL#5). Total protein was extracted from young grains at 10 d after flowering and analyzed the expression of the fusion protein by immunoblot with anti-HA antibody.B, Genetic complementation ofinrescues grain appearance. CL#1 and CL#2 mean complementary lines 1 and 2, respectively.

    To confirm whetherwas the causal gene forphenotypes,full-length coding sequence without a stop codon (5 160 bp) ofwas amplified from the total cDNA of GLA4 and cloned into a binary vector pCAMBIA1390. A 3×HA tag and a TurboID tag were fused to the C-terminal ofin frame. The Ubi-FLO2-3×HA-TurboID vector was transformed intovia- mediated transformation. We extracted the total proteins from the seeds of 10 T0transgenic plants at 10 d after flowering (DAF)and checked the expression of FLO2 by immunoblot using the anti-HA antibody. Positive signals were detected in five plants (Fig. 2-A). Some of T1seedsfrom these T0transgenic lines displayed translucent seeds (Fig. 2-B). The separation ratios of translucent seeds to white-core seeds were nearly to 3:1 (data not shown) in some lines, indicating that a single copy ofwas transformed into these transgenic lines.We further checked the expression of the FLO2-3×HA-TurboID fusion protein from the seeds of T1stable transgenic plants at 10 DAF using anti-HA antibody, and found that all of them were transgenic plants and the resulting seeds displayed translucent endosperm (data not shown). Thus, complementary assays confirmed thatis the causal gene for the white-core endosperm in.

    Previously, we checked the expression of SSRGs in, and the expression levels of,,,,,,,andwere significantly down-regulated during seed development (Chen et al, 2020), which is in agreement with the results of She et al (2010). The disorder of SSRGs regulated byinresulted in the alternations of amylopectin structure and physiochemical properties in. The TPR domain of FLO2 mediates protein-protein interactions with bHLH and LEA transcription factors, which play a crucial role in regulating the expression of SSRGs (She et al, 2010). Suzuki et al (2020) identified that FLOC1 interacts with FLO2 via the TPR motif, and knock-down expression of FLOC1 shows significantly reduced fertility and generation of seeds with abnormal features. However, as a regulatory factor protein, more regulatory factors interacting with FLO2 remain unknown. In recent years, attention has been paid to identify the phosphorylated protein involved in the regulation of protein-protein interactions in starch biosynthesis (Crofts et al, 2017). Pang et al (2021) found that there are 24 residues phosphorylated atinrice GLA4 and 9311. Nine sites show significant down-regulation in 9311, while one site shows up-regulation in GLA4 in response to high temperature stress. She et al (2010) reported thatis also involved in heat tolerance during seed development. It offers a clue that phosphorylation of FLO2 might be responsible for the heat tolerance in rice. Furthermore, we are interested in identifying new protein complexes involving FLO2 to investigate phosphorylation of FLO2 in regulation of protein-protein interaction. In this study, we fused a TurboID tag at the C-terminal of FLO2 to develop a FLO2-3×HA-TurboID fusion protein. TurboID is a newly developed proximity catalytic enzyme. Supplementation of biotin will activate TurboID to proximity label the nearby proteins in living cells (Yang et al, 2020). In combination with mass spectrometry, many potential FLO2 interacting proteins will be identified, facilitating the identification of FLO2 related protein complex involved in rice endosperm starch biosynthesis. Moreover, we have generated the mutants of three branching enzyme genes by genome editing technology (Tappiban et al, 2022),and the combination ofand these mutants may generate new rice lines that have high resistant starch content and better eating quality.

    Acknowledgements

    This study was financial supported by the Zhejiang Provincial Natural Science Foundation (Grant No. LZ21C130003) and National Natural Science Foundation of China (Grant No. 31961143016).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://ricescience.org.

    File S1. Methods.

    Table S1. Segregation ratios of translucent and white-core endosperm plants in two F2populations.

    Table S2. Genotypic variations of four single nucleotide polymorphisms in three genes and one base pair deletion in.

    Table S3. Primers used in this study.

    Bao J S.2012. Towards understanding of the genetic and molecular basis of eating and cooking quality of rice.,57(4): 148–156.

    Bello B K, Hou Y X, Zhao J, Jiao G A, Wu Y W, Li Z Y, Wang Y F, Tong X H, Wang W, Yuan W Y, Wei X J, Zhang J. 2019. NF-YB1-YC12-bHLH144 complex directly activatesto regulate grain quality in rice (L.)., 17(7): 1222–1235.

    Cai Y, Zhang W W, Jin J, Yang X M, You X M, Yan H G, Wang L, Chen J, Xu J H, Chen W W, Chen X G, Ma J, Tang X J, Kong F, Zhu X P, Wang G X, Jiang L, Terzaghi W, Wang C M, Wan J M. 2018.encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm., 60(11): 1097–1118.

    Chen Y L, Pang Y H, Bao J S. 2020. Expression profiles and protein complexes of starch biosynthetic enzymes from white-core and waxy mutants induced from high amyloserice., 27(2): 152–161.

    Crofts N, Nakamura Y, Fujita N. 2017. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals., 262: 1–8.

    Fu F F, Xue H W. 2010. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator., 154(2): 927–938.

    Hao Y Y, Wang Y L, Wu M M, Zhu X P, Teng X, Sun Y L, Zhu J P, Zhang Y Y, Jing R N, Lei J, Li J F, Bao X H, Wang C M, Wang Y H, Wan J M. 2019. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice., 70(18): 4705–4720.

    Kang H G, Park S, Matsuoka M, An G. 2005. White-core endospermin rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene ()., 42(6): 901–911.

    Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y. 2005. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm., 42(2): 164–174.

    Kong X L, Sun X, Xu F F, Umemoto T, Chen H, Bao J S. 2014. Morphological and physicochemical properties of two starch mutants induced from a high amyloserice by gamma irradiation., 66(1/2): 157–165.

    Lei J, Teng X, Wang Y F, Jiang X K, Zhao H H, Zheng X M, Ren Y L, Dong H, Wang Y L, Duan E C, Zhang Y Y, Zhang W W, Yang H, Chen X L, Chen R B, Zhang Y, Yu M Z, Xu S B, Bao X H, Zhang P C, Liu S J, Liu X, Tian Y L, Jiang L, Wang Y H, Wan J M. 2022. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice., 20(3): 437–453.

    Long W H, Wang Y L, Zhu S S, Jing W, Wang Y H, Ren Y L, Tian Y L, Liu S J, Liu X, Chen L M, Wang D, Zhong M S, Zhang Y Y, Hu T T, Zhu J P, Hao Y Y, Zhu X P, Zhang W W, Wang C M, Zhang W H, Wan J M. 2018.connects phospholipid metabolism and amyloplast development in rice., 177(2): 698–712.

    Matsushima R, Maekawa M, Fujita N, Sakamoto W. 2010. A rapid, direct observation method to isolate mutants with defects in starch grain morphology in rice., 51(5): 728–741.

    Nishi A, Nakamura Y, Tanaka N, Satoh H. 2001. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm., 127(2): 459–472.

    Pang Y H, Hu Y Q, Bao J S. 2021. Comparative phosphoproteomic analysis reveals the response of starch metabolism to high- temperature stress in rice endosperm., 22(19): 10546.

    Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lv J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y Q, Wan J M. 2014.encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm., 77(6): 917–930.

    She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. 2010. A novel factoris involved in regulation of rice grain size and starch quality., 22(10): 3280–3294.

    Suzuki R, Imamura T, Nonaga Y, Kusano H, Teramura H, Sekine K T, Yamashita T, Shimada H. 2020. A novel()-interacting protein, is involved in maintaining fertility and seed quality in rice., 37(1): 47–55.

    Tappiban P, Hu Y Q, Deng J M, Zhao J J, Ying Y N, Zhang Z W, Xu F F, Bao J S. 2022. Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties ofrice., 108: 399–412.

    Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, Wu M M, Zhu J P, Zhang X, Guo X P, Wang Y H, Wan J M. 2019.encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice., 17(10): 1914–1927.

    Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. 2013. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm., 64(11): 3453–3466.

    Wang R Q, Ren Y L, Yan H G, Teng X, Zhu X P, Wang Y P, Zhang X, Guo X P, Lin Q B, Cheng Z J, Lei C L, Wang J L, Jiang L, Wang Y H, Wan J M. 2021.affects amyloplast development and starch biosynthesis in rice endosperm., 305: 110831.

    Wu M M, Ren Y L, Cai M H, Wang Y L, Zhu S S, Zhu J P, Hao Y Y, Teng X, Zhu X P, Jing R N, Zhang H, Zhong M S, Wang Y F, Lei C L, Zhang X, Guo X P, Cheng Z J, Lin Q B, Wang J, Jiang L, Bao Y Q, Wang Y H, Wan J M. 2019. Riceencodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrialintron 1 and endosperm development., 223(2): 736–750.

    Xiong Y F, Ren Y, Li W, Wu F S, Yang W J, Huang X L, Yao J L. 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice., 70(15): 3765–3780.

    Xue M Y, Liu L L, Yu Y F, Zhu J P, Gao H, Wang Y H, Wan J M. 2019. Lose-of-function of a rice nucleolus-localized pentatricopeptide repeat protein is responsible for themutant phenotypes., 12(1): 100.

    Yang X X, Wen Z Y, Zhang D L, Li Z, Li D W, Nagalakshmi U, Dinesh-Kumar S P, Zhang Y L. 2020. Proximity labeling: An emerging tool for probing in planta molecular interactions., 2(2): 100137.

    Yin L L, Xue H W. 2012. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development., 24(3): 1049–1065.

    You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, Ma J, Tang X J, Wang P, Zhu S S, Liu L L, Jiang L, Wan J M. 2019.encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm., 38(3): 345–359.

    Yu M Z, Wu M M, Ren Y L, Wang Y H, Li J F, Lei C L, Sun Y L, Bao X H, Wu H M, Yang H, Pan T, Wang Y F, Jing R N, Yan M Y, Zhang H D, Zhao L, Zhao Z C, Zhang X, Guo X P, Cheng Z J, Yang B, Jiang L, Wan J M. 2021. Riceencodes a pentatricopeptide repeat protein required for 5processing of mitochondrialmessenger RNA and endosperm development., 63(5): 834–847.

    Zhang J, Niu B X, E Z G, Chen C. 2021. Towards understanding the genetic regulations of endosperm development in rice., 35(4): 326–341. (in Chinese with English abstract)

    Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smith S M, Wu D X, Li J Y. 2016. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice., 113(45): 12844–12849.

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/

    s: Xu Feifei (xuxufei@zju.edu.cn); Cao Liyong (caoliyong@caas.cn)

    7 January 2022;

    24 April 2022

    男人爽女人下面视频在线观看| 国产成人aa在线观看| 亚洲av电影在线观看一区二区三区| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 日本欧美国产在线视频| 一本久久精品| 精品一区二区三区视频在线| 特大巨黑吊av在线直播| 日韩欧美一区视频在线观看| 日韩一区二区视频免费看| 嘟嘟电影网在线观看| av线在线观看网站| 在线亚洲精品国产二区图片欧美 | 18+在线观看网站| 亚洲国产精品国产精品| 91精品国产九色| 亚洲第一av免费看| 人妻制服诱惑在线中文字幕| 五月开心婷婷网| 国产探花极品一区二区| 国产高清不卡午夜福利| 亚洲精品aⅴ在线观看| 国产永久视频网站| 亚洲精品视频女| 日韩一本色道免费dvd| 中文欧美无线码| 日韩制服骚丝袜av| 亚洲综合色网址| 18禁在线播放成人免费| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| 久久免费观看电影| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 女人久久www免费人成看片| 欧美人与性动交α欧美精品济南到 | 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 成人国产麻豆网| 日日爽夜夜爽网站| 老熟女久久久| 制服丝袜香蕉在线| 伦理电影免费视频| 欧美3d第一页| 麻豆成人av视频| 日本与韩国留学比较| 9色porny在线观看| 久久久久久久国产电影| 欧美三级亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 久久影院123| 少妇熟女欧美另类| 欧美日本中文国产一区发布| 九九久久精品国产亚洲av麻豆| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 亚洲精品美女久久av网站| 如日韩欧美国产精品一区二区三区 | 亚洲欧美一区二区三区国产| 考比视频在线观看| 免费观看a级毛片全部| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说| 国产伦精品一区二区三区视频9| 丝袜美足系列| 一个人免费看片子| 久久99一区二区三区| 亚洲av福利一区| 嫩草影院入口| 亚洲四区av| 成人免费观看视频高清| 亚洲无线观看免费| 国产欧美亚洲国产| 国产av码专区亚洲av| 亚洲av中文av极速乱| 亚洲怡红院男人天堂| 久久影院123| 亚洲四区av| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 婷婷色综合大香蕉| 春色校园在线视频观看| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 久久 成人 亚洲| 18禁动态无遮挡网站| 亚洲av二区三区四区| 国产极品粉嫩免费观看在线 | 91成人精品电影| 欧美三级亚洲精品| 制服人妻中文乱码| 乱人伦中国视频| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 久久国产亚洲av麻豆专区| 内地一区二区视频在线| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线 | 欧美精品亚洲一区二区| 在线观看人妻少妇| av有码第一页| 天堂中文最新版在线下载| 欧美精品一区二区大全| 五月伊人婷婷丁香| 男女高潮啪啪啪动态图| 99久久精品国产国产毛片| 99久久人妻综合| 国产一区二区三区综合在线观看 | 特大巨黑吊av在线直播| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 另类精品久久| 狠狠婷婷综合久久久久久88av| 啦啦啦在线观看免费高清www| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 少妇人妻 视频| 一本久久精品| 欧美人与善性xxx| 少妇丰满av| av电影中文网址| 国产高清三级在线| 国产黄频视频在线观看| 国产成人av激情在线播放 | 熟妇人妻不卡中文字幕| 亚洲熟女精品中文字幕| 免费高清在线观看视频在线观看| av在线观看视频网站免费| 亚洲av成人精品一二三区| av天堂久久9| 在现免费观看毛片| 亚洲精品一区蜜桃| 国产成人精品福利久久| 2022亚洲国产成人精品| 嫩草影院入口| 国产又色又爽无遮挡免| www.色视频.com| 老司机亚洲免费影院| 久久久欧美国产精品| 国产 一区精品| 欧美日韩国产mv在线观看视频| 久久狼人影院| 成人国产麻豆网| 五月天丁香电影| 蜜桃在线观看..| 99热国产这里只有精品6| 丝袜美足系列| 亚洲国产精品999| 亚洲国产av新网站| 日本欧美国产在线视频| 久久久国产欧美日韩av| 免费观看av网站的网址| 欧美日韩综合久久久久久| 特大巨黑吊av在线直播| 欧美变态另类bdsm刘玥| 尾随美女入室| 免费大片黄手机在线观看| 看非洲黑人一级黄片| xxxhd国产人妻xxx| 成年av动漫网址| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 国产精品一区www在线观看| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 麻豆成人av视频| 久久99蜜桃精品久久| 成人漫画全彩无遮挡| 国产乱来视频区| kizo精华| 18在线观看网站| 日韩强制内射视频| 亚洲欧美日韩另类电影网站| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 中文字幕最新亚洲高清| 亚洲精品成人av观看孕妇| 亚洲无线观看免费| 欧美精品人与动牲交sv欧美| 草草在线视频免费看| 9色porny在线观看| a级毛片黄视频| 免费看av在线观看网站| 赤兔流量卡办理| 日韩不卡一区二区三区视频在线| 99热全是精品| 永久网站在线| 91在线精品国自产拍蜜月| 一级爰片在线观看| 免费观看a级毛片全部| 在线 av 中文字幕| 久久女婷五月综合色啪小说| 校园人妻丝袜中文字幕| 亚洲精品久久成人aⅴ小说 | 少妇丰满av| 丝袜脚勾引网站| 久久久国产精品麻豆| 夫妻午夜视频| 免费黄频网站在线观看国产| 少妇丰满av| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 黄色怎么调成土黄色| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 亚洲四区av| 看免费成人av毛片| av天堂久久9| 午夜福利视频在线观看免费| 一区在线观看完整版| 女性被躁到高潮视频| 国产成人精品福利久久| 国产综合精华液| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 99热全是精品| 欧美日本中文国产一区发布| 亚洲欧洲国产日韩| 视频中文字幕在线观看| 美女视频免费永久观看网站| 人妻制服诱惑在线中文字幕| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 亚洲av不卡在线观看| 人人妻人人澡人人看| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 91精品三级在线观看| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频 | 中文字幕人妻熟女乱码| 美女福利国产在线| 国产男靠女视频免费网站| 天堂中文最新版在线下载| 欧美精品av麻豆av| 久久久久久久国产电影| 丝袜美腿诱惑在线| 久久人妻福利社区极品人妻图片| 久久精品人人爽人人爽视色| 桃红色精品国产亚洲av| 国产免费视频播放在线视频| 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| av又黄又爽大尺度在线免费看| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 美女主播在线视频| 久久国产亚洲av麻豆专区| 91成人精品电影| 大型av网站在线播放| 欧美大码av| 亚洲av成人不卡在线观看播放网| 国产一区二区三区在线臀色熟女 | 精品免费久久久久久久清纯 | 精品一区二区三区四区五区乱码| 欧美国产精品va在线观看不卡| 人妻 亚洲 视频| 久久性视频一级片| 国产成人免费无遮挡视频| 国产日韩欧美亚洲二区| 满18在线观看网站| 高清av免费在线| 亚洲三区欧美一区| 日本黄色日本黄色录像| 日韩大片免费观看网站| www日本在线高清视频| 国产免费现黄频在线看| 一级毛片精品| 国产在线免费精品| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 午夜成年电影在线免费观看| 精品视频人人做人人爽| 亚洲精品乱久久久久久| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 999精品在线视频| 满18在线观看网站| 亚洲专区字幕在线| 中文字幕人妻丝袜制服| 国产在视频线精品| 91av网站免费观看| 一区二区三区国产精品乱码| videosex国产| 午夜日韩欧美国产| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 国产高清激情床上av| 少妇的丰满在线观看| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| 又大又爽又粗| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 变态另类成人亚洲欧美熟女 | 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 国产亚洲av高清不卡| 夜夜爽天天搞| 一二三四在线观看免费中文在| 久久99一区二区三区| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 国产麻豆69| 纯流量卡能插随身wifi吗| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 啪啪无遮挡十八禁网站| 黄色视频在线播放观看不卡| 最近最新免费中文字幕在线| 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 黄色视频在线播放观看不卡| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 国产有黄有色有爽视频| 国产一区二区 视频在线| 亚洲精品在线美女| 亚洲三区欧美一区| 亚洲第一av免费看| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色 | 一区二区三区精品91| 欧美人与性动交α欧美软件| 亚洲成人国产一区在线观看| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 亚洲欧洲精品一区二区精品久久久| 精品亚洲乱码少妇综合久久| 亚洲一区二区三区欧美精品| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 亚洲精品在线美女| 欧美精品人与动牲交sv欧美| 亚洲av成人一区二区三| 国产精品电影一区二区三区 | 12—13女人毛片做爰片一| 久久人妻福利社区极品人妻图片| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网| 免费女性裸体啪啪无遮挡网站| 国产成人免费无遮挡视频| 午夜福利欧美成人| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站| 另类精品久久| 免费观看av网站的网址| 亚洲色图综合在线观看| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 欧美日韩黄片免| 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 啦啦啦 在线观看视频| 黑人猛操日本美女一级片| 丁香六月天网| 99热国产这里只有精品6| 在线观看www视频免费| 视频在线观看一区二区三区| 五月天丁香电影| 丝袜美腿诱惑在线| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 男女下面插进去视频免费观看| 窝窝影院91人妻| 久久久欧美国产精品| 一本色道久久久久久精品综合| 国产精品98久久久久久宅男小说| 国产成人精品在线电影| 亚洲欧洲日产国产| 老司机靠b影院| 少妇裸体淫交视频免费看高清 | 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码| 老司机靠b影院| 母亲3免费完整高清在线观看| 国产成人免费无遮挡视频| 人妻一区二区av| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线观看免费 | 另类亚洲欧美激情| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 满18在线观看网站| 丝袜美足系列| 亚洲成av片中文字幕在线观看| 美女扒开内裤让男人捅视频| 国产深夜福利视频在线观看| 视频在线观看一区二区三区| 午夜福利影视在线免费观看| 久久久久精品人妻al黑| 亚洲avbb在线观看| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 国产又爽黄色视频| 女警被强在线播放| 女同久久另类99精品国产91| 日本a在线网址| 亚洲成人手机| 欧美黄色片欧美黄色片| 欧美成人免费av一区二区三区 | 9热在线视频观看99| 国产有黄有色有爽视频| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 国产成人精品久久二区二区免费| 精品人妻熟女毛片av久久网站| 91老司机精品| 亚洲精品一二三| 777米奇影视久久| 欧美av亚洲av综合av国产av| 国产区一区二久久| 国产成人欧美| 大香蕉久久成人网| 一边摸一边做爽爽视频免费| 中国美女看黄片| 男男h啪啪无遮挡| 国产在线免费精品| 看免费av毛片| 捣出白浆h1v1| 国产精品电影一区二区三区 | 久久久欧美国产精品| 久久香蕉激情| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| 手机成人av网站| 国产精品av久久久久免费| 国产精品电影一区二区三区 | 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 乱人伦中国视频| 久久午夜亚洲精品久久| 岛国在线观看网站| 大陆偷拍与自拍| 99九九在线精品视频| 国产精品一区二区在线观看99| 国产单亲对白刺激| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 18禁观看日本| av网站在线播放免费| 欧美激情 高清一区二区三区| 日日摸夜夜添夜夜添小说| 中文字幕另类日韩欧美亚洲嫩草| 变态另类成人亚洲欧美熟女 | 大型黄色视频在线免费观看| 欧美成人免费av一区二区三区 | 国产欧美亚洲国产| 午夜免费鲁丝| 久久久久精品人妻al黑| 精品欧美一区二区三区在线| 中文字幕av电影在线播放| 99精品欧美一区二区三区四区| www.熟女人妻精品国产| av欧美777| 大片电影免费在线观看免费| 欧美精品高潮呻吟av久久| av片东京热男人的天堂| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香| 亚洲中文字幕日韩| 大香蕉久久成人网| 久久久精品区二区三区| 国产精品成人在线| 欧美日韩黄片免| 精品熟女少妇八av免费久了| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 精品国产亚洲在线| 超色免费av| 欧美成人午夜精品| a在线观看视频网站| 一边摸一边做爽爽视频免费| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 国产黄频视频在线观看| 成人特级黄色片久久久久久久 | 69精品国产乱码久久久| 国产成人欧美| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费 | 麻豆av在线久日| 黄色成人免费大全| 夜夜爽天天搞| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 在线观看www视频免费| 国产av又大| 少妇粗大呻吟视频| 久久久国产成人免费| av免费在线观看网站| 国产精品 国内视频| 一级黄色大片毛片| 午夜福利在线观看吧| 超碰成人久久| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 一夜夜www| 欧美激情久久久久久爽电影 | 少妇的丰满在线观看| 国产又爽黄色视频| 国产精品久久电影中文字幕 | 亚洲第一青青草原| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 啦啦啦中文免费视频观看日本| 久久久久精品人妻al黑| 国精品久久久久久国模美| 亚洲精品粉嫩美女一区| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人 | av在线播放免费不卡| 国产片内射在线| 国产精品国产av在线观看| 黄色a级毛片大全视频| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一出视频| 精品熟女少妇八av免费久了| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 午夜福利在线免费观看网站| 亚洲成人手机| 亚洲av第一区精品v没综合| 国产精品1区2区在线观看. | 国产黄频视频在线观看| 热99国产精品久久久久久7| 日韩视频一区二区在线观看| 黑人猛操日本美女一级片| av在线播放免费不卡| 老司机午夜福利在线观看视频 | 国产精品 国内视频| 午夜两性在线视频| 麻豆国产av国片精品| 亚洲精品在线观看二区| 日韩中文字幕视频在线看片| 考比视频在线观看| 我的亚洲天堂| 亚洲人成77777在线视频| 99国产精品一区二区三区| 一级,二级,三级黄色视频| 999久久久精品免费观看国产| 18禁黄网站禁片午夜丰满| 新久久久久国产一级毛片| 黄色a级毛片大全视频| 欧美在线一区亚洲| 老熟女久久久| 亚洲情色 制服丝袜| 大型av网站在线播放| 嫩草影视91久久| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 久久人人97超碰香蕉20202| 国产高清videossex| 国产男女超爽视频在线观看| 精品国产亚洲在线| 2018国产大陆天天弄谢| 国产免费现黄频在线看| 丰满饥渴人妻一区二区三| 精品欧美一区二区三区在线| 成人免费观看视频高清| 成人特级黄色片久久久久久久 | 女人高潮潮喷娇喘18禁视频| 我的亚洲天堂| 日韩人妻精品一区2区三区| 久久久国产欧美日韩av| 啦啦啦中文免费视频观看日本| 麻豆av在线久日| 在线观看一区二区三区激情| 丁香六月欧美| 超色免费av| 久久精品熟女亚洲av麻豆精品| 国精品久久久久久国模美| 汤姆久久久久久久影院中文字幕| 日韩视频在线欧美| 9191精品国产免费久久| 后天国语完整版免费观看| 国产av一区二区精品久久|